llvm.org GIT mirror llvm / release_35@215010 lib / Target / Hexagon / HexagonOperands.td
release_35@215010

Tree @release_35@215010 (Download .tar.gz)

HexagonOperands.td @release_35@215010raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illnois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// Immediate operands.

let PrintMethod = "printImmOperand" in {
  // f32Ext type is used to identify constant extended floating point immediates.
  def f32Ext : Operand<f32>;
  def s32Imm : Operand<i32>;
  def s26_6Imm : Operand<i32>;
  def s16Imm : Operand<i32>;
  def s12Imm : Operand<i32>;
  def s11Imm : Operand<i32>;
  def s11_0Imm : Operand<i32>;
  def s11_1Imm : Operand<i32>;
  def s11_2Imm : Operand<i32>;
  def s11_3Imm : Operand<i32>;
  def s10Imm : Operand<i32>;
  def s9Imm : Operand<i32>;
  def m9Imm : Operand<i32>;
  def s8Imm : Operand<i32>;
  def s8Imm64 : Operand<i64>;
  def s6Imm : Operand<i32>;
  def s4Imm : Operand<i32>;
  def s4_0Imm : Operand<i32>;
  def s4_1Imm : Operand<i32>;
  def s4_2Imm : Operand<i32>;
  def s4_3Imm : Operand<i32>;
  def u64Imm : Operand<i64>;
  def u32Imm : Operand<i32>;
  def u26_6Imm : Operand<i32>;
  def u16Imm : Operand<i32>;
  def u16_0Imm : Operand<i32>;
  def u16_1Imm : Operand<i32>;
  def u16_2Imm : Operand<i32>;
  def u11_3Imm : Operand<i32>;
  def u10Imm : Operand<i32>;
  def u9Imm : Operand<i32>;
  def u8Imm : Operand<i32>;
  def u7Imm : Operand<i32>;
  def u6Imm : Operand<i32>;
  def u6_0Imm : Operand<i32>;
  def u6_1Imm : Operand<i32>;
  def u6_2Imm : Operand<i32>;
  def u6_3Imm : Operand<i32>;
  def u5Imm : Operand<i32>;
  def u4Imm : Operand<i32>;
  def u3Imm : Operand<i32>;
  def u2Imm : Operand<i32>;
  def u1Imm : Operand<i32>;
  def n8Imm : Operand<i32>;
  def m6Imm : Operand<i32>;
}

let PrintMethod = "printNOneImmOperand" in
def nOneImm : Operand<i32>;

//
// Immediate predicates
//
def s32ImmPred  : PatLeaf<(i32 imm), [{
  // s32ImmPred predicate - True if the immediate fits in a 32-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<32>(v);
}]>;

def s32_24ImmPred  : PatLeaf<(i32 imm), [{
  // s32_24ImmPred predicate - True if the immediate fits in a 32-bit sign
  // extended field that is a multiple of 0x1000000.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<32,24>(v);
}]>;

def s32_16s8ImmPred  : PatLeaf<(i32 imm), [{
  // s32_16s8ImmPred predicate - True if the immediate fits in a 32-bit sign
  // extended field that is a multiple of 0x10000.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<24,16>(v);
}]>;

def s26_6ImmPred  : PatLeaf<(i32 imm), [{
  // s26_6ImmPred predicate - True if the immediate fits in a 32-bit
  // sign extended field.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<26,6>(v);
}]>;


def s16ImmPred  : PatLeaf<(i32 imm), [{
  // s16ImmPred predicate - True if the immediate fits in a 16-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<16>(v);
}]>;


def s13ImmPred  : PatLeaf<(i32 imm), [{
  // s13ImmPred predicate - True if the immediate fits in a 13-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<13>(v);
}]>;


def s12ImmPred  : PatLeaf<(i32 imm), [{
  // s12ImmPred predicate - True if the immediate fits in a 12-bit
  // sign extended field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<12>(v);
}]>;

def s11_0ImmPred  : PatLeaf<(i32 imm), [{
  // s11_0ImmPred predicate - True if the immediate fits in a 11-bit
  // sign extended field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<11>(v);
}]>;


def s11_1ImmPred  : PatLeaf<(i32 imm), [{
  // s11_1ImmPred predicate - True if the immediate fits in a 12-bit
  // sign extended field and is a multiple of 2.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<11,1>(v);
}]>;


def s11_2ImmPred  : PatLeaf<(i32 imm), [{
  // s11_2ImmPred predicate - True if the immediate fits in a 13-bit
  // sign extended field and is a multiple of 4.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<11,2>(v);
}]>;


def s11_3ImmPred  : PatLeaf<(i32 imm), [{
  // s11_3ImmPred predicate - True if the immediate fits in a 14-bit
  // sign extended field and is a multiple of 8.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<11,3>(v);
}]>;


def s10ImmPred  : PatLeaf<(i32 imm), [{
  // s10ImmPred predicate - True if the immediate fits in a 10-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<10>(v);
}]>;


def s9ImmPred  : PatLeaf<(i32 imm), [{
  // s9ImmPred predicate - True if the immediate fits in a 9-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<9>(v);
}]>;

def m9ImmPred  : PatLeaf<(i32 imm), [{
  // m9ImmPred predicate - True if the immediate fits in a 9-bit magnitude
  // field. The range of m9 is -255 to 255.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<9>(v) && (v != -256);
}]>;

def s8ImmPred  : PatLeaf<(i32 imm), [{
  // s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<8>(v);
}]>;


def s8Imm64Pred  : PatLeaf<(i64 imm), [{
  // s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<8>(v);
}]>;


def s6ImmPred  : PatLeaf<(i32 imm), [{
  // s6ImmPred predicate - True if the immediate fits in a 6-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<6>(v);
}]>;


def s4_0ImmPred  : PatLeaf<(i32 imm), [{
  // s4_0ImmPred predicate - True if the immediate fits in a 4-bit sign extended
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isInt<4>(v);
}]>;


def s4_1ImmPred  : PatLeaf<(i32 imm), [{
  // s4_1ImmPred predicate - True if the immediate fits in a 4-bit sign extended
  // field of 2.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<4,1>(v);
}]>;


def s4_2ImmPred  : PatLeaf<(i32 imm), [{
  // s4_2ImmPred predicate - True if the immediate fits in a 4-bit sign extended
  // field that is a multiple of 4.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<4,2>(v);
}]>;


def s4_3ImmPred  : PatLeaf<(i32 imm), [{
  // s4_3ImmPred predicate - True if the immediate fits in a 4-bit sign extended
  // field that is a multiple of 8.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<4,3>(v);
}]>;


def u64ImmPred  : PatLeaf<(i64 imm), [{
  // Adding "N ||" to suppress gcc unused warning.
  return (N || true);
}]>;

def u32ImmPred  : PatLeaf<(i32 imm), [{
  // u32ImmPred predicate - True if the immediate fits in a 32-bit field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<32>(v);
}]>;

def u26_6ImmPred  : PatLeaf<(i32 imm), [{
  // u26_6ImmPred - True if the immediate fits in a 32-bit field and
  // is a multiple of 64.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedUInt<26,6>(v);
}]>;

def u16ImmPred  : PatLeaf<(i32 imm), [{
  // u16ImmPred predicate - True if the immediate fits in a 16-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<16>(v);
}]>;

def u16_s8ImmPred  : PatLeaf<(i32 imm), [{
  // u16_s8ImmPred predicate - True if the immediate fits in a 16-bit sign
  // extended s8 field.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedUInt<16,8>(v);
}]>;

def u9ImmPred  : PatLeaf<(i32 imm), [{
  // u9ImmPred predicate - True if the immediate fits in a 9-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<9>(v);
}]>;


def u8ImmPred  : PatLeaf<(i32 imm), [{
  // u8ImmPred predicate - True if the immediate fits in a 8-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<8>(v);
}]>;

def u7StrictPosImmPred : ImmLeaf<i32, [{
  // u7StrictPosImmPred predicate - True if the immediate fits in an 7-bit
  // unsigned field and is strictly greater than 0.
  return isUInt<7>(Imm) && Imm > 0;
}]>;

def u7ImmPred  : PatLeaf<(i32 imm), [{
  // u7ImmPred predicate - True if the immediate fits in a 7-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<7>(v);
}]>;


def u6ImmPred  : PatLeaf<(i32 imm), [{
  // u6ImmPred predicate - True if the immediate fits in a 6-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<6>(v);
}]>;

def u6_0ImmPred  : PatLeaf<(i32 imm), [{
  // u6_0ImmPred predicate - True if the immediate fits in a 6-bit unsigned
  // field. Same as u6ImmPred.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<6>(v);
}]>;

def u6_1ImmPred  : PatLeaf<(i32 imm), [{
  // u6_1ImmPred predicate - True if the immediate fits in a 7-bit unsigned
  // field that is 1 bit alinged - multiple of 2.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedUInt<6,1>(v);
}]>;

def u6_2ImmPred  : PatLeaf<(i32 imm), [{
  // u6_2ImmPred predicate - True if the immediate fits in a 8-bit unsigned
  // field that is 2 bits alinged - multiple of 4.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedUInt<6,2>(v);
}]>;

def u6_3ImmPred  : PatLeaf<(i32 imm), [{
  // u6_3ImmPred predicate - True if the immediate fits in a 9-bit unsigned
  // field that is 3 bits alinged - multiple of 8.
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedUInt<6,3>(v);
}]>;

def u5ImmPred  : PatLeaf<(i32 imm), [{
  // u5ImmPred predicate - True if the immediate fits in a 5-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<5>(v);
}]>;


def u3ImmPred  : PatLeaf<(i32 imm), [{
  // u3ImmPred predicate - True if the immediate fits in a 3-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<3>(v);
}]>;


def u2ImmPred  : PatLeaf<(i32 imm), [{
  // u2ImmPred predicate - True if the immediate fits in a 2-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<2>(v);
}]>;


def u1ImmPred  : PatLeaf<(i1 imm), [{
  // u1ImmPred predicate - True if the immediate fits in a 1-bit unsigned
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return isUInt<1>(v);
}]>;

def m5BImmPred  : PatLeaf<(i32 imm), [{
  // m5BImmPred predicate - True if the (char) number is in range -1 .. -31
  // and will fit in a 5 bit field when made positive, for use in memops.
  // this is specific to the zero extending of a negative by CombineInstr
  int8_t v = (int8_t)N->getSExtValue();
  return (-31 <= v && v <= -1);
}]>;

def m5HImmPred  : PatLeaf<(i32 imm), [{
  // m5HImmPred predicate - True if the (short) number is in range -1 .. -31
  // and will fit in a 5 bit field when made positive, for use in memops.
  // this is specific to the zero extending of a negative by CombineInstr
  int16_t v = (int16_t)N->getSExtValue();
  return (-31 <= v && v <= -1);
}]>;

def m5ImmPred  : PatLeaf<(i32 imm), [{
  // m5ImmPred predicate - True if the number is in range -1 .. -31
  // and will fit in a 5 bit field when made positive, for use in memops.
  int64_t v = (int64_t)N->getSExtValue();
  return (-31 <= v && v <= -1);
}]>;

//InN means negative integers in [-(2^N - 1), 0]
def n8ImmPred  : PatLeaf<(i32 imm), [{
  // n8ImmPred predicate - True if the immediate fits in a 8-bit signed
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  return (-255 <= v && v <= 0);
}]>;

def nOneImmPred  : PatLeaf<(i32 imm), [{
  // nOneImmPred predicate - True if the immediate is -1.
  int64_t v = (int64_t)N->getSExtValue();
  return (-1 == v);
}]>;

def Set5ImmPred : PatLeaf<(i32 imm), [{
  // Set5ImmPred predicate - True if the number is in the series of values.
  // [ 2^0, 2^1, ... 2^31 ]
  // For use in setbit immediate.
  uint32_t v = (int32_t)N->getSExtValue();
  // Constrain to 32 bits, and then check for single bit.
  return ImmIsSingleBit(v);
}]>;

def Clr5ImmPred : PatLeaf<(i32 imm), [{
  // Clr5ImmPred predicate - True if the number is in the series of
  // bit negated values.
  // [ 2^0, 2^1, ... 2^31 ]
  // For use in clrbit immediate.
  // Note: we are bit NOTing the value.
  uint32_t v = ~ (int32_t)N->getSExtValue();
  // Constrain to 32 bits, and then check for single bit.
  return ImmIsSingleBit(v);
}]>;

def SetClr5ImmPred : PatLeaf<(i32 imm), [{
  // SetClr5ImmPred predicate - True if the immediate is in range 0..31.
  int32_t v = (int32_t)N->getSExtValue();
  return (v >= 0 && v <= 31);
}]>;

def Set4ImmPred : PatLeaf<(i32 imm), [{
  // Set4ImmPred predicate - True if the number is in the series of values:
  // [ 2^0, 2^1, ... 2^15 ].
  // For use in setbit immediate.
  uint16_t v = (int16_t)N->getSExtValue();
  // Constrain to 16 bits, and then check for single bit.
  return ImmIsSingleBit(v);
}]>;

def Clr4ImmPred : PatLeaf<(i32 imm), [{
  // Clr4ImmPred predicate - True if the number is in the series of
  // bit negated values:
  // [ 2^0, 2^1, ... 2^15 ].
  // For use in setbit and clrbit immediate.
  uint16_t v = ~ (int16_t)N->getSExtValue();
  // Constrain to 16 bits, and then check for single bit.
  return ImmIsSingleBit(v);
}]>;

def SetClr4ImmPred : PatLeaf<(i32 imm), [{
  // SetClr4ImmPred predicate - True if the immediate is in the range 0..15.
  int16_t v = (int16_t)N->getSExtValue();
  return (v >= 0 && v <= 15);
}]>;

def Set3ImmPred : PatLeaf<(i32 imm), [{
  // Set3ImmPred predicate - True if the number is in the series of values:
  // [ 2^0, 2^1, ... 2^7 ].
  // For use in setbit immediate.
  uint8_t v = (int8_t)N->getSExtValue();
  // Constrain to 8 bits, and then check for single bit.
  return ImmIsSingleBit(v);
}]>;

def Clr3ImmPred : PatLeaf<(i32 imm), [{
  // Clr3ImmPred predicate - True if the number is in the series of
  // bit negated values:
  // [ 2^0, 2^1, ... 2^7 ].
  // For use in setbit and clrbit immediate.
  uint8_t v = ~ (int8_t)N->getSExtValue();
  // Constrain to 8 bits, and then check for single bit.
  return ImmIsSingleBit(v);
}]>;

def SetClr3ImmPred : PatLeaf<(i32 imm), [{
  // SetClr3ImmPred predicate - True if the immediate is in the range  0..7.
  int8_t v = (int8_t)N->getSExtValue();
  return (v >= 0 && v <= 7);
}]>;


// Extendable immediate operands.

let PrintMethod = "printExtOperand" in {
  def s16Ext : Operand<i32>;
  def s12Ext : Operand<i32>;
  def s10Ext : Operand<i32>;
  def s9Ext : Operand<i32>;
  def s8Ext : Operand<i32>;
  def s6Ext : Operand<i32>;
  def s11_0Ext : Operand<i32>;
  def s11_1Ext : Operand<i32>;
  def s11_2Ext : Operand<i32>;
  def s11_3Ext : Operand<i32>;
  def u6Ext : Operand<i32>;
  def u7Ext : Operand<i32>;
  def u8Ext : Operand<i32>;
  def u9Ext : Operand<i32>;
  def u10Ext : Operand<i32>;
  def u6_0Ext : Operand<i32>;
  def u6_1Ext : Operand<i32>;
  def u6_2Ext : Operand<i32>;
  def u6_3Ext : Operand<i32>;
}

let PrintMethod = "printImmOperand" in
def u0AlwaysExt : Operand<i32>;

// Predicates for constant extendable operands
def s16ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 16-bit sign extended field.
    return isInt<16>(v);
  else {
    if (isInt<16>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit signed field.
    return isConstExtProfitable(Node) && isInt<32>(v);
  }
}]>;

def s10ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 10-bit sign extended field.
    return isInt<10>(v);
  else {
    if (isInt<10>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit signed field.
    return isConstExtProfitable(Node) && isInt<32>(v);
  }
}]>;

def s9ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 9-bit sign extended field.
    return isInt<9>(v);
  else {
    if (isInt<9>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isInt<32>(v);
  }
}]>;

def s8ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 8-bit sign extended field.
    return isInt<8>(v);
  else {
    if (isInt<8>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit signed field.
    return isConstExtProfitable(Node) && isInt<32>(v);
  }
}]>;

def s8_16ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate fits in a 8-bit sign extended field.
    return isInt<8>(v);
  else {
    if (isInt<8>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can't fit in a 16-bit signed field. This is required to avoid
    // unnecessary constant extenders.
    return isConstExtProfitable(Node) && !isInt<16>(v);
  }
}]>;

def s6ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 6-bit sign extended field.
    return isInt<6>(v);
  else {
    if (isInt<6>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isInt<32>(v);
  }
}]>;

def s6_16ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate fits in a 6-bit sign extended field.
    return isInt<6>(v);
  else {
    if (isInt<6>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can't fit in a 16-bit signed field. This is required to avoid
    // unnecessary constant extenders.
    return isConstExtProfitable(Node) && !isInt<16>(v);
  }
}]>;

def s6_10ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 6-bit sign extended field.
    return isInt<6>(v);
  else {
    if (isInt<6>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can't fit in a 10-bit signed field. This is required to avoid
    // unnecessary constant extenders.
    return isConstExtProfitable(Node) && !isInt<10>(v);
  }
}]>;

def s11_0ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 11-bit sign extended field.
    return isShiftedInt<11,0>(v);
  else {
    if (isInt<11>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit signed field.
    return isConstExtProfitable(Node) && isInt<32>(v);
  }
}]>;

def s11_1ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 12-bit sign extended field and
    // is 2 byte aligned.
    return isShiftedInt<11,1>(v);
  else {
    if (isInt<12>(v))
      return isShiftedInt<11,1>(v);

    // Return true if extending this immediate is profitable and the low 1 bit
    // is zero (2-byte aligned).
    return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 2) == 0);
  }
}]>;

def s11_2ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 13-bit sign extended field and
    // is 4-byte aligned.
    return isShiftedInt<11,2>(v);
  else {
    if (isInt<13>(v))
      return isShiftedInt<11,2>(v);

    // Return true if extending this immediate is profitable and the low 2-bits
    // are zero (4-byte aligned).
    return isConstExtProfitable(Node)  && isInt<32>(v) && ((v % 4) == 0);
  }
}]>;

def s11_3ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 14-bit sign extended field and
    // is 8-byte aligned.
    return isShiftedInt<11,3>(v);
  else {
    if (isInt<14>(v))
     return isShiftedInt<11,3>(v);

    // Return true if extending this immediate is profitable and the low 3-bits
    // are zero (8-byte aligned).
    return isConstExtProfitable(Node)  && isInt<32>(v) && ((v % 8) == 0);
  }
}]>;

def u0AlwaysExtPred : PatLeaf<(i32 imm), [{
  // Predicate for an unsigned 32-bit value that always needs to be extended.
  if (Subtarget.hasV4TOps()) {
    if (isConstExtProfitable(Node)) {
      int64_t v = (int64_t)N->getSExtValue();
      return isUInt<32>(v);
    }
  }
  return false;
}]>;

def u6ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 6-bit unsigned field.
    return isUInt<6>(v);
  else {
    if (isUInt<6>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v);
  }
}]>;

def u7ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 7-bit unsigned field.
    return isUInt<7>(v);
  else {
    if (isUInt<7>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v);
  }
}]>;

def u8ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 8-bit unsigned field.
    return isUInt<8>(v);
  else {
    if (isUInt<8>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v);
  }
}]>;

def u9ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 9-bit unsigned field.
    return isUInt<9>(v);
  else {
    if (isUInt<9>(v))
      return true;

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v);
  }
}]>;

def u6_1ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 7-bit unsigned field and
    // is 2-byte aligned.
    return isShiftedUInt<6,1>(v);
  else {
    if (isUInt<7>(v))
      return isShiftedUInt<6,1>(v);

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 2) == 0);
  }
}]>;

def u6_2ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 8-bit unsigned field and
    // is 4-byte aligned.
    return isShiftedUInt<6,2>(v);
  else {
    if (isUInt<8>(v))
      return isShiftedUInt<6,2>(v);

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 4) == 0);
  }
}]>;

def u6_3ExtPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  if (!Subtarget.hasV4TOps())
    // Return true if the immediate can fit in a 9-bit unsigned field and
    // is 8-byte aligned.
    return isShiftedUInt<6,3>(v);
  else {
    if (isUInt<9>(v))
      return isShiftedUInt<6,3>(v);

    // Return true if extending this immediate is profitable and the value
    // can fit in a 32-bit unsigned field.
    return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 8) == 0);
  }
}]>;

// Addressing modes.

def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>;
def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>;
def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>;
def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>;
def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>;
def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>;
def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>;

// Address operands.

def MEMrr : Operand<i32> {
  let PrintMethod = "printMEMrrOperand";
  let MIOperandInfo = (ops IntRegs, IntRegs);
}

def MEMri : Operand<i32> {
  let PrintMethod = "printMEMriOperand";
  let MIOperandInfo = (ops IntRegs, IntRegs);
}

def MEMri_s11_2 : Operand<i32>,
  ComplexPattern<i32, 2, "SelectMEMriS11_2", []> {
  let PrintMethod = "printMEMriOperand";
  let MIOperandInfo = (ops IntRegs, s11Imm);
}

def FrameIndex : Operand<i32> {
  let PrintMethod = "printFrameIndexOperand";
  let MIOperandInfo = (ops IntRegs, s11Imm);
}

let PrintMethod = "printGlobalOperand" in {
  def globaladdress : Operand<i32>;
  def globaladdressExt : Operand<i32>;
}

let PrintMethod = "printJumpTable" in
def jumptablebase : Operand<i32>;

def brtarget : Operand<OtherVT>;
def brtargetExt : Operand<OtherVT>;
def calltarget : Operand<i32>;

def bblabel : Operand<i32>;
def bbl   : SDNode<"ISD::BasicBlock", SDTPtrLeaf   , [], "BasicBlockSDNode">;

def symbolHi32 : Operand<i32> {
  let PrintMethod = "printSymbolHi";
}
def symbolLo32 : Operand<i32> {
  let PrintMethod = "printSymbolLo";
}