llvm.org GIT mirror llvm / release_33 lib / Transforms / IPO / DeadArgumentElimination.cpp
release_33

Tree @release_33 (Download .tar.gz)

DeadArgumentElimination.cpp @release_33raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions.  Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions.  This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>
using namespace llvm;

STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
STATISTIC(NumArgumentsReplacedWithUndef, 
          "Number of unread args replaced with undef");
namespace {
  /// DAE - The dead argument elimination pass.
  ///
  class DAE : public ModulePass {
  public:

    /// Struct that represents (part of) either a return value or a function
    /// argument.  Used so that arguments and return values can be used
    /// interchangeably.
    struct RetOrArg {
      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
               IsArg(IsArg) {}
      const Function *F;
      unsigned Idx;
      bool IsArg;

      /// Make RetOrArg comparable, so we can put it into a map.
      bool operator<(const RetOrArg &O) const {
        if (F != O.F)
          return F < O.F;
        else if (Idx != O.Idx)
          return Idx < O.Idx;
        else
          return IsArg < O.IsArg;
      }

      /// Make RetOrArg comparable, so we can easily iterate the multimap.
      bool operator==(const RetOrArg &O) const {
        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
      }

      std::string getDescription() const {
        return std::string((IsArg ? "Argument #" : "Return value #"))
               + utostr(Idx) + " of function " + F->getName().str();
      }
    };

    /// Liveness enum - During our initial pass over the program, we determine
    /// that things are either alive or maybe alive. We don't mark anything
    /// explicitly dead (even if we know they are), since anything not alive
    /// with no registered uses (in Uses) will never be marked alive and will
    /// thus become dead in the end.
    enum Liveness { Live, MaybeLive };

    /// Convenience wrapper
    RetOrArg CreateRet(const Function *F, unsigned Idx) {
      return RetOrArg(F, Idx, false);
    }
    /// Convenience wrapper
    RetOrArg CreateArg(const Function *F, unsigned Idx) {
      return RetOrArg(F, Idx, true);
    }

    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
    /// This maps a return value or argument to any MaybeLive return values or
    /// arguments it uses. This allows the MaybeLive values to be marked live
    /// when any of its users is marked live.
    /// For example (indices are left out for clarity):
    ///  - Uses[ret F] = ret G
    ///    This means that F calls G, and F returns the value returned by G.
    ///  - Uses[arg F] = ret G
    ///    This means that some function calls G and passes its result as an
    ///    argument to F.
    ///  - Uses[ret F] = arg F
    ///    This means that F returns one of its own arguments.
    ///  - Uses[arg F] = arg G
    ///    This means that G calls F and passes one of its own (G's) arguments
    ///    directly to F.
    UseMap Uses;

    typedef std::set<RetOrArg> LiveSet;
    typedef std::set<const Function*> LiveFuncSet;

    /// This set contains all values that have been determined to be live.
    LiveSet LiveValues;
    /// This set contains all values that are cannot be changed in any way.
    LiveFuncSet LiveFunctions;

    typedef SmallVector<RetOrArg, 5> UseVector;

    // Map each LLVM function to corresponding metadata with debug info. If
    // the function is replaced with another one, we should patch the pointer
    // to LLVM function in metadata.
    // As the code generation for module is finished (and DIBuilder is
    // finalized) we assume that subprogram descriptors won't be changed, and
    // they are stored in map for short duration anyway.
    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
    FunctionDIMap FunctionDIs;

  protected:
    // DAH uses this to specify a different ID.
    explicit DAE(char &ID) : ModulePass(ID) {}

  public:
    static char ID; // Pass identification, replacement for typeid
    DAE() : ModulePass(ID) {
      initializeDAEPass(*PassRegistry::getPassRegistry());
    }

    bool runOnModule(Module &M);

    virtual bool ShouldHackArguments() const { return false; }

  private:
    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
                       unsigned RetValNum = 0);
    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);

    void CollectFunctionDIs(Module &M);
    void SurveyFunction(const Function &F);
    void MarkValue(const RetOrArg &RA, Liveness L,
                   const UseVector &MaybeLiveUses);
    void MarkLive(const RetOrArg &RA);
    void MarkLive(const Function &F);
    void PropagateLiveness(const RetOrArg &RA);
    bool RemoveDeadStuffFromFunction(Function *F);
    bool DeleteDeadVarargs(Function &Fn);
    bool RemoveDeadArgumentsFromCallers(Function &Fn);
  };
}


char DAE::ID = 0;
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)

namespace {
  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
  /// deletes arguments to functions which are external.  This is only for use
  /// by bugpoint.
  struct DAH : public DAE {
    static char ID;
    DAH() : DAE(ID) {}

    virtual bool ShouldHackArguments() const { return true; }
  };
}

char DAH::ID = 0;
INITIALIZE_PASS(DAH, "deadarghaX0r", 
                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
                false, false)

/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
///
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }

/// CollectFunctionDIs - Map each function in the module to its debug info
/// descriptor.
void DAE::CollectFunctionDIs(Module &M) {
  FunctionDIs.clear();

  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
       E = M.named_metadata_end(); I != E; ++I) {
    NamedMDNode &NMD = *I;
    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
         MDIndex < MDNum; ++MDIndex) {
      MDNode *Node = NMD.getOperand(MDIndex);
      if (!DIDescriptor(Node).isCompileUnit())
        continue;
      DICompileUnit CU(Node);
      const DIArray &SPs = CU.getSubprograms();
      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
           SPIndex < SPNum; ++SPIndex) {
        DISubprogram SP(SPs.getElement(SPIndex));
        if (!SP.Verify())
          continue;
        if (Function *F = SP.getFunction())
          FunctionDIs[F] = SP;
      }
    }
  }
}

/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;

  // Ensure that the function is only directly called.
  if (Fn.hasAddressTaken())
    return false;

  // Okay, we know we can transform this function if safe.  Scan its body
  // looking for calls to llvm.vastart.
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
        if (II->getIntrinsicID() == Intrinsic::vastart)
          return false;
      }
    }
  }

  // If we get here, there are no calls to llvm.vastart in the function body,
  // remove the "..." and adjust all the calls.

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but doesn't have isVarArg set.
  FunctionType *FTy = Fn.getFunctionType();

  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
                                                Params, false);
  unsigned NumArgs = Params.size();

  // Create the new function body and insert it into the module...
  Function *NF = Function::Create(NFTy, Fn.getLinkage());
  NF->copyAttributesFrom(&Fn);
  Fn.getParent()->getFunctionList().insert(&Fn, NF);
  NF->takeName(&Fn);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value*> Args;
  while (!Fn.use_empty()) {
    CallSite CS(Fn.use_back());
    Instruction *Call = CS.getInstruction();

    // Pass all the same arguments.
    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);

    // Drop any attributes that were on the vararg arguments.
    AttributeSet PAL = CS.getAttributes();
    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
      SmallVector<AttributeSet, 8> AttributesVec;
      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
        AttributesVec.push_back(PAL.getSlotAttributes(i));
      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
                                                  PAL.getFnAttributes()));
      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    }

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args, "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(PAL);
    } else {
      New = CallInst::Create(NF, Args, "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(PAL);
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    New->setDebugLoc(Call->getDebugLoc());

    Args.clear();

    if (!Call->use_empty())
      Call->replaceAllUsesWith(New);

    New->takeName(Call);

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.  While we're at
  // it, remove the dead arguments from the DeadArguments list.
  //
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    // Move the name and users over to the new version.
    I->replaceAllUsesWith(I2);
    I2->takeName(I);
  }

  // Patch the pointer to LLVM function in debug info descriptor.
  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
  if (DI != FunctionDIs.end())
    DI->second.replaceFunction(NF);

  // Finally, nuke the old function.
  Fn.eraseFromParent();
  return true;
}

/// RemoveDeadArgumentsFromCallers - Checks if the given function has any 
/// arguments that are unused, and changes the caller parameters to be undefined
/// instead.
bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
{
  if (Fn.isDeclaration() || Fn.mayBeOverridden())
    return false;

  // Functions with local linkage should already have been handled.
  if (Fn.hasLocalLinkage())
    return false;

  if (Fn.use_empty())
    return false;

  SmallVector<unsigned, 8> UnusedArgs;
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); 
       I != E; ++I) {
    Argument *Arg = I;

    if (Arg->use_empty() && !Arg->hasByValAttr())
      UnusedArgs.push_back(Arg->getArgNo());
  }

  if (UnusedArgs.empty())
    return false;

  bool Changed = false;

  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end(); 
       I != E; ++I) {
    CallSite CS(*I);
    if (!CS || !CS.isCallee(I))
      continue;

    // Now go through all unused args and replace them with "undef".
    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
      unsigned ArgNo = UnusedArgs[I];

      Value *Arg = CS.getArgument(ArgNo);
      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
      ++NumArgumentsReplacedWithUndef;
      Changed = true;
    }
  }

  return Changed;
}

/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
  if (F->getReturnType()->isVoidTy())
    return 0;
  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
    return STy->getNumElements();
  else
    return 1;
}

/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
/// liveness of Use.
DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
  // We're live if our use or its Function is already marked as live.
  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    return Live;

  // We're maybe live otherwise, but remember that we must become live if
  // Use becomes live.
  MaybeLiveUses.push_back(Use);
  return MaybeLive;
}


/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeLive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
                             UseVector &MaybeLiveUses, unsigned RetValNum) {
    const User *V = *U;
    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
      // The value is returned from a function. It's only live when the
      // function's return value is live. We use RetValNum here, for the case
      // that U is really a use of an insertvalue instruction that uses the
      // original Use.
      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
      // We might be live, depending on the liveness of Use.
      return MarkIfNotLive(Use, MaybeLiveUses);
    }
    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
          && IV->hasIndices())
        // The use we are examining is inserted into an aggregate. Our liveness
        // depends on all uses of that aggregate, but if it is used as a return
        // value, only index at which we were inserted counts.
        RetValNum = *IV->idx_begin();

      // Note that if we are used as the aggregate operand to the insertvalue,
      // we don't change RetValNum, but do survey all our uses.

      Liveness Result = MaybeLive;
      for (Value::const_use_iterator I = IV->use_begin(),
           E = V->use_end(); I != E; ++I) {
        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
        if (Result == Live)
          break;
      }
      return Result;
    }

    if (ImmutableCallSite CS = V) {
      const Function *F = CS.getCalledFunction();
      if (F) {
        // Used in a direct call.

        // Find the argument number. We know for sure that this use is an
        // argument, since if it was the function argument this would be an
        // indirect call and the we know can't be looking at a value of the
        // label type (for the invoke instruction).
        unsigned ArgNo = CS.getArgumentNo(U);

        if (ArgNo >= F->getFunctionType()->getNumParams())
          // The value is passed in through a vararg! Must be live.
          return Live;

        assert(CS.getArgument(ArgNo)
               == CS->getOperand(U.getOperandNo())
               && "Argument is not where we expected it");

        // Value passed to a normal call. It's only live when the corresponding
        // argument to the called function turns out live.
        RetOrArg Use = CreateArg(F, ArgNo);
        return MarkIfNotLive(Use, MaybeLiveUses);
      }
    }
    // Used in any other way? Value must be live.
    return Live;
}

/// SurveyUses - This looks at all the uses of the given value
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
/// the result is Live, MaybeLiveUses might be modified but its content should
/// be ignored (since it might not be complete).
DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
  // Assume it's dead (which will only hold if there are no uses at all..).
  Liveness Result = MaybeLive;
  // Check each use.
  for (Value::const_use_iterator I = V->use_begin(),
       E = V->use_end(); I != E; ++I) {
    Result = SurveyUse(I, MaybeLiveUses);
    if (Result == Live)
      break;
  }
  return Result;
}

// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value.  This fills in the LiveValues set and Uses
// map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(const Function &F) {
  unsigned RetCount = NumRetVals(&F);
  // Assume all return values are dead
  typedef SmallVector<Liveness, 5> RetVals;
  RetVals RetValLiveness(RetCount, MaybeLive);

  typedef SmallVector<UseVector, 5> RetUses;
  // These vectors map each return value to the uses that make it MaybeLive, so
  // we can add those to the Uses map if the return value really turns out to be
  // MaybeLive. Initialized to a list of RetCount empty lists.
  RetUses MaybeLiveRetUses(RetCount);

  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
          != F.getFunctionType()->getReturnType()) {
        // We don't support old style multiple return values.
        MarkLive(F);
        return;
      }

  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    MarkLive(F);
    return;
  }

  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
  // Keep track of the number of live retvals, so we can skip checks once all
  // of them turn out to be live.
  unsigned NumLiveRetVals = 0;
  Type *STy = dyn_cast<StructType>(F.getReturnType());
  // Loop all uses of the function.
  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
       I != E; ++I) {
    // If the function is PASSED IN as an argument, its address has been
    // taken.
    ImmutableCallSite CS(*I);
    if (!CS || !CS.isCallee(I)) {
      MarkLive(F);
      return;
    }

    // If this use is anything other than a call site, the function is alive.
    const Instruction *TheCall = CS.getInstruction();
    if (!TheCall) {   // Not a direct call site?
      MarkLive(F);
      return;
    }

    // If we end up here, we are looking at a direct call to our function.

    // Now, check how our return value(s) is/are used in this caller. Don't
    // bother checking return values if all of them are live already.
    if (NumLiveRetVals != RetCount) {
      if (STy) {
        // Check all uses of the return value.
        for (Value::const_use_iterator I = TheCall->use_begin(),
             E = TheCall->use_end(); I != E; ++I) {
          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
          if (Ext && Ext->hasIndices()) {
            // This use uses a part of our return value, survey the uses of
            // that part and store the results for this index only.
            unsigned Idx = *Ext->idx_begin();
            if (RetValLiveness[Idx] != Live) {
              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
              if (RetValLiveness[Idx] == Live)
                NumLiveRetVals++;
            }
          } else {
            // Used by something else than extractvalue. Mark all return
            // values as live.
            for (unsigned i = 0; i != RetCount; ++i )
              RetValLiveness[i] = Live;
            NumLiveRetVals = RetCount;
            break;
          }
        }
      } else {
        // Single return value
        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
        if (RetValLiveness[0] == Live)
          NumLiveRetVals = RetCount;
      }
    }
  }

  // Now we've inspected all callers, record the liveness of our return values.
  for (unsigned i = 0; i != RetCount; ++i)
    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);

  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");

  // Now, check all of our arguments.
  unsigned i = 0;
  UseVector MaybeLiveArgUses;
  for (Function::const_arg_iterator AI = F.arg_begin(),
       E = F.arg_end(); AI != E; ++AI, ++i) {
    // See what the effect of this use is (recording any uses that cause
    // MaybeLive in MaybeLiveArgUses).
    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
    // Mark the result.
    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    // Clear the vector again for the next iteration.
    MaybeLiveArgUses.clear();
  }
}

/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
/// live later on.
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
                    const UseVector &MaybeLiveUses) {
  switch (L) {
    case Live: MarkLive(RA); break;
    case MaybeLive:
    {
      // Note any uses of this value, so this return value can be
      // marked live whenever one of the uses becomes live.
      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
           UE = MaybeLiveUses.end(); UI != UE; ++UI)
        Uses.insert(std::make_pair(*UI, RA));
      break;
    }
  }
}

/// MarkLive - Mark the given Function as alive, meaning that it cannot be
/// changed in any way. Additionally,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DAE::MarkLive(const Function &F) {
  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
  // Mark the function as live.
  LiveFunctions.insert(&F);
  // Mark all arguments as live.
  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    PropagateLiveness(CreateArg(&F, i));
  // Mark all return values as live.
  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    PropagateLiveness(CreateRet(&F, i));
}

/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DAE::MarkLive(const RetOrArg &RA) {
  if (LiveFunctions.count(RA.F))
    return; // Function was already marked Live.

  if (!LiveValues.insert(RA).second)
    return; // We were already marked Live.

  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
  PropagateLiveness(RA);
}

/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
/// to any other values it uses (according to Uses).
void DAE::PropagateLiveness(const RetOrArg &RA) {
  // We don't use upper_bound (or equal_range) here, because our recursive call
  // to ourselves is likely to cause the upper_bound (which is the first value
  // not belonging to RA) to become erased and the iterator invalidated.
  UseMap::iterator Begin = Uses.lower_bound(RA);
  UseMap::iterator E = Uses.end();
  UseMap::iterator I;
  for (I = Begin; I != E && I->first == RA; ++I)
    MarkLive(I->second);

  // Erase RA from the Uses map (from the lower bound to wherever we ended up
  // after the loop).
  Uses.erase(Begin, I);
}

// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. Transform the function and all of the callees of
// the function to not have these arguments and return values.
//
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
  // Don't modify fully live functions
  if (LiveFunctions.count(F))
    return false;

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has fewer arguments and a different return type.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type*> Params;

  // Set up to build a new list of parameter attributes.
  SmallVector<AttributeSet, 8> AttributesVec;
  const AttributeSet &PAL = F->getAttributes();

  // Find out the new return value.
  Type *RetTy = FTy->getReturnType();
  Type *NRetTy = NULL;
  unsigned RetCount = NumRetVals(F);

  // -1 means unused, other numbers are the new index
  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
  std::vector<Type*> RetTypes;
  if (RetTy->isVoidTy()) {
    NRetTy = RetTy;
  } else {
    StructType *STy = dyn_cast<StructType>(RetTy);
    if (STy)
      // Look at each of the original return values individually.
      for (unsigned i = 0; i != RetCount; ++i) {
        RetOrArg Ret = CreateRet(F, i);
        if (LiveValues.erase(Ret)) {
          RetTypes.push_back(STy->getElementType(i));
          NewRetIdxs[i] = RetTypes.size() - 1;
        } else {
          ++NumRetValsEliminated;
          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
                << F->getName() << "\n");
        }
      }
    else
      // We used to return a single value.
      if (LiveValues.erase(CreateRet(F, 0))) {
        RetTypes.push_back(RetTy);
        NewRetIdxs[0] = 0;
      } else {
        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
              << "\n");
        ++NumRetValsEliminated;
      }
    if (RetTypes.size() > 1)
      // More than one return type? Return a struct with them. Also, if we used
      // to return a struct and didn't change the number of return values,
      // return a struct again. This prevents changing {something} into
      // something and {} into void.
      // Make the new struct packed if we used to return a packed struct
      // already.
      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    else if (RetTypes.size() == 1)
      // One return type? Just a simple value then, but only if we didn't use to
      // return a struct with that simple value before.
      NRetTy = RetTypes.front();
    else if (RetTypes.size() == 0)
      // No return types? Make it void, but only if we didn't use to return {}.
      NRetTy = Type::getVoidTy(F->getContext());
  }

  assert(NRetTy && "No new return type found?");

  // The existing function return attributes.
  AttributeSet RAttrs = PAL.getRetAttributes();

  // Remove any incompatible attributes, but only if we removed all return
  // values. Otherwise, ensure that we don't have any conflicting attributes
  // here. Currently, this should not be possible, but special handling might be
  // required when new return value attributes are added.
  if (NRetTy->isVoidTy())
    RAttrs =
      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
         removeAttributes(AttributeFuncs::
                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
                          AttributeSet::ReturnIndex));
  else
    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
             hasAttributes(AttributeFuncs::
                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
                           AttributeSet::ReturnIndex) &&
           "Return attributes no longer compatible?");

  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));

  // Remember which arguments are still alive.
  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
  // Construct the new parameter list from non-dead arguments. Also construct
  // a new set of parameter attributes to correspond. Skip the first parameter
  // attribute, since that belongs to the return value.
  unsigned i = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I, ++i) {
    RetOrArg Arg = CreateArg(F, i);
    if (LiveValues.erase(Arg)) {
      Params.push_back(I->getType());
      ArgAlive[i] = true;

      // Get the original parameter attributes (skipping the first one, that is
      // for the return value.
      if (PAL.hasAttributes(i + 1)) {
        AttrBuilder B(PAL, i + 1);
        AttributesVec.
          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
      }
    } else {
      ++NumArgumentsEliminated;
      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
            << ") from " << F->getName() << "\n");
    }
  }

  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    AttributesVec.push_back(AttributeSet::get(F->getContext(),
                                              PAL.getFnAttributes()));

  // Reconstruct the AttributesList based on the vector we constructed.
  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);

  // Create the new function type based on the recomputed parameters.
  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());

  // No change?
  if (NFTy == FTy)
    return false;

  // Create the new function body and insert it into the module...
  Function *NF = Function::Create(NFTy, F->getLinkage());
  NF->copyAttributesFrom(F);
  NF->setAttributes(NewPAL);
  // Insert the new function before the old function, so we won't be processing
  // it again.
  F->getParent()->getFunctionList().insert(F, NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value*> Args;
  while (!F->use_empty()) {
    CallSite CS(F->use_back());
    Instruction *Call = CS.getInstruction();

    AttributesVec.clear();
    const AttributeSet &CallPAL = CS.getAttributes();

    // The call return attributes.
    AttributeSet RAttrs = CallPAL.getRetAttributes();

    // Adjust in case the function was changed to return void.
    RAttrs =
      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
        removeAttributes(AttributeFuncs::
                         typeIncompatible(NF->getReturnType(),
                                          AttributeSet::ReturnIndex),
                         AttributeSet::ReturnIndex));
    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));

    // Declare these outside of the loops, so we can reuse them for the second
    // loop, which loops the varargs.
    CallSite::arg_iterator I = CS.arg_begin();
    unsigned i = 0;
    // Loop over those operands, corresponding to the normal arguments to the
    // original function, and add those that are still alive.
    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
      if (ArgAlive[i]) {
        Args.push_back(*I);
        // Get original parameter attributes, but skip return attributes.
        if (CallPAL.hasAttributes(i + 1)) {
          AttrBuilder B(CallPAL, i + 1);
          AttributesVec.
            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
        }
      }

    // Push any varargs arguments on the list. Don't forget their attributes.
    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
      Args.push_back(*I);
      if (CallPAL.hasAttributes(i + 1)) {
        AttrBuilder B(CallPAL, i + 1);
        AttributesVec.
          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
      }
    }

    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
                                                CallPAL.getFnAttributes()));

    // Reconstruct the AttributesList based on the vector we constructed.
    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args, "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    } else {
      New = CallInst::Create(NF, Args, "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(NewCallPAL);
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    New->setDebugLoc(Call->getDebugLoc());

    Args.clear();

    if (!Call->use_empty()) {
      if (New->getType() == Call->getType()) {
        // Return type not changed? Just replace users then.
        Call->replaceAllUsesWith(New);
        New->takeName(Call);
      } else if (New->getType()->isVoidTy()) {
        // Our return value has uses, but they will get removed later on.
        // Replace by null for now.
        if (!Call->getType()->isX86_MMXTy())
          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
      } else {
        assert(RetTy->isStructTy() &&
               "Return type changed, but not into a void. The old return type"
               " must have been a struct!");
        Instruction *InsertPt = Call;
        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
          BasicBlock::iterator IP = II->getNormalDest()->begin();
          while (isa<PHINode>(IP)) ++IP;
          InsertPt = IP;
        }

        // We used to return a struct. Instead of doing smart stuff with all the
        // uses of this struct, we will just rebuild it using
        // extract/insertvalue chaining and let instcombine clean that up.
        //
        // Start out building up our return value from undef
        Value *RetVal = UndefValue::get(RetTy);
        for (unsigned i = 0; i != RetCount; ++i)
          if (NewRetIdxs[i] != -1) {
            Value *V;
            if (RetTypes.size() > 1)
              // We are still returning a struct, so extract the value from our
              // return value
              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
                                           InsertPt);
            else
              // We are now returning a single element, so just insert that
              V = New;
            // Insert the value at the old position
            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
          }
        // Now, replace all uses of the old call instruction with the return
        // struct we built
        Call->replaceAllUsesWith(RetVal);
        New->takeName(Call);
      }
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  i = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++i)
    if (ArgAlive[i]) {
      // If this is a live argument, move the name and users over to the new
      // version.
      I->replaceAllUsesWith(I2);
      I2->takeName(I);
      ++I2;
    } else {
      // If this argument is dead, replace any uses of it with null constants
      // (these are guaranteed to become unused later on).
      if (!I->getType()->isX86_MMXTy())
        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
    }

  // If we change the return value of the function we must rewrite any return
  // instructions.  Check this now.
  if (F->getReturnType() != NF->getReturnType())
    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
        Value *RetVal;

        if (NFTy->getReturnType()->isVoidTy()) {
          RetVal = 0;
        } else {
          assert (RetTy->isStructTy());
          // The original return value was a struct, insert
          // extractvalue/insertvalue chains to extract only the values we need
          // to return and insert them into our new result.
          // This does generate messy code, but we'll let it to instcombine to
          // clean that up.
          Value *OldRet = RI->getOperand(0);
          // Start out building up our return value from undef
          RetVal = UndefValue::get(NRetTy);
          for (unsigned i = 0; i != RetCount; ++i)
            if (NewRetIdxs[i] != -1) {
              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
                                                              "oldret", RI);
              if (RetTypes.size() > 1) {
                // We're still returning a struct, so reinsert the value into
                // our new return value at the new index

                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
                                                 "newret", RI);
              } else {
                // We are now only returning a simple value, so just return the
                // extracted value.
                RetVal = EV;
              }
            }
        }
        // Replace the return instruction with one returning the new return
        // value (possibly 0 if we became void).
        ReturnInst::Create(F->getContext(), RetVal, RI);
        BB->getInstList().erase(RI);
      }

  // Patch the pointer to LLVM function in debug info descriptor.
  FunctionDIMap::iterator DI = FunctionDIs.find(F);
  if (DI != FunctionDIs.end())
    DI->second.replaceFunction(NF);

  // Now that the old function is dead, delete it.
  F->eraseFromParent();

  return true;
}

bool DAE::runOnModule(Module &M) {
  bool Changed = false;

  // Collect debug info descriptors for functions.
  CollectFunctionDIs(M);

  // First pass: Do a simple check to see if any functions can have their "..."
  // removed.  We can do this if they never call va_start.  This loop cannot be
  // fused with the next loop, because deleting a function invalidates
  // information computed while surveying other functions.
  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    Function &F = *I++;
    if (F.getFunctionType()->isVarArg())
      Changed |= DeleteDeadVarargs(F);
  }

  // Second phase:loop through the module, determining which arguments are live.
  // We assume all arguments are dead unless proven otherwise (allowing us to
  // determine that dead arguments passed into recursive functions are dead).
  //
  DEBUG(dbgs() << "DAE - Determining liveness\n");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    SurveyFunction(*I);

  // Now, remove all dead arguments and return values from each function in
  // turn.
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    // Increment now, because the function will probably get removed (ie.
    // replaced by a new one).
    Function *F = I++;
    Changed |= RemoveDeadStuffFromFunction(F);
  }

  // Finally, look for any unused parameters in functions with non-local
  // linkage and replace the passed in parameters with undef.
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    Function& F = *I;

    Changed |= RemoveDeadArgumentsFromCallers(F);
  }

  return Changed;
}