llvm.org GIT mirror llvm / release_33 lib / CodeGen / MachineScheduler.cpp
release_33

Tree @release_33 (Download .tar.gz)

MachineScheduler.cpp @release_33raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "misched"

#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDFS.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include <queue>

using namespace llvm;

namespace llvm {
cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
                           cl::desc("Force top-down list scheduling"));
cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
                            cl::desc("Force bottom-up list scheduling"));
}

#ifndef NDEBUG
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
  cl::desc("Pop up a window to show MISched dags after they are processed"));

static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
#else
static bool ViewMISchedDAGs = false;
#endif // NDEBUG

// FIXME: remove this flag after initial testing. It should always be a good
// thing.
static cl::opt<bool> EnableCopyConstrain("misched-vcopy", cl::Hidden,
    cl::desc("Constrain vreg copies."), cl::init(true));

static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
  cl::desc("Enable load clustering."), cl::init(true));

// Experimental heuristics
static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
  cl::desc("Enable scheduling for macro fusion."), cl::init(true));

static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
  cl::desc("Verify machine instrs before and after machine scheduling"));

// DAG subtrees must have at least this many nodes.
static const unsigned MinSubtreeSize = 8;

//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//

MachineSchedContext::MachineSchedContext():
    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
  RegClassInfo = new RegisterClassInfo();
}

MachineSchedContext::~MachineSchedContext() {
  delete RegClassInfo;
}

namespace {
/// MachineScheduler runs after coalescing and before register allocation.
class MachineScheduler : public MachineSchedContext,
                         public MachineFunctionPass {
public:
  MachineScheduler();

  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory() {}

  virtual bool runOnMachineFunction(MachineFunction&);

  virtual void print(raw_ostream &O, const Module* = 0) const;

  static char ID; // Class identification, replacement for typeinfo
};
} // namespace

char MachineScheduler::ID = 0;

char &llvm::MachineSchedulerID = MachineScheduler::ID;

INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
                      "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachineScheduler, "misched",
                    "Machine Instruction Scheduler", false, false)

MachineScheduler::MachineScheduler()
: MachineFunctionPass(ID) {
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
}

void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequiredID(MachineDominatorsID);
  AU.addRequired<MachineLoopInfo>();
  AU.addRequired<AliasAnalysis>();
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachinePassRegistry MachineSchedRegistry::Registry;

/// A dummy default scheduler factory indicates whether the scheduler
/// is overridden on the command line.
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
  return 0;
}

/// MachineSchedOpt allows command line selection of the scheduler.
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
               RegisterPassParser<MachineSchedRegistry> >
MachineSchedOpt("misched",
                cl::init(&useDefaultMachineSched), cl::Hidden,
                cl::desc("Machine instruction scheduler to use"));

static MachineSchedRegistry
DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
                     useDefaultMachineSched);

/// Forward declare the standard machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);


/// Decrement this iterator until reaching the top or a non-debug instr.
static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
  assert(I != Beg && "reached the top of the region, cannot decrement");
  while (--I != Beg) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
  for(; I != End; ++I) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

/// Top-level MachineScheduler pass driver.
///
/// Visit blocks in function order. Divide each block into scheduling regions
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
/// consistent with the DAG builder, which traverses the interior of the
/// scheduling regions bottom-up.
///
/// This design avoids exposing scheduling boundaries to the DAG builder,
/// simplifying the DAG builder's support for "special" target instructions.
/// At the same time the design allows target schedulers to operate across
/// scheduling boundaries, for example to bundle the boudary instructions
/// without reordering them. This creates complexity, because the target
/// scheduler must update the RegionBegin and RegionEnd positions cached by
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
/// design would be to split blocks at scheduling boundaries, but LLVM has a
/// general bias against block splitting purely for implementation simplicity.
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));

  // Initialize the context of the pass.
  MF = &mf;
  MLI = &getAnalysis<MachineLoopInfo>();
  MDT = &getAnalysis<MachineDominatorTree>();
  PassConfig = &getAnalysis<TargetPassConfig>();
  AA = &getAnalysis<AliasAnalysis>();

  LIS = &getAnalysis<LiveIntervals>();
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();

  if (VerifyScheduling) {
    DEBUG(LIS->print(dbgs()));
    MF->verify(this, "Before machine scheduling.");
  }
  RegClassInfo->runOnMachineFunction(*MF);

  // Select the scheduler, or set the default.
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
  if (Ctor == useDefaultMachineSched) {
    // Get the default scheduler set by the target.
    Ctor = MachineSchedRegistry::getDefault();
    if (!Ctor) {
      Ctor = createConvergingSched;
      MachineSchedRegistry::setDefault(Ctor);
    }
  }
  // Instantiate the selected scheduler.
  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));

  // Visit all machine basic blocks.
  //
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
  // loop tree. Then we can optionally compute global RegPressure.
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
       MBB != MBBEnd; ++MBB) {

    Scheduler->startBlock(MBB);

    // Break the block into scheduling regions [I, RegionEnd), and schedule each
    // region as soon as it is discovered. RegionEnd points the scheduling
    // boundary at the bottom of the region. The DAG does not include RegionEnd,
    // but the region does (i.e. the next RegionEnd is above the previous
    // RegionBegin). If the current block has no terminator then RegionEnd ==
    // MBB->end() for the bottom region.
    //
    // The Scheduler may insert instructions during either schedule() or
    // exitRegion(), even for empty regions. So the local iterators 'I' and
    // 'RegionEnd' are invalid across these calls.
    unsigned RemainingInstrs = MBB->size();
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {

      // Avoid decrementing RegionEnd for blocks with no terminator.
      if (RegionEnd != MBB->end()
          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
        --RegionEnd;
        // Count the boundary instruction.
        --RemainingInstrs;
      }

      // The next region starts above the previous region. Look backward in the
      // instruction stream until we find the nearest boundary.
      MachineBasicBlock::iterator I = RegionEnd;
      for(;I != MBB->begin(); --I, --RemainingInstrs) {
        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
          break;
      }
      // Notify the scheduler of the region, even if we may skip scheduling
      // it. Perhaps it still needs to be bundled.
      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);

      // Skip empty scheduling regions (0 or 1 schedulable instructions).
      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
        // Close the current region. Bundle the terminator if needed.
        // This invalidates 'RegionEnd' and 'I'.
        Scheduler->exitRegion();
        continue;
      }
      DEBUG(dbgs() << "********** MI Scheduling **********\n");
      DEBUG(dbgs() << MF->getName()
            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
            << "\n  From: " << *I << "    To: ";
            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
            else dbgs() << "End";
            dbgs() << " Remaining: " << RemainingInstrs << "\n");

      // Schedule a region: possibly reorder instructions.
      // This invalidates 'RegionEnd' and 'I'.
      Scheduler->schedule();

      // Close the current region.
      Scheduler->exitRegion();

      // Scheduling has invalidated the current iterator 'I'. Ask the
      // scheduler for the top of it's scheduled region.
      RegionEnd = Scheduler->begin();
    }
    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
    Scheduler->finishBlock();
  }
  Scheduler->finalizeSchedule();
  DEBUG(LIS->print(dbgs()));
  if (VerifyScheduling)
    MF->verify(this, "After machine scheduling.");
  return true;
}

void MachineScheduler::print(raw_ostream &O, const Module* m) const {
  // unimplemented
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ReadyQueue::dump() {
  dbgs() << "  " << Name << ": ";
  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
    dbgs() << Queue[i]->NodeNum << " ";
  dbgs() << "\n";
}
#endif

//===----------------------------------------------------------------------===//
// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
// preservation.
//===----------------------------------------------------------------------===//

ScheduleDAGMI::~ScheduleDAGMI() {
  delete DFSResult;
  DeleteContainerPointers(Mutations);
  delete SchedImpl;
}

bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
}

bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
  if (SuccSU != &ExitSU) {
    // Do not use WillCreateCycle, it assumes SD scheduling.
    // If Pred is reachable from Succ, then the edge creates a cycle.
    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
      return false;
    Topo.AddPred(SuccSU, PredDep.getSUnit());
  }
  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
  // Return true regardless of whether a new edge needed to be inserted.
  return true;
}

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
///
/// FIXME: Adjust SuccSU height based on MinLatency.
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

  if (SuccEdge->isWeak()) {
    --SuccSU->WeakPredsLeft;
    if (SuccEdge->isCluster())
      NextClusterSucc = SuccSU;
    return;
  }
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    SuccSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --SuccSU->NumPredsLeft;
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    SchedImpl->releaseTopNode(SuccSU);
}

/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    releaseSucc(SU, &*I);
  }
}

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
/// NumSuccsLeft reaches zero, release the predecessor node.
///
/// FIXME: Adjust PredSU height based on MinLatency.
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

  if (PredEdge->isWeak()) {
    --PredSU->WeakSuccsLeft;
    if (PredEdge->isCluster())
      NextClusterPred = PredSU;
    return;
  }
#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    PredSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --PredSU->NumSuccsLeft;
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    SchedImpl->releaseBottomNode(PredSU);
}

/// releasePredecessors - Call releasePred on each of SU's predecessors.
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    releasePred(SU, &*I);
  }
}

/// This is normally called from the main scheduler loop but may also be invoked
/// by the scheduling strategy to perform additional code motion.
void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
                                    MachineBasicBlock::iterator InsertPos) {
  // Advance RegionBegin if the first instruction moves down.
  if (&*RegionBegin == MI)
    ++RegionBegin;

  // Update the instruction stream.
  BB->splice(InsertPos, BB, MI);

  // Update LiveIntervals
  LIS->handleMove(MI, /*UpdateFlags=*/true);

  // Recede RegionBegin if an instruction moves above the first.
  if (RegionBegin == InsertPos)
    RegionBegin = MI;
}

bool ScheduleDAGMI::checkSchedLimit() {
#ifndef NDEBUG
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    CurrentTop = CurrentBottom;
    return false;
  }
  ++NumInstrsScheduled;
#endif
  return true;
}

/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
/// that don't get scheduled.
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
                                MachineBasicBlock::iterator begin,
                                MachineBasicBlock::iterator end,
                                unsigned endcount)
{
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);

  // For convenience remember the end of the liveness region.
  LiveRegionEnd =
    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
}

// Setup the register pressure trackers for the top scheduled top and bottom
// scheduled regions.
void ScheduleDAGMI::initRegPressure() {
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Close the RPTracker to finalize live ins.
  RPTracker.closeRegion();

  DEBUG(RPTracker.getPressure().dump(TRI));

  // Initialize the live ins and live outs.
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);

  // Close one end of the tracker so we can call
  // getMaxUpward/DownwardPressureDelta before advancing across any
  // instructions. This converts currently live regs into live ins/outs.
  TopRPTracker.closeTop();
  BotRPTracker.closeBottom();

  // Account for liveness generated by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    BotRPTracker.recede();

  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");

  // Cache the list of excess pressure sets in this region. This will also track
  // the max pressure in the scheduled code for these sets.
  RegionCriticalPSets.clear();
  const std::vector<unsigned> &RegionPressure =
    RPTracker.getPressure().MaxSetPressure;
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    unsigned Limit = TRI->getRegPressureSetLimit(i);
    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
          << "Limit " << Limit
          << " Actual " << RegionPressure[i] << "\n");
    if (RegionPressure[i] > Limit)
      RegionCriticalPSets.push_back(PressureElement(i, 0));
  }
  DEBUG(dbgs() << "Excess PSets: ";
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
          dbgs() << TRI->getRegPressureSetName(
            RegionCriticalPSets[i].PSetID) << " ";
        dbgs() << "\n");
}

// FIXME: When the pressure tracker deals in pressure differences then we won't
// iterate over all RegionCriticalPSets[i].
void ScheduleDAGMI::
updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
    unsigned ID = RegionCriticalPSets[i].PSetID;
    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
    if ((int)NewMaxPressure[ID] > MaxUnits)
      MaxUnits = NewMaxPressure[ID];
  }
  DEBUG(
    for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
      unsigned Limit = TRI->getRegPressureSetLimit(i);
      if (NewMaxPressure[i] > Limit ) {
        dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
               << NewMaxPressure[i] << " > " << Limit << "\n";
      }
    });
}

/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
///
/// This is a skeletal driver, with all the functionality pushed into helpers,
/// so that it can be easilly extended by experimental schedulers. Generally,
/// implementing MachineSchedStrategy should be sufficient to implement a new
/// scheduling algorithm. However, if a scheduler further subclasses
/// ScheduleDAGMI then it will want to override this virtual method in order to
/// update any specialized state.
void ScheduleDAGMI::schedule() {
  buildDAGWithRegPressure();

  Topo.InitDAGTopologicalSorting();

  postprocessDAG();

  SmallVector<SUnit*, 8> TopRoots, BotRoots;
  findRootsAndBiasEdges(TopRoots, BotRoots);

  // Initialize the strategy before modifying the DAG.
  // This may initialize a DFSResult to be used for queue priority.
  SchedImpl->initialize(this);

  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));
  if (ViewMISchedDAGs) viewGraph();

  // Initialize ready queues now that the DAG and priority data are finalized.
  initQueues(TopRoots, BotRoots);

  bool IsTopNode = false;
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    assert(!SU->isScheduled && "Node already scheduled");
    if (!checkSchedLimit())
      break;

    scheduleMI(SU, IsTopNode);

    updateQueues(SU, IsTopNode);
  }
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();

  DEBUG({
      unsigned BBNum = begin()->getParent()->getNumber();
      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
      dumpSchedule();
      dbgs() << '\n';
    });
}

/// Build the DAG and setup three register pressure trackers.
void ScheduleDAGMI::buildDAGWithRegPressure() {
  // Initialize the register pressure tracker used by buildSchedGraph.
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Account for liveness generate by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    RPTracker.recede();

  // Build the DAG, and compute current register pressure.
  buildSchedGraph(AA, &RPTracker);

  // Initialize top/bottom trackers after computing region pressure.
  initRegPressure();
}

/// Apply each ScheduleDAGMutation step in order.
void ScheduleDAGMI::postprocessDAG() {
  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
    Mutations[i]->apply(this);
  }
}

void ScheduleDAGMI::computeDFSResult() {
  if (!DFSResult)
    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
  DFSResult->clear();
  ScheduledTrees.clear();
  DFSResult->resize(SUnits.size());
  DFSResult->compute(SUnits);
  ScheduledTrees.resize(DFSResult->getNumSubtrees());
}

void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
                                          SmallVectorImpl<SUnit*> &BotRoots) {
  for (std::vector<SUnit>::iterator
         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    SUnit *SU = &(*I);
    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");

    // Order predecessors so DFSResult follows the critical path.
    SU->biasCriticalPath();

    // A SUnit is ready to top schedule if it has no predecessors.
    if (!I->NumPredsLeft)
      TopRoots.push_back(SU);
    // A SUnit is ready to bottom schedule if it has no successors.
    if (!I->NumSuccsLeft)
      BotRoots.push_back(SU);
  }
  ExitSU.biasCriticalPath();
}

/// Identify DAG roots and setup scheduler queues.
void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
                               ArrayRef<SUnit*> BotRoots) {
  NextClusterSucc = NULL;
  NextClusterPred = NULL;

  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
  //
  // Nodes with unreleased weak edges can still be roots.
  // Release top roots in forward order.
  for (SmallVectorImpl<SUnit*>::const_iterator
         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
    SchedImpl->releaseTopNode(*I);
  }
  // Release bottom roots in reverse order so the higher priority nodes appear
  // first. This is more natural and slightly more efficient.
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    SchedImpl->releaseBottomNode(*I);
  }

  releaseSuccessors(&EntrySU);
  releasePredecessors(&ExitSU);

  SchedImpl->registerRoots();

  // Advance past initial DebugValues.
  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
  TopRPTracker.setPos(CurrentTop);

  CurrentBottom = RegionEnd;
}

/// Move an instruction and update register pressure.
void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
  // Move the instruction to its new location in the instruction stream.
  MachineInstr *MI = SU->getInstr();

  if (IsTopNode) {
    assert(SU->isTopReady() && "node still has unscheduled dependencies");
    if (&*CurrentTop == MI)
      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    else {
      moveInstruction(MI, CurrentTop);
      TopRPTracker.setPos(MI);
    }

    // Update top scheduled pressure.
    TopRPTracker.advance();
    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
  }
  else {
    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    MachineBasicBlock::iterator priorII =
      priorNonDebug(CurrentBottom, CurrentTop);
    if (&*priorII == MI)
      CurrentBottom = priorII;
    else {
      if (&*CurrentTop == MI) {
        CurrentTop = nextIfDebug(++CurrentTop, priorII);
        TopRPTracker.setPos(CurrentTop);
      }
      moveInstruction(MI, CurrentBottom);
      CurrentBottom = MI;
    }
    // Update bottom scheduled pressure.
    BotRPTracker.recede();
    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
  }
}

/// Update scheduler queues after scheduling an instruction.
void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
  // Release dependent instructions for scheduling.
  if (IsTopNode)
    releaseSuccessors(SU);
  else
    releasePredecessors(SU);

  SU->isScheduled = true;

  if (DFSResult) {
    unsigned SubtreeID = DFSResult->getSubtreeID(SU);
    if (!ScheduledTrees.test(SubtreeID)) {
      ScheduledTrees.set(SubtreeID);
      DFSResult->scheduleTree(SubtreeID);
      SchedImpl->scheduleTree(SubtreeID);
    }
  }

  // Notify the scheduling strategy after updating the DAG.
  SchedImpl->schedNode(SU, IsTopNode);
}

/// Reinsert any remaining debug_values, just like the PostRA scheduler.
void ScheduleDAGMI::placeDebugValues() {
  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue) {
    BB->splice(RegionBegin, BB, FirstDbgValue);
    RegionBegin = FirstDbgValue;
  }

  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrevMI = P.second;
    if (&*RegionBegin == DbgValue)
      ++RegionBegin;
    BB->splice(++OrigPrevMI, BB, DbgValue);
    if (OrigPrevMI == llvm::prior(RegionEnd))
      RegionEnd = DbgValue;
  }
  DbgValues.clear();
  FirstDbgValue = NULL;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ScheduleDAGMI::dumpSchedule() const {
  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    if (SUnit *SU = getSUnit(&(*MI)))
      SU->dump(this);
    else
      dbgs() << "Missing SUnit\n";
  }
}
#endif

//===----------------------------------------------------------------------===//
// LoadClusterMutation - DAG post-processing to cluster loads.
//===----------------------------------------------------------------------===//

namespace {
/// \brief Post-process the DAG to create cluster edges between neighboring
/// loads.
class LoadClusterMutation : public ScheduleDAGMutation {
  struct LoadInfo {
    SUnit *SU;
    unsigned BaseReg;
    unsigned Offset;
    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
      : SU(su), BaseReg(reg), Offset(ofs) {}
  };
  static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
                           const LoadClusterMutation::LoadInfo &RHS);

  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
public:
  LoadClusterMutation(const TargetInstrInfo *tii,
                      const TargetRegisterInfo *tri)
    : TII(tii), TRI(tri) {}

  virtual void apply(ScheduleDAGMI *DAG);
protected:
  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
};
} // anonymous

bool LoadClusterMutation::LoadInfoLess(
  const LoadClusterMutation::LoadInfo &LHS,
  const LoadClusterMutation::LoadInfo &RHS) {
  if (LHS.BaseReg != RHS.BaseReg)
    return LHS.BaseReg < RHS.BaseReg;
  return LHS.Offset < RHS.Offset;
}

void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
                                                  ScheduleDAGMI *DAG) {
  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
    SUnit *SU = Loads[Idx];
    unsigned BaseReg;
    unsigned Offset;
    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
  }
  if (LoadRecords.size() < 2)
    return;
  std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
  unsigned ClusterLength = 1;
  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
      ClusterLength = 1;
      continue;
    }

    SUnit *SUa = LoadRecords[Idx].SU;
    SUnit *SUb = LoadRecords[Idx+1].SU;
    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {

      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
            << SUb->NodeNum << ")\n");
      // Copy successor edges from SUa to SUb. Interleaving computation
      // dependent on SUa can prevent load combining due to register reuse.
      // Predecessor edges do not need to be copied from SUb to SUa since nearby
      // loads should have effectively the same inputs.
      for (SUnit::const_succ_iterator
             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
        if (SI->getSUnit() == SUb)
          continue;
        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
      }
      ++ClusterLength;
    }
    else
      ClusterLength = 1;
  }
}

/// \brief Callback from DAG postProcessing to create cluster edges for loads.
void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
  // Map DAG NodeNum to store chain ID.
  DenseMap<unsigned, unsigned> StoreChainIDs;
  // Map each store chain to a set of dependent loads.
  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
    SUnit *SU = &DAG->SUnits[Idx];
    if (!SU->getInstr()->mayLoad())
      continue;
    unsigned ChainPredID = DAG->SUnits.size();
    for (SUnit::const_pred_iterator
           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
      if (PI->isCtrl()) {
        ChainPredID = PI->getSUnit()->NodeNum;
        break;
      }
    }
    // Check if this chain-like pred has been seen
    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
    unsigned NumChains = StoreChainDependents.size();
    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
    if (Result.second)
      StoreChainDependents.resize(NumChains + 1);
    StoreChainDependents[Result.first->second].push_back(SU);
  }
  // Iterate over the store chains.
  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
}

//===----------------------------------------------------------------------===//
// MacroFusion - DAG post-processing to encourage fusion of macro ops.
//===----------------------------------------------------------------------===//

namespace {
/// \brief Post-process the DAG to create cluster edges between instructions
/// that may be fused by the processor into a single operation.
class MacroFusion : public ScheduleDAGMutation {
  const TargetInstrInfo *TII;
public:
  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}

  virtual void apply(ScheduleDAGMI *DAG);
};
} // anonymous

/// \brief Callback from DAG postProcessing to create cluster edges to encourage
/// fused operations.
void MacroFusion::apply(ScheduleDAGMI *DAG) {
  // For now, assume targets can only fuse with the branch.
  MachineInstr *Branch = DAG->ExitSU.getInstr();
  if (!Branch)
    return;

  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
    SUnit *SU = &DAG->SUnits[--Idx];
    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
      continue;

    // Create a single weak edge from SU to ExitSU. The only effect is to cause
    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
    // need to copy predecessor edges from ExitSU to SU, since top-down
    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
    // of SU, we could create an artificial edge from the deepest root, but it
    // hasn't been needed yet.
    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
    (void)Success;
    assert(Success && "No DAG nodes should be reachable from ExitSU");

    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
    break;
  }
}

//===----------------------------------------------------------------------===//
// CopyConstrain - DAG post-processing to encourage copy elimination.
//===----------------------------------------------------------------------===//

namespace {
/// \brief Post-process the DAG to create weak edges from all uses of a copy to
/// the one use that defines the copy's source vreg, most likely an induction
/// variable increment.
class CopyConstrain : public ScheduleDAGMutation {
  // Transient state.
  SlotIndex RegionBeginIdx;
  // RegionEndIdx is the slot index of the last non-debug instruction in the
  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
  SlotIndex RegionEndIdx;
public:
  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}

  virtual void apply(ScheduleDAGMI *DAG);

protected:
  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
};
} // anonymous

/// constrainLocalCopy handles two possibilities:
/// 1) Local src:
/// I0:     = dst
/// I1: src = ...
/// I2:     = dst
/// I3: dst = src (copy)
/// (create pred->succ edges I0->I1, I2->I1)
///
/// 2) Local copy:
/// I0: dst = src (copy)
/// I1:     = dst
/// I2: src = ...
/// I3:     = dst
/// (create pred->succ edges I1->I2, I3->I2)
///
/// Although the MachineScheduler is currently constrained to single blocks,
/// this algorithm should handle extended blocks. An EBB is a set of
/// contiguously numbered blocks such that the previous block in the EBB is
/// always the single predecessor.
void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
  LiveIntervals *LIS = DAG->getLIS();
  MachineInstr *Copy = CopySU->getInstr();

  // Check for pure vreg copies.
  unsigned SrcReg = Copy->getOperand(1).getReg();
  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
    return;

  unsigned DstReg = Copy->getOperand(0).getReg();
  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
    return;

  // Check if either the dest or source is local. If it's live across a back
  // edge, it's not local. Note that if both vregs are live across the back
  // edge, we cannot successfully contrain the copy without cyclic scheduling.
  unsigned LocalReg = DstReg;
  unsigned GlobalReg = SrcReg;
  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
    LocalReg = SrcReg;
    GlobalReg = DstReg;
    LocalLI = &LIS->getInterval(LocalReg);
    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
      return;
  }
  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);

  // Find the global segment after the start of the local LI.
  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
  // local live range. We could create edges from other global uses to the local
  // start, but the coalescer should have already eliminated these cases, so
  // don't bother dealing with it.
  if (GlobalSegment == GlobalLI->end())
    return;

  // If GlobalSegment is killed at the LocalLI->start, the call to find()
  // returned the next global segment. But if GlobalSegment overlaps with
  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
  if (GlobalSegment->contains(LocalLI->beginIndex()))
    ++GlobalSegment;

  if (GlobalSegment == GlobalLI->end())
    return;

  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
  if (GlobalSegment != GlobalLI->begin()) {
    // Two address defs have no hole.
    if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
                               GlobalSegment->start)) {
      return;
    }
    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
    // it would be a disconnected component in the live range.
    assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
           "Disconnected LRG within the scheduling region.");
  }
  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
  if (!GlobalDef)
    return;

  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
  if (!GlobalSU)
    return;

  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
  // constraining the uses of the last local def to precede GlobalDef.
  SmallVector<SUnit*,8> LocalUses;
  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
  for (SUnit::const_succ_iterator
         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
       I != E; ++I) {
    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
      continue;
    if (I->getSUnit() == GlobalSU)
      continue;
    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
      return;
    LocalUses.push_back(I->getSUnit());
  }
  // Open the top of the GlobalLI hole by constraining any earlier global uses
  // to precede the start of LocalLI.
  SmallVector<SUnit*,8> GlobalUses;
  MachineInstr *FirstLocalDef =
    LIS->getInstructionFromIndex(LocalLI->beginIndex());
  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
  for (SUnit::const_pred_iterator
         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
      continue;
    if (I->getSUnit() == FirstLocalSU)
      continue;
    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
      return;
    GlobalUses.push_back(I->getSUnit());
  }
  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
  // Add the weak edges.
  for (SmallVectorImpl<SUnit*>::const_iterator
         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
          << GlobalSU->NodeNum << ")\n");
    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
  }
  for (SmallVectorImpl<SUnit*>::const_iterator
         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
          << FirstLocalSU->NodeNum << ")\n");
    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
  }
}

/// \brief Callback from DAG postProcessing to create weak edges to encourage
/// copy elimination.
void CopyConstrain::apply(ScheduleDAGMI *DAG) {
  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
  if (FirstPos == DAG->end())
    return;
  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
    &*priorNonDebug(DAG->end(), DAG->begin()));

  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
    SUnit *SU = &DAG->SUnits[Idx];
    if (!SU->getInstr()->isCopy())
      continue;

    constrainLocalCopy(SU, DAG);
  }
}

//===----------------------------------------------------------------------===//
// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
//===----------------------------------------------------------------------===//

namespace {
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
class ConvergingScheduler : public MachineSchedStrategy {
public:
  /// Represent the type of SchedCandidate found within a single queue.
  /// pickNodeBidirectional depends on these listed by decreasing priority.
  enum CandReason {
    NoCand, PhysRegCopy, SingleExcess, SingleCritical, Cluster, Weak,
    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
    NodeOrder};

#ifndef NDEBUG
  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
#endif

  /// Policy for scheduling the next instruction in the candidate's zone.
  struct CandPolicy {
    bool ReduceLatency;
    unsigned ReduceResIdx;
    unsigned DemandResIdx;

    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
  };

  /// Status of an instruction's critical resource consumption.
  struct SchedResourceDelta {
    // Count critical resources in the scheduled region required by SU.
    unsigned CritResources;

    // Count critical resources from another region consumed by SU.
    unsigned DemandedResources;

    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}

    bool operator==(const SchedResourceDelta &RHS) const {
      return CritResources == RHS.CritResources
        && DemandedResources == RHS.DemandedResources;
    }
    bool operator!=(const SchedResourceDelta &RHS) const {
      return !operator==(RHS);
    }
  };

  /// Store the state used by ConvergingScheduler heuristics, required for the
  /// lifetime of one invocation of pickNode().
  struct SchedCandidate {
    CandPolicy Policy;

    // The best SUnit candidate.
    SUnit *SU;

    // The reason for this candidate.
    CandReason Reason;

    // Register pressure values for the best candidate.
    RegPressureDelta RPDelta;

    // Critical resource consumption of the best candidate.
    SchedResourceDelta ResDelta;

    SchedCandidate(const CandPolicy &policy)
    : Policy(policy), SU(NULL), Reason(NoCand) {}

    bool isValid() const { return SU; }

    // Copy the status of another candidate without changing policy.
    void setBest(SchedCandidate &Best) {
      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
      SU = Best.SU;
      Reason = Best.Reason;
      RPDelta = Best.RPDelta;
      ResDelta = Best.ResDelta;
    }

    void initResourceDelta(const ScheduleDAGMI *DAG,
                           const TargetSchedModel *SchedModel);
  };

  /// Summarize the unscheduled region.
  struct SchedRemainder {
    // Critical path through the DAG in expected latency.
    unsigned CriticalPath;

    // Unscheduled resources
    SmallVector<unsigned, 16> RemainingCounts;
    // Critical resource for the unscheduled zone.
    unsigned CritResIdx;
    // Number of micro-ops left to schedule.
    unsigned RemainingMicroOps;

    void reset() {
      CriticalPath = 0;
      RemainingCounts.clear();
      CritResIdx = 0;
      RemainingMicroOps = 0;
    }

    SchedRemainder() { reset(); }

    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);

    unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
      if (!SchedModel->hasInstrSchedModel())
        return 0;

      return std::max(
        RemainingMicroOps * SchedModel->getMicroOpFactor(),
        RemainingCounts[CritResIdx]);
    }
  };

  /// Each Scheduling boundary is associated with ready queues. It tracks the
  /// current cycle in the direction of movement, and maintains the state
  /// of "hazards" and other interlocks at the current cycle.
  struct SchedBoundary {
    ScheduleDAGMI *DAG;
    const TargetSchedModel *SchedModel;
    SchedRemainder *Rem;

    ReadyQueue Available;
    ReadyQueue Pending;
    bool CheckPending;

    // For heuristics, keep a list of the nodes that immediately depend on the
    // most recently scheduled node.
    SmallPtrSet<const SUnit*, 8> NextSUs;

    ScheduleHazardRecognizer *HazardRec;

    unsigned CurrCycle;
    unsigned IssueCount;

    /// MinReadyCycle - Cycle of the soonest available instruction.
    unsigned MinReadyCycle;

    // The expected latency of the critical path in this scheduled zone.
    unsigned ExpectedLatency;

    // Resources used in the scheduled zone beyond this boundary.
    SmallVector<unsigned, 16> ResourceCounts;

    // Cache the critical resources ID in this scheduled zone.
    unsigned CritResIdx;

    // Is the scheduled region resource limited vs. latency limited.
    bool IsResourceLimited;

    unsigned ExpectedCount;

#ifndef NDEBUG
    // Remember the greatest min operand latency.
    unsigned MaxMinLatency;
#endif

    void reset() {
      // A new HazardRec is created for each DAG and owned by SchedBoundary.
      delete HazardRec;

      Available.clear();
      Pending.clear();
      CheckPending = false;
      NextSUs.clear();
      HazardRec = 0;
      CurrCycle = 0;
      IssueCount = 0;
      MinReadyCycle = UINT_MAX;
      ExpectedLatency = 0;
      ResourceCounts.resize(1);
      assert(!ResourceCounts[0] && "nonzero count for bad resource");
      CritResIdx = 0;
      IsResourceLimited = false;
      ExpectedCount = 0;
#ifndef NDEBUG
      MaxMinLatency = 0;
#endif
      // Reserve a zero-count for invalid CritResIdx.
      ResourceCounts.resize(1);
    }

    /// Pending queues extend the ready queues with the same ID and the
    /// PendingFlag set.
    SchedBoundary(unsigned ID, const Twine &Name):
      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
      HazardRec(0) {
      reset();
    }

    ~SchedBoundary() { delete HazardRec; }

    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
              SchedRemainder *rem);

    bool isTop() const {
      return Available.getID() == ConvergingScheduler::TopQID;
    }

    unsigned getUnscheduledLatency(SUnit *SU) const {
      if (isTop())
        return SU->getHeight();
      return SU->getDepth() + SU->Latency;
    }

    unsigned getCriticalCount() const {
      return ResourceCounts[CritResIdx];
    }

    bool checkHazard(SUnit *SU);

    void setLatencyPolicy(CandPolicy &Policy);

    void releaseNode(SUnit *SU, unsigned ReadyCycle);

    void bumpCycle();

    void countResource(unsigned PIdx, unsigned Cycles);

    void bumpNode(SUnit *SU);

    void releasePending();

    void removeReady(SUnit *SU);

    SUnit *pickOnlyChoice();
  };

private:
  ScheduleDAGMI *DAG;
  const TargetSchedModel *SchedModel;
  const TargetRegisterInfo *TRI;

  // State of the top and bottom scheduled instruction boundaries.
  SchedRemainder Rem;
  SchedBoundary Top;
  SchedBoundary Bot;

public:
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
  enum {
    TopQID = 1,
    BotQID = 2,
    LogMaxQID = 2
  };

  ConvergingScheduler():
    DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}

  virtual void initialize(ScheduleDAGMI *dag);

  virtual SUnit *pickNode(bool &IsTopNode);

  virtual void schedNode(SUnit *SU, bool IsTopNode);

  virtual void releaseTopNode(SUnit *SU);

  virtual void releaseBottomNode(SUnit *SU);

  virtual void registerRoots();

protected:
  void balanceZones(
    ConvergingScheduler::SchedBoundary &CriticalZone,
    ConvergingScheduler::SchedCandidate &CriticalCand,
    ConvergingScheduler::SchedBoundary &OppositeZone,
    ConvergingScheduler::SchedCandidate &OppositeCand);

  void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
                           ConvergingScheduler::SchedCandidate &BotCand);

  void tryCandidate(SchedCandidate &Cand,
                    SchedCandidate &TryCand,
                    SchedBoundary &Zone,
                    const RegPressureTracker &RPTracker,
                    RegPressureTracker &TempTracker);

  SUnit *pickNodeBidirectional(bool &IsTopNode);

  void pickNodeFromQueue(SchedBoundary &Zone,
                         const RegPressureTracker &RPTracker,
                         SchedCandidate &Candidate);

  void reschedulePhysRegCopies(SUnit *SU, bool isTop);

#ifndef NDEBUG
  void traceCandidate(const SchedCandidate &Cand);
#endif
};
} // namespace

void ConvergingScheduler::SchedRemainder::
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
  reset();
  if (!SchedModel->hasInstrSchedModel())
    return;
  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
  for (std::vector<SUnit>::iterator
         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
    RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
    for (TargetSchedModel::ProcResIter
           PI = SchedModel->getWriteProcResBegin(SC),
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
      unsigned PIdx = PI->ProcResourceIdx;
      unsigned Factor = SchedModel->getResourceFactor(PIdx);
      RemainingCounts[PIdx] += (Factor * PI->Cycles);
    }
  }
  for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
       PIdx != PEnd; ++PIdx) {
    if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
        >= (int)SchedModel->getLatencyFactor()) {
      CritResIdx = PIdx;
    }
  }
}

void ConvergingScheduler::SchedBoundary::
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
  reset();
  DAG = dag;
  SchedModel = smodel;
  Rem = rem;
  if (SchedModel->hasInstrSchedModel())
    ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
}

void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
  DAG = dag;
  SchedModel = DAG->getSchedModel();
  TRI = DAG->TRI;

  Rem.init(DAG, SchedModel);
  Top.init(DAG, SchedModel, &Rem);
  Bot.init(DAG, SchedModel, &Rem);

  // Initialize resource counts.

  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
  // are disabled, then these HazardRecs will be disabled.
  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
  const TargetMachine &TM = DAG->MF.getTarget();
  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);

  assert((!ForceTopDown || !ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
}

void ConvergingScheduler::releaseTopNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    unsigned MinLatency = I->getMinLatency();
#ifndef NDEBUG
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
#endif
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
  }
  Top.releaseNode(SU, SU->TopReadyCycle);
}

void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  assert(SU->getInstr() && "Scheduled SUnit must have instr");

  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isWeak())
      continue;
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    unsigned MinLatency = I->getMinLatency();
#ifndef NDEBUG
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
#endif
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
  }
  Bot.releaseNode(SU, SU->BotReadyCycle);
}

void ConvergingScheduler::registerRoots() {
  Rem.CriticalPath = DAG->ExitSU.getDepth();
  // Some roots may not feed into ExitSU. Check all of them in case.
  for (std::vector<SUnit*>::const_iterator
         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
    if ((*I)->getDepth() > Rem.CriticalPath)
      Rem.CriticalPath = (*I)->getDepth();
  }
  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
}

/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
  if (HazardRec->isEnabled())
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;

  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
  if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
    return true;
  }
  return false;
}

/// Compute the remaining latency to determine whether ILP should be increased.
void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
  // FIXME: compile time. In all, we visit four queues here one we should only
  // need to visit the one that was last popped if we cache the result.
  unsigned RemLatency = 0;
  for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
       I != E; ++I) {
    unsigned L = getUnscheduledLatency(*I);
    DEBUG(dbgs() << "  " << Available.getName()
          << " RemLatency SU(" << (*I)->NodeNum << ") " << L << '\n');
    if (L > RemLatency)
      RemLatency = L;
  }
  for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
       I != E; ++I) {
    unsigned L = getUnscheduledLatency(*I);
    if (L > RemLatency)
      RemLatency = L;
  }
  unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
  DEBUG(dbgs() << "  " << Available.getName()
        << " ExpectedLatency " << ExpectedLatency
        << " CP Limit " << CriticalPathLimit << '\n');
  if (RemLatency + ExpectedLatency >= CriticalPathLimit
      && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
    Policy.ReduceLatency = true;
    DEBUG(dbgs() << "  Increase ILP: " << Available.getName() << '\n');
  }
}

void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
                                                     unsigned ReadyCycle) {

  if (ReadyCycle < MinReadyCycle)
    MinReadyCycle = ReadyCycle;

  // Check for interlocks first. For the purpose of other heuristics, an
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
  if (ReadyCycle > CurrCycle || checkHazard(SU))
    Pending.push(SU);
  else
    Available.push(SU);

  // Record this node as an immediate dependent of the scheduled node.
  NextSUs.insert(SU);
}

/// Move the boundary of scheduled code by one cycle.
void ConvergingScheduler::SchedBoundary::bumpCycle() {
  unsigned Width = SchedModel->getIssueWidth();
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;

  unsigned NextCycle = CurrCycle + 1;
  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
  if (MinReadyCycle > NextCycle) {
    IssueCount = 0;
    NextCycle = MinReadyCycle;
  }

  if (!HazardRec->isEnabled()) {
    // Bypass HazardRec virtual calls.
    CurrCycle = NextCycle;
  }
  else {
    // Bypass getHazardType calls in case of long latency.
    for (; CurrCycle != NextCycle; ++CurrCycle) {
      if (isTop())
        HazardRec->AdvanceCycle();
      else
        HazardRec->RecedeCycle();
    }
  }
  CheckPending = true;
  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);

  DEBUG(dbgs() << "  " << Available.getName()
        << " Cycle: " << CurrCycle << '\n');
}

/// Add the given processor resource to this scheduled zone.
void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
                                                       unsigned Cycles) {
  unsigned Factor = SchedModel->getResourceFactor(PIdx);
  DEBUG(dbgs() << "  " << SchedModel->getProcResource(PIdx)->Name
        << " +(" << Cycles << "x" << Factor
        << ") / " << SchedModel->getLatencyFactor() << '\n');

  unsigned Count = Factor * Cycles;
  ResourceCounts[PIdx] += Count;
  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
  Rem->RemainingCounts[PIdx] -= Count;

  // Check if this resource exceeds the current critical resource by a full
  // cycle. If so, it becomes the critical resource.
  if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
      >= (int)SchedModel->getLatencyFactor()) {
    CritResIdx = PIdx;
    DEBUG(dbgs() << "  *** Critical resource "
          << SchedModel->getProcResource(PIdx)->Name << " x"
          << ResourceCounts[PIdx] << '\n');
  }
}

/// Move the boundary of scheduled code by one SUnit.
void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
  // Update the reservation table.
  if (HazardRec->isEnabled()) {
    if (!isTop() && SU->isCall) {
      // Calls are scheduled with their preceding instructions. For bottom-up
      // scheduling, clear the pipeline state before emitting.
      HazardRec->Reset();
    }
    HazardRec->EmitInstruction(SU);
  }
  // Update resource counts and critical resource.
  if (SchedModel->hasInstrSchedModel()) {
    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
    Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
    for (TargetSchedModel::ProcResIter
           PI = SchedModel->getWriteProcResBegin(SC),
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
      countResource(PI->ProcResourceIdx, PI->Cycles);
    }
  }
  if (isTop()) {
    if (SU->getDepth() > ExpectedLatency)
      ExpectedLatency = SU->getDepth();
  }
  else {
    if (SU->getHeight() > ExpectedLatency)
      ExpectedLatency = SU->getHeight();
  }

  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);

  // Check the instruction group dispatch limit.
  // TODO: Check if this SU must end a dispatch group.
  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());

  // checkHazard prevents scheduling multiple instructions per cycle that exceed
  // issue width. However, we commonly reach the maximum. In this case
  // opportunistically bump the cycle to avoid uselessly checking everything in
  // the readyQ. Furthermore, a single instruction may produce more than one
  // cycle's worth of micro-ops.
  if (IssueCount >= SchedModel->getIssueWidth()) {
    DEBUG(dbgs() << "  *** Max instrs at cycle " << CurrCycle << '\n');
    bumpCycle();
  }
}

/// Release pending ready nodes in to the available queue. This makes them
/// visible to heuristics.
void ConvergingScheduler::SchedBoundary::releasePending() {
  // If the available queue is empty, it is safe to reset MinReadyCycle.
  if (Available.empty())
    MinReadyCycle = UINT_MAX;

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    SUnit *SU = *(Pending.begin()+i);
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;

    if (ReadyCycle < MinReadyCycle)
      MinReadyCycle = ReadyCycle;

    if (ReadyCycle > CurrCycle)
      continue;

    if (checkHazard(SU))
      continue;

    Available.push(SU);
    Pending.remove(Pending.begin()+i);
    --i; --e;
  }
  DEBUG(if (!Pending.empty()) Pending.dump());
  CheckPending = false;
}

/// Remove SU from the ready set for this boundary.
void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
  if (Available.isInQueue(SU))
    Available.remove(Available.find(SU));
  else {
    assert(Pending.isInQueue(SU) && "bad ready count");
    Pending.remove(Pending.find(SU));
  }
}

/// If this queue only has one ready candidate, return it. As a side effect,
/// defer any nodes that now hit a hazard, and advance the cycle until at least
/// one node is ready. If multiple instructions are ready, return NULL.
SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
  if (CheckPending)
    releasePending();

  if (IssueCount > 0) {
    // Defer any ready instrs that now have a hazard.
    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
      if (checkHazard(*I)) {
        Pending.push(*I);
        I = Available.remove(I);
        continue;
      }
      ++I;
    }
  }
  for (unsigned i = 0; Available.empty(); ++i) {
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
           "permanent hazard"); (void)i;
    bumpCycle();
    releasePending();
  }
  if (Available.size() == 1)
    return *Available.begin();
  return NULL;
}

/// Record the candidate policy for opposite zones with different critical
/// resources.
///
/// If the CriticalZone is latency limited, don't force a policy for the
/// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
void ConvergingScheduler::balanceZones(
  ConvergingScheduler::SchedBoundary &CriticalZone,
  ConvergingScheduler::SchedCandidate &CriticalCand,
  ConvergingScheduler::SchedBoundary &OppositeZone,
  ConvergingScheduler::SchedCandidate &OppositeCand) {

  if (!CriticalZone.IsResourceLimited)
    return;
  assert(SchedModel->hasInstrSchedModel() && "required schedmodel");

  SchedRemainder *Rem = CriticalZone.Rem;

  // If the critical zone is overconsuming a resource relative to the
  // remainder, try to reduce it.
  unsigned RemainingCritCount =
    Rem->RemainingCounts[CriticalZone.CritResIdx];
  if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
      > (int)SchedModel->getLatencyFactor()) {
    CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
    DEBUG(dbgs() << "  Balance " << CriticalZone.Available.getName()
          << " reduce "
          << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
          << '\n');
  }
  // If the other zone is underconsuming a resource relative to the full zone,
  // try to increase it.
  unsigned OppositeCount =
    OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
  if ((int)(OppositeZone.ExpectedCount - OppositeCount)
      > (int)SchedModel->getLatencyFactor()) {
    OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
    DEBUG(dbgs() << "  Balance " << OppositeZone.Available.getName()
          << " demand "
          << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
          << '\n');
  }
}

/// Determine if the scheduled zones exceed resource limits or critical path and
/// set each candidate's ReduceHeight policy accordingly.
void ConvergingScheduler::checkResourceLimits(
  ConvergingScheduler::SchedCandidate &TopCand,
  ConvergingScheduler::SchedCandidate &BotCand) {

  // Set ReduceLatency to true if needed.
  Bot.setLatencyPolicy(BotCand.Policy);
  Top.setLatencyPolicy(TopCand.Policy);

  // Handle resource-limited regions.
  if (Top.IsResourceLimited && Bot.IsResourceLimited
      && Top.CritResIdx == Bot.CritResIdx) {
    // If the scheduled critical resource in both zones is no longer the
    // critical remaining resource, attempt to reduce resource height both ways.
    if (Top.CritResIdx != Rem.CritResIdx) {
      TopCand.Policy.ReduceResIdx = Top.CritResIdx;
      BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
      DEBUG(dbgs() << "  Reduce scheduled "
            << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
    }
    return;
  }
  // Handle latency-limited regions.
  if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
    // If the total scheduled expected latency exceeds the region's critical
    // path then reduce latency both ways.
    //
    // Just because a zone is not resource limited does not mean it is latency
    // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
    // to exceed expected latency.
    if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
        && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
      TopCand.Policy.ReduceLatency = true;
      BotCand.Policy.ReduceLatency = true;
      DEBUG(dbgs() << "  Reduce scheduled latency " << Top.ExpectedLatency
            << " + " << Bot.ExpectedLatency << '\n');
    }
    return;
  }
  // The critical resource is different in each zone, so request balancing.

  // Compute the cost of each zone.
  Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
  Top.ExpectedCount = std::max(
    Top.getCriticalCount(),
    Top.ExpectedCount * SchedModel->getLatencyFactor());
  Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
  Bot.ExpectedCount = std::max(
    Bot.getCriticalCount(),
    Bot.ExpectedCount * SchedModel->getLatencyFactor());

  balanceZones(Top, TopCand, Bot, BotCand);
  balanceZones(Bot, BotCand, Top, TopCand);
}

void ConvergingScheduler::SchedCandidate::
initResourceDelta(const ScheduleDAGMI *DAG,
                  const TargetSchedModel *SchedModel) {
  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
    return;

  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
  for (TargetSchedModel::ProcResIter
         PI = SchedModel->getWriteProcResBegin(SC),
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
      ResDelta.CritResources += PI->Cycles;
    if (PI->ProcResourceIdx == Policy.DemandResIdx)
      ResDelta.DemandedResources += PI->Cycles;
  }
}

/// Return true if this heuristic determines order.
static bool tryLess(int TryVal, int CandVal,
                    ConvergingScheduler::SchedCandidate &TryCand,
                    ConvergingScheduler::SchedCandidate &Cand,
                    ConvergingScheduler::CandReason Reason) {
  if (TryVal < CandVal) {
    TryCand.Reason = Reason;
    return true;
  }
  if (TryVal > CandVal) {
    if (Cand.Reason > Reason)
      Cand.Reason = Reason;
    return true;
  }
  return false;
}

static bool tryGreater(int TryVal, int CandVal,
                       ConvergingScheduler::SchedCandidate &TryCand,
                       ConvergingScheduler::SchedCandidate &Cand,
                       ConvergingScheduler::CandReason Reason) {
  if (TryVal > CandVal) {
    TryCand.Reason = Reason;
    return true;
  }
  if (TryVal < CandVal) {
    if (Cand.Reason > Reason)
      Cand.Reason = Reason;
    return true;
  }
  return false;
}

static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
}

/// Minimize physical register live ranges. Regalloc wants them adjacent to
/// their physreg def/use.
///
/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
/// with the operation that produces or consumes the physreg. We'll do this when
/// regalloc has support for parallel copies.
static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
  const MachineInstr *MI = SU->getInstr();
  if (!MI->isCopy())
    return 0;

  unsigned ScheduledOper = isTop ? 1 : 0;
  unsigned UnscheduledOper = isTop ? 0 : 1;
  // If we have already scheduled the physreg produce/consumer, immediately
  // schedule the copy.
  if (TargetRegisterInfo::isPhysicalRegister(
        MI->getOperand(ScheduledOper).getReg()))
    return 1;
  // If the physreg is at the boundary, defer it. Otherwise schedule it
  // immediately to free the dependent. We can hoist the copy later.
  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
  if (TargetRegisterInfo::isPhysicalRegister(
        MI->getOperand(UnscheduledOper).getReg()))
    return AtBoundary ? -1 : 1;
  return 0;
}

/// Apply a set of heursitics to a new candidate. Heuristics are currently
/// hierarchical. This may be more efficient than a graduated cost model because
/// we don't need to evaluate all aspects of the model for each node in the
/// queue. But it's really done to make the heuristics easier to debug and
/// statistically analyze.
///
/// \param Cand provides the policy and current best candidate.
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
/// \param Zone describes the scheduled zone that we are extending.
/// \param RPTracker describes reg pressure within the scheduled zone.
/// \param TempTracker is a scratch pressure tracker to reuse in queries.
void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
                                       SchedCandidate &TryCand,
                                       SchedBoundary &Zone,
                                       const RegPressureTracker &RPTracker,
                                       RegPressureTracker &TempTracker) {

  // Always initialize TryCand's RPDelta.
  TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
                                  DAG->getRegionCriticalPSets(),
                                  DAG->getRegPressure().MaxSetPressure);

  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return;
  }

  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
                 TryCand, Cand, PhysRegCopy))
    return;

  // Avoid exceeding the target's limit.
  if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
              Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
    return;
  if (Cand.Reason == SingleExcess)
    Cand.Reason = MultiPressure;

  // Avoid increasing the max critical pressure in the scheduled region.
  if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
              Cand.RPDelta.CriticalMax.UnitIncrease,
              TryCand, Cand, SingleCritical))
    return;
  if (Cand.Reason == SingleCritical)
    Cand.Reason = MultiPressure;

  // Keep clustered nodes together to encourage downstream peephole
  // optimizations which may reduce resource requirements.
  //
  // This is a best effort to set things up for a post-RA pass. Optimizations
  // like generating loads of multiple registers should ideally be done within
  // the scheduler pass by combining the loads during DAG postprocessing.
  const SUnit *NextClusterSU =
    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
                 TryCand, Cand, Cluster))
    return;

  // Weak edges are for clustering and other constraints.
  //
  // Deferring TryCand here does not change Cand's reason. This is good in the
  // sense that a bad candidate shouldn't affect a previous candidate's
  // goodness, but bad in that it is assymetric and depends on queue order.
  CandReason OrigReason = Cand.Reason;
  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
              getWeakLeft(Cand.SU, Zone.isTop()),
              TryCand, Cand, Weak)) {
    Cand.Reason = OrigReason;
    return;
  }
  // Avoid critical resource consumption and balance the schedule.
  TryCand.initResourceDelta(DAG, SchedModel);
  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
              TryCand, Cand, ResourceReduce))
    return;
  if (tryGreater(TryCand.ResDelta.DemandedResources,
                 Cand.ResDelta.DemandedResources,
                 TryCand, Cand, ResourceDemand))
    return;

  // Avoid serializing long latency dependence chains.
  if (Cand.Policy.ReduceLatency) {
    if (Zone.isTop()) {
      if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
          > Zone.ExpectedCount) {
        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
                    TryCand, Cand, TopDepthReduce))
          return;
      }
      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
                     TryCand, Cand, TopPathReduce))
        return;
    }
    else {
      if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
          > Zone.ExpectedCount) {
        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
                    TryCand, Cand, BotHeightReduce))
          return;
      }
      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
                     TryCand, Cand, BotPathReduce))
        return;
    }
  }

  // Avoid increasing the max pressure of the entire region.
  if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
              Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
    return;
  if (Cand.Reason == SingleMax)
    Cand.Reason = MultiPressure;

  // Prefer immediate defs/users of the last scheduled instruction. This is a
  // nice pressure avoidance strategy that also conserves the processor's
  // register renaming resources and keeps the machine code readable.
  if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
                 TryCand, Cand, NextDefUse))
    return;

  // Fall through to original instruction order.
  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
    TryCand.Reason = NodeOrder;
  }
}

/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
/// more desirable than RHS from scheduling standpoint.
static bool compareRPDelta(const RegPressureDelta &LHS,
                           const RegPressureDelta &RHS) {
  // Compare each component of pressure in decreasing order of importance
  // without checking if any are valid. Invalid PressureElements are assumed to
  // have UnitIncrease==0, so are neutral.

  // Avoid increasing the max critical pressure in the scheduled region.
  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
    DEBUG(dbgs() << "  RP excess top - bot: "
          << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
  }
  // Avoid increasing the max critical pressure in the scheduled region.
  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
    DEBUG(dbgs() << "  RP critical top - bot: "
          << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
          << '\n');
    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
  }
  // Avoid increasing the max pressure of the entire region.
  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
    DEBUG(dbgs() << "  RP current top - bot: "
          << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
          << '\n');
    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
  }
  return false;
}

#ifndef NDEBUG
const char *ConvergingScheduler::getReasonStr(
  ConvergingScheduler::CandReason Reason) {
  switch (Reason) {
  case NoCand:         return "NOCAND    ";
  case PhysRegCopy:    return "PREG-COPY";
  case SingleExcess:   return "REG-EXCESS";
  case SingleCritical: return "REG-CRIT  ";
  case Cluster:        return "CLUSTER   ";
  case Weak:           return "WEAK      ";
  case SingleMax:      return "REG-MAX   ";
  case MultiPressure:  return "REG-MULTI ";
  case ResourceReduce: return "RES-REDUCE";
  case ResourceDemand: return "RES-DEMAND";
  case TopDepthReduce: return "TOP-DEPTH ";
  case TopPathReduce:  return "TOP-PATH  ";
  case BotHeightReduce:return "BOT-HEIGHT";
  case BotPathReduce:  return "BOT-PATH  ";
  case NextDefUse:     return "DEF-USE   ";
  case NodeOrder:      return "ORDER     ";
  };
  llvm_unreachable("Unknown reason!");
}

void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
  PressureElement P;
  unsigned ResIdx = 0;
  unsigned Latency = 0;
  switch (Cand.Reason) {
  default:
    break;
  case SingleExcess:
    P = Cand.RPDelta.Excess;
    break;
  case SingleCritical:
    P = Cand.RPDelta.CriticalMax;
    break;
  case SingleMax:
    P = Cand.RPDelta.CurrentMax;
    break;
  case ResourceReduce:
    ResIdx = Cand.Policy.ReduceResIdx;
    break;
  case ResourceDemand:
    ResIdx = Cand.Policy.DemandResIdx;
    break;
  case TopDepthReduce:
    Latency = Cand.SU->getDepth();
    break;
  case TopPathReduce:
    Latency = Cand.SU->getHeight();
    break;
  case BotHeightReduce:
    Latency = Cand.SU->getHeight();
    break;
  case BotPathReduce:
    Latency = Cand.SU->getDepth();
    break;
  }
  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
  if (P.isValid())
    dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
           << ":" << P.UnitIncrease << " ";
  else
    dbgs() << "      ";
  if (ResIdx)
    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
  else
    dbgs() << "         ";
  if (Latency)
    dbgs() << " " << Latency << " cycles ";
  else
    dbgs() << "          ";
  dbgs() << '\n';
}
#endif

/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
                                            const RegPressureTracker &RPTracker,
                                            SchedCandidate &Cand) {
  ReadyQueue &Q = Zone.Available;

  DEBUG(Q.dump());

  // getMaxPressureDelta temporarily modifies the tracker.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {

    SchedCandidate TryCand(Cand.Policy);
    TryCand.SU = *I;
    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
    if (TryCand.Reason != NoCand) {
      // Initialize resource delta if needed in case future heuristics query it.
      if (TryCand.ResDelta == SchedResourceDelta())
        TryCand.initResourceDelta(DAG, SchedModel);
      Cand.setBest(TryCand);
      DEBUG(traceCandidate(Cand));
    }
  }
}

static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
                      bool IsTop) {
  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
}

/// Pick the best candidate node from either the top or bottom queue.
SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    DEBUG(dbgs() << "Pick Top NOCAND\n");
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    DEBUG(dbgs() << "Pick Bot NOCAND\n");
    return SU;
  }
  CandPolicy NoPolicy;
  SchedCandidate BotCand(NoPolicy);
  SchedCandidate TopCand(NoPolicy);
  checkResourceLimits(TopCand, BotCand);

  // Prefer bottom scheduling when heuristics are silent.
  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
  assert(BotCand.Reason != NoCand && "failed to find the first candidate");

  // If either Q has a single candidate that provides the least increase in
  // Excess pressure, we can immediately schedule from that Q.
  //
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
  // affects picking from either Q. If scheduling in one direction must
  // increase pressure for one of the excess PSets, then schedule in that
  // direction first to provide more freedom in the other direction.
  if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
    IsTopNode = false;
    tracePick(BotCand, IsTopNode);
    return BotCand.SU;
  }
  // Check if the top Q has a better candidate.
  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
  assert(TopCand.Reason != NoCand && "failed to find the first candidate");

  // If either Q has a single candidate that minimizes pressure above the
  // original region's pressure pick it.
  if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
    if (TopCand.Reason < BotCand.Reason) {
      IsTopNode = true;
      tracePick(TopCand, IsTopNode);
      return TopCand.SU;
    }
    IsTopNode = false;
    tracePick(BotCand, IsTopNode);
    return BotCand.SU;
  }
  // Check for a salient pressure difference and pick the best from either side.
  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
    IsTopNode = true;
    tracePick(TopCand, IsTopNode);
    return TopCand.SU;
  }
  // Otherwise prefer the bottom candidate, in node order if all else failed.
  if (TopCand.Reason < BotCand.Reason) {
    IsTopNode = true;
    tracePick(TopCand, IsTopNode);
    return TopCand.SU;
  }
  IsTopNode = false;
  tracePick(BotCand, IsTopNode);
  return BotCand.SU;
}

/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return NULL;
  }
  SUnit *SU;
  do {
    if (ForceTopDown) {
      SU = Top.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        SchedCandidate TopCand(NoPolicy);
        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
        assert(TopCand.Reason != NoCand && "failed to find the first candidate");
        SU = TopCand.SU;
      }
      IsTopNode = true;
    }
    else if (ForceBottomUp) {
      SU = Bot.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        SchedCandidate BotCand(NoPolicy);
        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
        assert(BotCand.Reason != NoCand && "failed to find the first candidate");
        SU = BotCand.SU;
      }
      IsTopNode = false;
    }
    else {
      SU = pickNodeBidirectional(IsTopNode);
    }
  } while (SU->isScheduled);

  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
  return SU;
}

void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {

  MachineBasicBlock::iterator InsertPos = SU->getInstr();
  if (!isTop)
    ++InsertPos;
  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;

  // Find already scheduled copies with a single physreg dependence and move
  // them just above the scheduled instruction.
  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
       I != E; ++I) {
    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
      continue;
    SUnit *DepSU = I->getSUnit();
    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
      continue;
    MachineInstr *Copy = DepSU->getInstr();
    if (!Copy->isCopy())
      continue;
    DEBUG(dbgs() << "  Rescheduling physreg copy ";
          I->getSUnit()->dump(DAG));
    DAG->moveInstruction(Copy, InsertPos);
  }
}

/// Update the scheduler's state after scheduling a node. This is the same node
/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
/// it's state based on the current cycle before MachineSchedStrategy does.
///
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
/// them here. See comments in biasPhysRegCopy.
void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
  if (IsTopNode) {
    SU->TopReadyCycle = Top.CurrCycle;
    Top.bumpNode(SU);
    if (SU->hasPhysRegUses)
      reschedulePhysRegCopies(SU, true);
  }
  else {
    SU->BotReadyCycle = Bot.CurrCycle;
    Bot.bumpNode(SU);
    if (SU->hasPhysRegDefs)
      reschedulePhysRegCopies(SU, false);
  }
}

/// Create the standard converging machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
  assert((!ForceTopDown || !ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
  ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
  // Register DAG post-processors.
  //
  // FIXME: extend the mutation API to allow earlier mutations to instantiate
  // data and pass it to later mutations. Have a single mutation that gathers
  // the interesting nodes in one pass.
  if (EnableCopyConstrain)
    DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
  if (EnableLoadCluster)
    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
  if (EnableMacroFusion)
    DAG->addMutation(new MacroFusion(DAG->TII));
  return DAG;
}
static MachineSchedRegistry
ConvergingSchedRegistry("converge", "Standard converging scheduler.",
                        createConvergingSched);

//===----------------------------------------------------------------------===//
// ILP Scheduler. Currently for experimental analysis of heuristics.
//===----------------------------------------------------------------------===//

namespace {
/// \brief Order nodes by the ILP metric.
struct ILPOrder {
  const SchedDFSResult *DFSResult;
  const BitVector *ScheduledTrees;
  bool MaximizeILP;

  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}

  /// \brief Apply a less-than relation on node priority.
  ///
  /// (Return true if A comes after B in the Q.)
  bool operator()(const SUnit *A, const SUnit *B) const {
    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
    if (SchedTreeA != SchedTreeB) {
      // Unscheduled trees have lower priority.
      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
        return ScheduledTrees->test(SchedTreeB);

      // Trees with shallower connections have have lower priority.
      if (DFSResult->getSubtreeLevel(SchedTreeA)
          != DFSResult->getSubtreeLevel(SchedTreeB)) {
        return DFSResult->getSubtreeLevel(SchedTreeA)
          < DFSResult->getSubtreeLevel(SchedTreeB);
      }
    }
    if (MaximizeILP)
      return DFSResult->getILP(A) < DFSResult->getILP(B);
    else
      return DFSResult->getILP(A) > DFSResult->getILP(B);
  }
};

/// \brief Schedule based on the ILP metric.
class ILPScheduler : public MachineSchedStrategy {
  /// In case all subtrees are eventually connected to a common root through
  /// data dependence (e.g. reduction), place an upper limit on their size.
  ///
  /// FIXME: A subtree limit is generally good, but in the situation commented
  /// above, where multiple similar subtrees feed a common root, we should
  /// only split at a point where the resulting subtrees will be balanced.
  /// (a motivating test case must be found).
  static const unsigned SubtreeLimit = 16;

  ScheduleDAGMI *DAG;
  ILPOrder Cmp;

  std::vector<SUnit*> ReadyQ;
public:
  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}

  virtual void initialize(ScheduleDAGMI *dag) {
    DAG = dag;
    DAG->computeDFSResult();
    Cmp.DFSResult = DAG->getDFSResult();
    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
    ReadyQ.clear();
  }

  virtual void registerRoots() {
    // Restore the heap in ReadyQ with the updated DFS results.
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
  }

  /// Implement MachineSchedStrategy interface.
  /// -----------------------------------------

  /// Callback to select the highest priority node from the ready Q.
  virtual SUnit *pickNode(bool &IsTopNode) {
    if (ReadyQ.empty()) return NULL;
    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
    SUnit *SU = ReadyQ.back();
    ReadyQ.pop_back();
    IsTopNode = false;
    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
          << " ILP: " << DAG->getDFSResult()->getILP(SU)
          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
          << DAG->getDFSResult()->getSubtreeLevel(
            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
          << "Scheduling " << *SU->getInstr());
    return SU;
  }

  /// \brief Scheduler callback to notify that a new subtree is scheduled.
  virtual void scheduleTree(unsigned SubtreeID) {
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
  }

  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
  /// DFSResults, and resort the priority Q.
  virtual void schedNode(SUnit *SU, bool IsTopNode) {
    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
  }

  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }

  virtual void releaseBottomNode(SUnit *SU) {
    ReadyQ.push_back(SU);
    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
  }
};
} // namespace

static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
  return new ScheduleDAGMI(C, new ILPScheduler(true));
}
static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
  return new ScheduleDAGMI(C, new ILPScheduler(false));
}
static MachineSchedRegistry ILPMaxRegistry(
  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
static MachineSchedRegistry ILPMinRegistry(
  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);

//===----------------------------------------------------------------------===//
// Machine Instruction Shuffler for Correctness Testing
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
namespace {
/// Apply a less-than relation on the node order, which corresponds to the
/// instruction order prior to scheduling. IsReverse implements greater-than.
template<bool IsReverse>
struct SUnitOrder {
  bool operator()(SUnit *A, SUnit *B) const {
    if (IsReverse)
      return A->NodeNum > B->NodeNum;
    else
      return A->NodeNum < B->NodeNum;
  }
};

/// Reorder instructions as much as possible.
class InstructionShuffler : public MachineSchedStrategy {
  bool IsAlternating;
  bool IsTopDown;

  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
  // gives nodes with a higher number higher priority causing the latest
  // instructions to be scheduled first.
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
    TopQ;
  // When scheduling bottom-up, use greater-than as the queue priority.
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
    BottomQ;
public:
  InstructionShuffler(bool alternate, bool topdown)
    : IsAlternating(alternate), IsTopDown(topdown) {}

  virtual void initialize(ScheduleDAGMI *) {
    TopQ.clear();
    BottomQ.clear();
  }

  /// Implement MachineSchedStrategy interface.
  /// -----------------------------------------

  virtual SUnit *pickNode(bool &IsTopNode) {
    SUnit *SU;
    if (IsTopDown) {
      do {
        if (TopQ.empty()) return NULL;
        SU = TopQ.top();
        TopQ.pop();
      } while (SU->isScheduled);
      IsTopNode = true;
    }
    else {
      do {
        if (BottomQ.empty()) return NULL;
        SU = BottomQ.top();
        BottomQ.pop();
      } while (SU->isScheduled);
      IsTopNode = false;
    }
    if (IsAlternating)
      IsTopDown = !IsTopDown;
    return SU;
  }

  virtual void schedNode(SUnit *SU, bool IsTopNode) {}

  virtual void releaseTopNode(SUnit *SU) {
    TopQ.push(SU);
  }
  virtual void releaseBottomNode(SUnit *SU) {
    BottomQ.push(SU);
  }
};
} // namespace

static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
  bool Alternate = !ForceTopDown && !ForceBottomUp;
  bool TopDown = !ForceBottomUp;
  assert((TopDown || !ForceTopDown) &&
         "-misched-topdown incompatible with -misched-bottomup");
  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
}
static MachineSchedRegistry ShufflerRegistry(
  "shuffle", "Shuffle machine instructions alternating directions",
  createInstructionShuffler);
#endif // !NDEBUG

//===----------------------------------------------------------------------===//
// GraphWriter support for ScheduleDAGMI.
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
namespace llvm {

template<> struct GraphTraits<
  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};

template<>
struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {

  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}

  static std::string getGraphName(const ScheduleDAG *G) {
    return G->MF.getName();
  }

  static bool renderGraphFromBottomUp() {
    return true;
  }

  static bool isNodeHidden(const SUnit *Node) {
    return (Node->NumPreds > 10 || Node->NumSuccs > 10);
  }

  static bool hasNodeAddressLabel(const SUnit *Node,
                                  const ScheduleDAG *Graph) {
    return false;
  }

  /// If you want to override the dot attributes printed for a particular
  /// edge, override this method.
  static std::string getEdgeAttributes(const SUnit *Node,
                                       SUnitIterator EI,
                                       const ScheduleDAG *Graph) {
    if (EI.isArtificialDep())
      return "color=cyan,style=dashed";
    if (EI.isCtrlDep())
      return "color=blue,style=dashed";
    return "";
  }

  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
    std::string Str;
    raw_string_ostream SS(Str);
    SS << "SU(" << SU->NodeNum << ')';
    return SS.str();
  }
  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
    return G->getGraphNodeLabel(SU);
  }

  static std::string getNodeAttributes(const SUnit *N,
                                       const ScheduleDAG *Graph) {
    std::string Str("shape=Mrecord");
    const SchedDFSResult *DFS =
      static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
    if (DFS) {
      Str += ",style=filled,fillcolor=\"#";
      Str += DOT::getColorString(DFS->getSubtreeID(N));
      Str += '"';
    }
    return Str;
  }
};
} // namespace llvm
#endif // NDEBUG

/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
/// rendered using 'dot'.
///
void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
#ifndef NDEBUG
  ViewGraph(this, Name, false, Title);
#else
  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
         << "systems with Graphviz or gv!\n";
#endif  // NDEBUG
}

/// Out-of-line implementation with no arguments is handy for gdb.
void ScheduleDAGMI::viewGraph() {
  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
}