llvm.org GIT mirror llvm / release_33 lib / Analysis / TargetTransformInfo.cpp
release_33

Tree @release_33 (Download .tar.gz)

TargetTransformInfo.cpp @release_33raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "tti"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"

using namespace llvm;

// Setup the analysis group to manage the TargetTransformInfo passes.
INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
char TargetTransformInfo::ID = 0;

TargetTransformInfo::~TargetTransformInfo() {
}

void TargetTransformInfo::pushTTIStack(Pass *P) {
  TopTTI = this;
  PrevTTI = &P->getAnalysis<TargetTransformInfo>();

  // Walk up the chain and update the top TTI pointer.
  for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
    PTTI->TopTTI = this;
}

void TargetTransformInfo::popTTIStack() {
  TopTTI = 0;

  // Walk up the chain and update the top TTI pointer.
  for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
    PTTI->TopTTI = PrevTTI;

  PrevTTI = 0;
}

void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetTransformInfo>();
}

unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
                                               Type *OpTy) const {
  return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
}

unsigned TargetTransformInfo::getGEPCost(
    const Value *Ptr, ArrayRef<const Value *> Operands) const {
  return PrevTTI->getGEPCost(Ptr, Operands);
}

unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
                                          int NumArgs) const {
  return PrevTTI->getCallCost(FTy, NumArgs);
}

unsigned TargetTransformInfo::getCallCost(const Function *F,
                                          int NumArgs) const {
  return PrevTTI->getCallCost(F, NumArgs);
}

unsigned TargetTransformInfo::getCallCost(
    const Function *F, ArrayRef<const Value *> Arguments) const {
  return PrevTTI->getCallCost(F, Arguments);
}

unsigned TargetTransformInfo::getIntrinsicCost(
    Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
  return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
}

unsigned TargetTransformInfo::getIntrinsicCost(
    Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
  return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
}

unsigned TargetTransformInfo::getUserCost(const User *U) const {
  return PrevTTI->getUserCost(U);
}

bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
  return PrevTTI->isLoweredToCall(F);
}

bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
  return PrevTTI->isLegalAddImmediate(Imm);
}

bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
  return PrevTTI->isLegalICmpImmediate(Imm);
}

bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
                                                int64_t BaseOffset,
                                                bool HasBaseReg,
                                                int64_t Scale) const {
  return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
                                        Scale);
}

bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
  return PrevTTI->isTruncateFree(Ty1, Ty2);
}

bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
  return PrevTTI->isTypeLegal(Ty);
}

unsigned TargetTransformInfo::getJumpBufAlignment() const {
  return PrevTTI->getJumpBufAlignment();
}

unsigned TargetTransformInfo::getJumpBufSize() const {
  return PrevTTI->getJumpBufSize();
}

bool TargetTransformInfo::shouldBuildLookupTables() const {
  return PrevTTI->shouldBuildLookupTables();
}

TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
  return PrevTTI->getPopcntSupport(IntTyWidthInBit);
}

unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
  return PrevTTI->getIntImmCost(Imm, Ty);
}

unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
  return PrevTTI->getNumberOfRegisters(Vector);
}

unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
  return PrevTTI->getRegisterBitWidth(Vector);
}

unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
  return PrevTTI->getMaximumUnrollFactor();
}

unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
                                                Type *Ty,
                                                OperandValueKind Op1Info,
                                                OperandValueKind Op2Info) const {
  return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
}

unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
                                             int Index, Type *SubTp) const {
  return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
}

unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
                                               Type *Src) const {
  return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
}

unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
  return PrevTTI->getCFInstrCost(Opcode);
}

unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                                 Type *CondTy) const {
  return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
}

unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
                                                 unsigned Index) const {
  return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
}

unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
                                              unsigned Alignment,
                                              unsigned AddressSpace) const {
  return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
  ;
}

unsigned
TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
                                           Type *RetTy,
                                           ArrayRef<Type *> Tys) const {
  return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
}

unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
  return PrevTTI->getNumberOfParts(Tp);
}

unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp) const {
  return PrevTTI->getAddressComputationCost(Tp);
}

namespace {

struct NoTTI : ImmutablePass, TargetTransformInfo {
  const DataLayout *DL;

  NoTTI() : ImmutablePass(ID), DL(0) {
    initializeNoTTIPass(*PassRegistry::getPassRegistry());
  }

  virtual void initializePass() {
    // Note that this subclass is special, and must *not* call initializeTTI as
    // it does not chain.
    TopTTI = this;
    PrevTTI = 0;
    DL = getAnalysisIfAvailable<DataLayout>();
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    // Note that this subclass is special, and must *not* call
    // TTI::getAnalysisUsage as it breaks the recursion.
  }

  /// Pass identification.
  static char ID;

  /// Provide necessary pointer adjustments for the two base classes.
  virtual void *getAdjustedAnalysisPointer(const void *ID) {
    if (ID == &TargetTransformInfo::ID)
      return (TargetTransformInfo*)this;
    return this;
  }

  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
    switch (Opcode) {
    default:
      // By default, just classify everything as 'basic'.
      return TCC_Basic;

    case Instruction::GetElementPtr:
      llvm_unreachable("Use getGEPCost for GEP operations!");

    case Instruction::BitCast:
      assert(OpTy && "Cast instructions must provide the operand type");
      if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
        // Identity and pointer-to-pointer casts are free.
        return TCC_Free;

      // Otherwise, the default basic cost is used.
      return TCC_Basic;

    case Instruction::IntToPtr:
      // An inttoptr cast is free so long as the input is a legal integer type
      // which doesn't contain values outside the range of a pointer.
      if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
          OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
        return TCC_Free;

      // Otherwise it's not a no-op.
      return TCC_Basic;

    case Instruction::PtrToInt:
      // A ptrtoint cast is free so long as the result is large enough to store
      // the pointer, and a legal integer type.
      if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) &&
          Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits())
        return TCC_Free;

      // Otherwise it's not a no-op.
      return TCC_Basic;

    case Instruction::Trunc:
      // trunc to a native type is free (assuming the target has compare and
      // shift-right of the same width).
      if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
        return TCC_Free;

      return TCC_Basic;
    }
  }

  unsigned getGEPCost(const Value *Ptr,
                      ArrayRef<const Value *> Operands) const {
    // In the basic model, we just assume that all-constant GEPs will be folded
    // into their uses via addressing modes.
    for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
      if (!isa<Constant>(Operands[Idx]))
        return TCC_Basic;

    return TCC_Free;
  }

  unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
    assert(FTy && "FunctionType must be provided to this routine.");

    // The target-independent implementation just measures the size of the
    // function by approximating that each argument will take on average one
    // instruction to prepare.

    if (NumArgs < 0)
      // Set the argument number to the number of explicit arguments in the
      // function.
      NumArgs = FTy->getNumParams();

    return TCC_Basic * (NumArgs + 1);
  }

  unsigned getCallCost(const Function *F, int NumArgs = -1) const {
    assert(F && "A concrete function must be provided to this routine.");

    if (NumArgs < 0)
      // Set the argument number to the number of explicit arguments in the
      // function.
      NumArgs = F->arg_size();

    if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
      FunctionType *FTy = F->getFunctionType();
      SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
      return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
    }

    if (!TopTTI->isLoweredToCall(F))
      return TCC_Basic; // Give a basic cost if it will be lowered directly.

    return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
  }

  unsigned getCallCost(const Function *F,
                       ArrayRef<const Value *> Arguments) const {
    // Simply delegate to generic handling of the call.
    // FIXME: We should use instsimplify or something else to catch calls which
    // will constant fold with these arguments.
    return TopTTI->getCallCost(F, Arguments.size());
  }

  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                            ArrayRef<Type *> ParamTys) const {
    switch (IID) {
    default:
      // Intrinsics rarely (if ever) have normal argument setup constraints.
      // Model them as having a basic instruction cost.
      // FIXME: This is wrong for libc intrinsics.
      return TCC_Basic;

    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_value:
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::objectsize:
    case Intrinsic::ptr_annotation:
    case Intrinsic::var_annotation:
      // These intrinsics don't actually represent code after lowering.
      return TCC_Free;
    }
  }

  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                            ArrayRef<const Value *> Arguments) const {
    // Delegate to the generic intrinsic handling code. This mostly provides an
    // opportunity for targets to (for example) special case the cost of
    // certain intrinsics based on constants used as arguments.
    SmallVector<Type *, 8> ParamTys;
    ParamTys.reserve(Arguments.size());
    for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
      ParamTys.push_back(Arguments[Idx]->getType());
    return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
  }

  unsigned getUserCost(const User *U) const {
    if (isa<PHINode>(U))
      return TCC_Free; // Model all PHI nodes as free.

    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
      // In the basic model we just assume that all-constant GEPs will be
      // folded into their uses via addressing modes.
      return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;

    if (ImmutableCallSite CS = U) {
      const Function *F = CS.getCalledFunction();
      if (!F) {
        // Just use the called value type.
        Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
        return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
      }

      SmallVector<const Value *, 8> Arguments;
      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
                                           AE = CS.arg_end();
           AI != AE; ++AI)
        Arguments.push_back(*AI);

      return TopTTI->getCallCost(F, Arguments);
    }

    if (const CastInst *CI = dyn_cast<CastInst>(U)) {
      // Result of a cmp instruction is often extended (to be used by other
      // cmp instructions, logical or return instructions). These are usually
      // nop on most sane targets.
      if (isa<CmpInst>(CI->getOperand(0)))
        return TCC_Free;
    }

    // Otherwise delegate to the fully generic implementations.
    return getOperationCost(Operator::getOpcode(U), U->getType(),
                            U->getNumOperands() == 1 ?
                                U->getOperand(0)->getType() : 0);
  }

  bool isLoweredToCall(const Function *F) const {
    // FIXME: These should almost certainly not be handled here, and instead
    // handled with the help of TLI or the target itself. This was largely
    // ported from existing analysis heuristics here so that such refactorings
    // can take place in the future.

    if (F->isIntrinsic())
      return false;

    if (F->hasLocalLinkage() || !F->hasName())
      return true;

    StringRef Name = F->getName();

    // These will all likely lower to a single selection DAG node.
    if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
        Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
        Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
        Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
      return false;

    // These are all likely to be optimized into something smaller.
    if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
        Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
        "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
        Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
      return false;

    return true;
  }

  bool isLegalAddImmediate(int64_t Imm) const {
    return false;
  }

  bool isLegalICmpImmediate(int64_t Imm) const {
    return false;
  }

  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale) const {
    // Guess that reg+reg addressing is allowed. This heuristic is taken from
    // the implementation of LSR.
    return !BaseGV && BaseOffset == 0 && Scale <= 1;
  }

  bool isTruncateFree(Type *Ty1, Type *Ty2) const {
    return false;
  }

  bool isTypeLegal(Type *Ty) const {
    return false;
  }

  unsigned getJumpBufAlignment() const {
    return 0;
  }

  unsigned getJumpBufSize() const {
    return 0;
  }

  bool shouldBuildLookupTables() const {
    return true;
  }

  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
    return PSK_Software;
  }

  unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
    return 1;
  }

  unsigned getNumberOfRegisters(bool Vector) const {
    return 8;
  }

  unsigned  getRegisterBitWidth(bool Vector) const {
    return 32;
  }

  unsigned getMaximumUnrollFactor() const {
    return 1;
  }

  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
                                  OperandValueKind) const {
    return 1;
  }

  unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
                          int Index = 0, Type *SubTp = 0) const {
    return 1;
  }

  unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
                            Type *Src) const {
    return 1;
  }

  unsigned getCFInstrCost(unsigned Opcode) const {
    return 1;
  }

  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                              Type *CondTy = 0) const {
    return 1;
  }

  unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
                              unsigned Index = -1) const {
    return 1;
  }

  unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
                           unsigned Alignment,
                           unsigned AddressSpace) const {
    return 1;
  }

  unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
                                 Type *RetTy,
                                 ArrayRef<Type*> Tys) const {
    return 1;
  }

  unsigned getNumberOfParts(Type *Tp) const {
    return 0;
  }

  unsigned getAddressComputationCost(Type *Tp) const {
    return 0;
  }
};

} // end anonymous namespace

INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
                   "No target information", true, true, true)
char NoTTI::ID = 0;

ImmutablePass *llvm::createNoTargetTransformInfoPass() {
  return new NoTTI();
}