llvm.org GIT mirror llvm / release_31 lib / CodeGen / MachineVerifier.cpp
release_31

Tree @release_31 (Download .tar.gz)

MachineVerifier.cpp @release_31raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
// command-line option -verify-machineinstrs, or by defining the environment
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
// the verifier errors.
//===----------------------------------------------------------------------===//

#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
  struct MachineVerifier {

    MachineVerifier(Pass *pass, const char *b) :
      PASS(pass),
      Banner(b),
      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
      {}

    bool runOnMachineFunction(MachineFunction &MF);

    Pass *const PASS;
    const char *Banner;
    const char *const OutFileName;
    raw_ostream *OS;
    const MachineFunction *MF;
    const TargetMachine *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineRegisterInfo *MRI;

    unsigned foundErrors;

    typedef SmallVector<unsigned, 16> RegVector;
    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
    typedef DenseSet<unsigned> RegSet;
    typedef DenseMap<unsigned, const MachineInstr*> RegMap;

    const MachineInstr *FirstTerminator;

    BitVector regsReserved;
    BitVector regsAllocatable;
    RegSet regsLive;
    RegVector regsDefined, regsDead, regsKilled;
    RegMaskVector regMasks;
    RegSet regsLiveInButUnused;

    SlotIndex lastIndex;

    // Add Reg and any sub-registers to RV
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
      RV.push_back(Reg);
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
        for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++)
          RV.push_back(*R);
    }

    struct BBInfo {
      // Is this MBB reachable from the MF entry point?
      bool reachable;

      // Vregs that must be live in because they are used without being
      // defined. Map value is the user.
      RegMap vregsLiveIn;

      // Regs killed in MBB. They may be defined again, and will then be in both
      // regsKilled and regsLiveOut.
      RegSet regsKilled;

      // Regs defined in MBB and live out. Note that vregs passing through may
      // be live out without being mentioned here.
      RegSet regsLiveOut;

      // Vregs that pass through MBB untouched. This set is disjoint from
      // regsKilled and regsLiveOut.
      RegSet vregsPassed;

      // Vregs that must pass through MBB because they are needed by a successor
      // block. This set is disjoint from regsLiveOut.
      RegSet vregsRequired;

      BBInfo() : reachable(false) {}

      // Add register to vregsPassed if it belongs there. Return true if
      // anything changed.
      bool addPassed(unsigned Reg) {
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          return false;
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
          return false;
        return vregsPassed.insert(Reg).second;
      }

      // Same for a full set.
      bool addPassed(const RegSet &RS) {
        bool changed = false;
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
          if (addPassed(*I))
            changed = true;
        return changed;
      }

      // Add register to vregsRequired if it belongs there. Return true if
      // anything changed.
      bool addRequired(unsigned Reg) {
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          return false;
        if (regsLiveOut.count(Reg))
          return false;
        return vregsRequired.insert(Reg).second;
      }

      // Same for a full set.
      bool addRequired(const RegSet &RS) {
        bool changed = false;
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
          if (addRequired(*I))
            changed = true;
        return changed;
      }

      // Same for a full map.
      bool addRequired(const RegMap &RM) {
        bool changed = false;
        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
          if (addRequired(I->first))
            changed = true;
        return changed;
      }

      // Live-out registers are either in regsLiveOut or vregsPassed.
      bool isLiveOut(unsigned Reg) const {
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
      }
    };

    // Extra register info per MBB.
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;

    bool isReserved(unsigned Reg) {
      return Reg < regsReserved.size() && regsReserved.test(Reg);
    }

    bool isAllocatable(unsigned Reg) {
      return Reg < regsAllocatable.size() && regsAllocatable.test(Reg);
    }

    // Analysis information if available
    LiveVariables *LiveVars;
    LiveIntervals *LiveInts;
    LiveStacks *LiveStks;
    SlotIndexes *Indexes;

    void visitMachineFunctionBefore();
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    void visitMachineInstrBefore(const MachineInstr *MI);
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    void visitMachineInstrAfter(const MachineInstr *MI);
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    void visitMachineFunctionAfter();

    void report(const char *msg, const MachineFunction *MF);
    void report(const char *msg, const MachineBasicBlock *MBB);
    void report(const char *msg, const MachineInstr *MI);
    void report(const char *msg, const MachineOperand *MO, unsigned MONum);

    void checkLiveness(const MachineOperand *MO, unsigned MONum);
    void markReachable(const MachineBasicBlock *MBB);
    void calcRegsPassed();
    void checkPHIOps(const MachineBasicBlock *MBB);

    void calcRegsRequired();
    void verifyLiveVariables();
    void verifyLiveIntervals();
  };

  struct MachineVerifierPass : public MachineFunctionPass {
    static char ID; // Pass ID, replacement for typeid
    const char *const Banner;

    MachineVerifierPass(const char *b = 0)
      : MachineFunctionPass(ID), Banner(b) {
        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
      }

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) {
      MF.verify(this, Banner);
      return false;
    }
  };

}

char MachineVerifierPass::ID = 0;
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
                "Verify generated machine code", false, false)

FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
  return new MachineVerifierPass(Banner);
}

void MachineFunction::verify(Pass *p, const char *Banner) const {
  MachineVerifier(p, Banner)
    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
}

bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
  raw_ostream *OutFile = 0;
  if (OutFileName) {
    std::string ErrorInfo;
    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
                                 raw_fd_ostream::F_Append);
    if (!ErrorInfo.empty()) {
      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
      exit(1);
    }

    OS = OutFile;
  } else {
    OS = &errs();
  }

  foundErrors = 0;

  this->MF = &MF;
  TM = &MF.getTarget();
  TII = TM->getInstrInfo();
  TRI = TM->getRegisterInfo();
  MRI = &MF.getRegInfo();

  LiveVars = NULL;
  LiveInts = NULL;
  LiveStks = NULL;
  Indexes = NULL;
  if (PASS) {
    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    // We don't want to verify LiveVariables if LiveIntervals is available.
    if (!LiveInts)
      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
  }

  visitMachineFunctionBefore();
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
       MFI!=MFE; ++MFI) {
    visitMachineBasicBlockBefore(MFI);
    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
      if (MBBI->getParent() != MFI) {
        report("Bad instruction parent pointer", MFI);
        *OS << "Instruction: " << *MBBI;
        continue;
      }
      // Skip BUNDLE instruction for now. FIXME: We should add code to verify
      // the BUNDLE's specifically.
      if (MBBI->isBundle())
        continue;
      visitMachineInstrBefore(MBBI);
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
        visitMachineOperand(&MBBI->getOperand(I), I);
      visitMachineInstrAfter(MBBI);
    }
    visitMachineBasicBlockAfter(MFI);
  }
  visitMachineFunctionAfter();

  if (OutFile)
    delete OutFile;
  else if (foundErrors)
    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");

  // Clean up.
  regsLive.clear();
  regsDefined.clear();
  regsDead.clear();
  regsKilled.clear();
  regMasks.clear();
  regsLiveInButUnused.clear();
  MBBInfoMap.clear();

  return false;                 // no changes
}

void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
  assert(MF);
  *OS << '\n';
  if (!foundErrors++) {
    if (Banner)
      *OS << "# " << Banner << '\n';
    MF->print(*OS, Indexes);
  }
  *OS << "*** Bad machine code: " << msg << " ***\n"
      << "- function:    " << MF->getFunction()->getName() << "\n";
}

void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
  assert(MBB);
  report(msg, MBB->getParent());
  *OS << "- basic block: " << MBB->getName()
      << " " << (void*)MBB
      << " (BB#" << MBB->getNumber() << ")";
  if (Indexes)
    *OS << " [" << Indexes->getMBBStartIdx(MBB)
        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
  *OS << '\n';
}

void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
  assert(MI);
  report(msg, MI->getParent());
  *OS << "- instruction: ";
  if (Indexes && Indexes->hasIndex(MI))
    *OS << Indexes->getInstructionIndex(MI) << '\t';
  MI->print(*OS, TM);
}

void MachineVerifier::report(const char *msg,
                             const MachineOperand *MO, unsigned MONum) {
  assert(MO);
  report(msg, MO->getParent());
  *OS << "- operand " << MONum << ":   ";
  MO->print(*OS, TM);
  *OS << "\n";
}

void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
  BBInfo &MInfo = MBBInfoMap[MBB];
  if (!MInfo.reachable) {
    MInfo.reachable = true;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
      markReachable(*SuI);
  }
}

void MachineVerifier::visitMachineFunctionBefore() {
  lastIndex = SlotIndex();
  regsReserved = TRI->getReservedRegs(*MF);

  // A sub-register of a reserved register is also reserved
  for (int Reg = regsReserved.find_first(); Reg>=0;
       Reg = regsReserved.find_next(Reg)) {
    for (const uint16_t *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
      // FIXME: This should probably be:
      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
      regsReserved.set(*Sub);
    }
  }

  regsAllocatable = TRI->getAllocatableSet(*MF);

  markReachable(&MF->front());
}

// Does iterator point to a and b as the first two elements?
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
  if (*i == a)
    return *++i == b;
  if (*i == b)
    return *++i == a;
  return false;
}

void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
  FirstTerminator = 0;

  if (MRI->isSSA()) {
    // If this block has allocatable physical registers live-in, check that
    // it is an entry block or landing pad.
    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
           LE = MBB->livein_end();
         LI != LE; ++LI) {
      unsigned reg = *LI;
      if (isAllocatable(reg) && !MBB->isLandingPad() &&
          MBB != MBB->getParent()->begin()) {
        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
      }
    }
  }

  // Count the number of landing pad successors.
  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
       E = MBB->succ_end(); I != E; ++I) {
    if ((*I)->isLandingPad())
      LandingPadSuccs.insert(*I);
  }

  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
  const BasicBlock *BB = MBB->getBasicBlock();
  if (LandingPadSuccs.size() > 1 &&
      !(AsmInfo &&
        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
        BB && isa<SwitchInst>(BB->getTerminator())))
    report("MBB has more than one landing pad successor", MBB);

  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
                          TBB, FBB, Cond)) {
    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    // check whether its answers match up with reality.
    if (!TBB && !FBB) {
      // Block falls through to its successor.
      MachineFunction::const_iterator MBBI = MBB;
      ++MBBI;
      if (MBBI == MF->end()) {
        // It's possible that the block legitimately ends with a noreturn
        // call or an unreachable, in which case it won't actually fall
        // out the bottom of the function.
      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
        // It's possible that the block legitimately ends with a noreturn
        // call or an unreachable, in which case it won't actuall fall
        // out of the block.
      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
        report("MBB exits via unconditional fall-through but doesn't have "
               "exactly one CFG successor!", MBB);
      } else if (!MBB->isSuccessor(MBBI)) {
        report("MBB exits via unconditional fall-through but its successor "
               "differs from its CFG successor!", MBB);
      }
      if (!MBB->empty() && MBB->back().isBarrier() &&
          !TII->isPredicated(&MBB->back())) {
        report("MBB exits via unconditional fall-through but ends with a "
               "barrier instruction!", MBB);
      }
      if (!Cond.empty()) {
        report("MBB exits via unconditional fall-through but has a condition!",
               MBB);
      }
    } else if (TBB && !FBB && Cond.empty()) {
      // Block unconditionally branches somewhere.
      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
        report("MBB exits via unconditional branch but doesn't have "
               "exactly one CFG successor!", MBB);
      } else if (!MBB->isSuccessor(TBB)) {
        report("MBB exits via unconditional branch but the CFG "
               "successor doesn't match the actual successor!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via unconditional branch but doesn't contain "
               "any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via unconditional branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via unconditional branch but the branch isn't a "
               "terminator instruction!", MBB);
      }
    } else if (TBB && !FBB && !Cond.empty()) {
      // Block conditionally branches somewhere, otherwise falls through.
      MachineFunction::const_iterator MBBI = MBB;
      ++MBBI;
      if (MBBI == MF->end()) {
        report("MBB conditionally falls through out of function!", MBB);
      } if (MBB->succ_size() != 2) {
        report("MBB exits via conditional branch/fall-through but doesn't have "
               "exactly two CFG successors!", MBB);
      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
        report("MBB exits via conditional branch/fall-through but the CFG "
               "successors don't match the actual successors!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via conditional branch/fall-through but doesn't "
               "contain any instructions!", MBB);
      } else if (MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/fall-through but ends with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/fall-through but the branch "
               "isn't a terminator instruction!", MBB);
      }
    } else if (TBB && FBB) {
      // Block conditionally branches somewhere, otherwise branches
      // somewhere else.
      if (MBB->succ_size() != 2) {
        report("MBB exits via conditional branch/branch but doesn't have "
               "exactly two CFG successors!", MBB);
      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
        report("MBB exits via conditional branch/branch but the CFG "
               "successors don't match the actual successors!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via conditional branch/branch but doesn't "
               "contain any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/branch but the branch "
               "isn't a terminator instruction!", MBB);
      }
      if (Cond.empty()) {
        report("MBB exits via conditinal branch/branch but there's no "
               "condition!", MBB);
      }
    } else {
      report("AnalyzeBranch returned invalid data!", MBB);
    }
  }

  regsLive.clear();
  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
         E = MBB->livein_end(); I != E; ++I) {
    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
      report("MBB live-in list contains non-physical register", MBB);
      continue;
    }
    regsLive.insert(*I);
    for (const uint16_t *R = TRI->getSubRegisters(*I); *R; R++)
      regsLive.insert(*R);
  }
  regsLiveInButUnused = regsLive;

  const MachineFrameInfo *MFI = MF->getFrameInfo();
  assert(MFI && "Function has no frame info");
  BitVector PR = MFI->getPristineRegs(MBB);
  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
    regsLive.insert(I);
    for (const uint16_t *R = TRI->getSubRegisters(I); *R; R++)
      regsLive.insert(*R);
  }

  regsKilled.clear();
  regsDefined.clear();

  if (Indexes)
    lastIndex = Indexes->getMBBStartIdx(MBB);
}

void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
  const MCInstrDesc &MCID = MI->getDesc();
  if (MI->getNumOperands() < MCID.getNumOperands()) {
    report("Too few operands", MI);
    *OS << MCID.getNumOperands() << " operands expected, but "
        << MI->getNumExplicitOperands() << " given.\n";
  }

  // Check the MachineMemOperands for basic consistency.
  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
       E = MI->memoperands_end(); I != E; ++I) {
    if ((*I)->isLoad() && !MI->mayLoad())
      report("Missing mayLoad flag", MI);
    if ((*I)->isStore() && !MI->mayStore())
      report("Missing mayStore flag", MI);
  }

  // Debug values must not have a slot index.
  // Other instructions must have one, unless they are inside a bundle.
  if (LiveInts) {
    bool mapped = !LiveInts->isNotInMIMap(MI);
    if (MI->isDebugValue()) {
      if (mapped)
        report("Debug instruction has a slot index", MI);
    } else if (MI->isInsideBundle()) {
      if (mapped)
        report("Instruction inside bundle has a slot index", MI);
    } else {
      if (!mapped)
        report("Missing slot index", MI);
    }
  }

  // Ensure non-terminators don't follow terminators.
  // Ignore predicated terminators formed by if conversion.
  // FIXME: If conversion shouldn't need to violate this rule.
  if (MI->isTerminator() && !TII->isPredicated(MI)) {
    if (!FirstTerminator)
      FirstTerminator = MI;
  } else if (FirstTerminator) {
    report("Non-terminator instruction after the first terminator", MI);
    *OS << "First terminator was:\t" << *FirstTerminator;
  }

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(MI, ErrorInfo))
    report(ErrorInfo.data(), MI);
}

void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const MCInstrDesc &MCID = MI->getDesc();
  const MCOperandInfo &MCOI = MCID.OpInfo[MONum];

  // The first MCID.NumDefs operands must be explicit register defines
  if (MONum < MCID.getNumDefs()) {
    if (!MO->isReg())
      report("Explicit definition must be a register", MO, MONum);
    else if (!MO->isDef())
      report("Explicit definition marked as use", MO, MONum);
    else if (MO->isImplicit())
      report("Explicit definition marked as implicit", MO, MONum);
  } else if (MONum < MCID.getNumOperands()) {
    // Don't check if it's the last operand in a variadic instruction. See,
    // e.g., LDM_RET in the arm back end.
    if (MO->isReg() &&
        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
      if (MO->isDef() && !MCOI.isOptionalDef())
          report("Explicit operand marked as def", MO, MONum);
      if (MO->isImplicit())
        report("Explicit operand marked as implicit", MO, MONum);
    }
  } else {
    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
  }

  switch (MO->getType()) {
  case MachineOperand::MO_Register: {
    const unsigned Reg = MO->getReg();
    if (!Reg)
      return;
    if (MRI->tracksLiveness() && !MI->isDebugValue())
      checkLiveness(MO, MONum);


    // Check register classes.
    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
      unsigned SubIdx = MO->getSubReg();

      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        if (SubIdx) {
          report("Illegal subregister index for physical register", MO, MONum);
          return;
        }
        if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
          if (!DRC->contains(Reg)) {
            report("Illegal physical register for instruction", MO, MONum);
            *OS << TRI->getName(Reg) << " is not a "
                << DRC->getName() << " register.\n";
          }
        }
      } else {
        // Virtual register.
        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
        if (SubIdx) {
          const TargetRegisterClass *SRC =
            TRI->getSubClassWithSubReg(RC, SubIdx);
          if (!SRC) {
            report("Invalid subregister index for virtual register", MO, MONum);
            *OS << "Register class " << RC->getName()
                << " does not support subreg index " << SubIdx << "\n";
            return;
          }
          if (RC != SRC) {
            report("Invalid register class for subregister index", MO, MONum);
            *OS << "Register class " << RC->getName()
                << " does not fully support subreg index " << SubIdx << "\n";
            return;
          }
        }
        if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
          if (SubIdx) {
            const TargetRegisterClass *SuperRC =
              TRI->getLargestLegalSuperClass(RC);
            if (!SuperRC) {
              report("No largest legal super class exists.", MO, MONum);
              return;
            }
            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
            if (!DRC) {
              report("No matching super-reg register class.", MO, MONum);
              return;
            }
          }
          if (!RC->hasSuperClassEq(DRC)) {
            report("Illegal virtual register for instruction", MO, MONum);
            *OS << "Expected a " << DRC->getName() << " register, but got a "
                << RC->getName() << " register\n";
          }
        }
      }
    }
    break;
  }

  case MachineOperand::MO_RegisterMask:
    regMasks.push_back(MO->getRegMask());
    break;

  case MachineOperand::MO_MachineBasicBlock:
    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
      report("PHI operand is not in the CFG", MO, MONum);
    break;

  case MachineOperand::MO_FrameIndex:
    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
        LiveInts && !LiveInts->isNotInMIMap(MI)) {
      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
        report("Instruction loads from dead spill slot", MO, MONum);
        *OS << "Live stack: " << LI << '\n';
      }
      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
        report("Instruction stores to dead spill slot", MO, MONum);
        *OS << "Live stack: " << LI << '\n';
      }
    }
    break;

  default:
    break;
  }
}

void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const unsigned Reg = MO->getReg();

  // Both use and def operands can read a register.
  if (MO->readsReg()) {
    regsLiveInButUnused.erase(Reg);

    bool isKill = false;
    unsigned defIdx;
    if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
      // A two-addr use counts as a kill if use and def are the same.
      unsigned DefReg = MI->getOperand(defIdx).getReg();
      if (Reg == DefReg)
        isKill = true;
      else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        report("Two-address instruction operands must be identical", MO, MONum);
      }
    } else
      isKill = MO->isKill();

    if (isKill)
      addRegWithSubRegs(regsKilled, Reg);

    // Check that LiveVars knows this kill.
    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
        MO->isKill()) {
      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
        report("Kill missing from LiveVariables", MO, MONum);
    }

    // Check LiveInts liveness and kill.
    if (TargetRegisterInfo::isVirtualRegister(Reg) &&
        LiveInts && !LiveInts->isNotInMIMap(MI)) {
      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true);
      if (LiveInts->hasInterval(Reg)) {
        const LiveInterval &LI = LiveInts->getInterval(Reg);
        if (!LI.liveAt(UseIdx)) {
          report("No live range at use", MO, MONum);
          *OS << UseIdx << " is not live in " << LI << '\n';
        }
        // Check for extra kill flags.
        // Note that we allow missing kill flags for now.
        if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) {
          report("Live range continues after kill flag", MO, MONum);
          *OS << "Live range: " << LI << '\n';
        }
      } else {
        report("Virtual register has no Live interval", MO, MONum);
      }
    }

    // Use of a dead register.
    if (!regsLive.count(Reg)) {
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        // Reserved registers may be used even when 'dead'.
        if (!isReserved(Reg))
          report("Using an undefined physical register", MO, MONum);
      } else {
        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
        // We don't know which virtual registers are live in, so only complain
        // if vreg was killed in this MBB. Otherwise keep track of vregs that
        // must be live in. PHI instructions are handled separately.
        if (MInfo.regsKilled.count(Reg))
          report("Using a killed virtual register", MO, MONum);
        else if (!MI->isPHI())
          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
      }
    }
  }

  if (MO->isDef()) {
    // Register defined.
    // TODO: verify that earlyclobber ops are not used.
    if (MO->isDead())
      addRegWithSubRegs(regsDead, Reg);
    else
      addRegWithSubRegs(regsDefined, Reg);

    // Verify SSA form.
    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
        llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
      report("Multiple virtual register defs in SSA form", MO, MONum);

    // Check LiveInts for a live range, but only for virtual registers.
    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
        !LiveInts->isNotInMIMap(MI)) {
      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot();
      if (LiveInts->hasInterval(Reg)) {
        const LiveInterval &LI = LiveInts->getInterval(Reg);
        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
          assert(VNI && "NULL valno is not allowed");
          if (VNI->def != DefIdx && !MO->isEarlyClobber()) {
            report("Inconsistent valno->def", MO, MONum);
            *OS << "Valno " << VNI->id << " is not defined at "
              << DefIdx << " in " << LI << '\n';
          }
        } else {
          report("No live range at def", MO, MONum);
          *OS << DefIdx << " is not live in " << LI << '\n';
        }
      } else {
        report("Virtual register has no Live interval", MO, MONum);
      }
    }
  }
}

void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
  set_union(MInfo.regsKilled, regsKilled);
  set_subtract(regsLive, regsKilled); regsKilled.clear();
  // Kill any masked registers.
  while (!regMasks.empty()) {
    const uint32_t *Mask = regMasks.pop_back_val();
    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
          MachineOperand::clobbersPhysReg(Mask, *I))
        regsDead.push_back(*I);
  }
  set_subtract(regsLive, regsDead);   regsDead.clear();
  set_union(regsLive, regsDefined);   regsDefined.clear();

  if (Indexes && Indexes->hasIndex(MI)) {
    SlotIndex idx = Indexes->getInstructionIndex(MI);
    if (!(idx > lastIndex)) {
      report("Instruction index out of order", MI);
      *OS << "Last instruction was at " << lastIndex << '\n';
    }
    lastIndex = idx;
  }
}

void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
  MBBInfoMap[MBB].regsLiveOut = regsLive;
  regsLive.clear();

  if (Indexes) {
    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
    if (!(stop > lastIndex)) {
      report("Block ends before last instruction index", MBB);
      *OS << "Block ends at " << stop
          << " last instruction was at " << lastIndex << '\n';
    }
    lastIndex = stop;
  }
}

// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcRegsPassed() {
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
  // have any vregsPassed.
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock &MBB(*MFI);
    BBInfo &MInfo = MBBInfoMap[&MBB];
    if (!MInfo.reachable)
      continue;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.regsLiveOut))
        todo.insert(*SuI);
    }
  }

  // Iteratively push vregsPassed to successors. This will converge to the same
  // final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
      if (*SuI == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.vregsPassed))
        todo.insert(*SuI);
    }
  }
}

// Calculate the set of virtual registers that must be passed through each basic
// block in order to satisfy the requirements of successor blocks. This is very
// similar to calcRegsPassed, only backwards.
void MachineVerifier::calcRegsRequired() {
  // First push live-in regs to predecessors' vregsRequired.
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock &MBB(*MFI);
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
      BBInfo &PInfo = MBBInfoMap[*PrI];
      if (PInfo.addRequired(MInfo.vregsLiveIn))
        todo.insert(*PrI);
    }
  }

  // Iteratively push vregsRequired to predecessors. This will converge to the
  // same final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
      if (*PrI == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[*PrI];
      if (SInfo.addRequired(MInfo.vregsRequired))
        todo.insert(*PrI);
    }
  }
}

// Check PHI instructions at the beginning of MBB. It is assumed that
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
  SmallPtrSet<const MachineBasicBlock*, 8> seen;
  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
       BBI != BBE && BBI->isPHI(); ++BBI) {
    seen.clear();

    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      unsigned Reg = BBI->getOperand(i).getReg();
      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
      if (!Pre->isSuccessor(MBB))
        continue;
      seen.insert(Pre);
      BBInfo &PrInfo = MBBInfoMap[Pre];
      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
        report("PHI operand is not live-out from predecessor",
               &BBI->getOperand(i), i);
    }

    // Did we see all predecessors?
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
      if (!seen.count(*PrI)) {
        report("Missing PHI operand", BBI);
        *OS << "BB#" << (*PrI)->getNumber()
            << " is a predecessor according to the CFG.\n";
      }
    }
  }
}

void MachineVerifier::visitMachineFunctionAfter() {
  calcRegsPassed();

  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    BBInfo &MInfo = MBBInfoMap[MFI];

    // Skip unreachable MBBs.
    if (!MInfo.reachable)
      continue;

    checkPHIOps(MFI);
  }

  // Now check liveness info if available
  calcRegsRequired();

  if (MRI->isSSA() && !MF->empty()) {
    BBInfo &MInfo = MBBInfoMap[&MF->front()];
    for (RegSet::iterator
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
         ++I)
      report("Virtual register def doesn't dominate all uses.",
             MRI->getVRegDef(*I));
  }

  if (LiveVars)
    verifyLiveVariables();
  if (LiveInts)
    verifyLiveIntervals();
}

void MachineVerifier::verifyLiveVariables() {
  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
         MFI != MFE; ++MFI) {
      BBInfo &MInfo = MBBInfoMap[MFI];

      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
      if (MInfo.vregsRequired.count(Reg)) {
        if (!VI.AliveBlocks.test(MFI->getNumber())) {
          report("LiveVariables: Block missing from AliveBlocks", MFI);
          *OS << "Virtual register " << PrintReg(Reg)
              << " must be live through the block.\n";
        }
      } else {
        if (VI.AliveBlocks.test(MFI->getNumber())) {
          report("LiveVariables: Block should not be in AliveBlocks", MFI);
          *OS << "Virtual register " << PrintReg(Reg)
              << " is not needed live through the block.\n";
        }
      }
    }
  }
}

void MachineVerifier::verifyLiveIntervals() {
  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
  for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
       LVE = LiveInts->end(); LVI != LVE; ++LVI) {
    const LiveInterval &LI = *LVI->second;

    // Spilling and splitting may leave unused registers around. Skip them.
    if (MRI->use_empty(LI.reg))
      continue;

    // Physical registers have much weirdness going on, mostly from coalescing.
    // We should probably fix it, but for now just ignore them.
    if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
      continue;

    assert(LVI->first == LI.reg && "Invalid reg to interval mapping");

    for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
         I!=E; ++I) {
      VNInfo *VNI = *I;
      const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);

      if (!DefVNI) {
        if (!VNI->isUnused()) {
          report("Valno not live at def and not marked unused", MF);
          *OS << "Valno #" << VNI->id << " in " << LI << '\n';
        }
        continue;
      }

      if (VNI->isUnused())
        continue;

      if (DefVNI != VNI) {
        report("Live range at def has different valno", MF);
        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
            << " where valno #" << DefVNI->id << " is live in " << LI << '\n';
        continue;
      }

      const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
      if (!MBB) {
        report("Invalid definition index", MF);
        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
            << " in " << LI << '\n';
        continue;
      }

      if (VNI->isPHIDef()) {
        if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
          report("PHIDef value is not defined at MBB start", MF);
          *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
              << ", not at the beginning of BB#" << MBB->getNumber()
              << " in " << LI << '\n';
        }
      } else {
        // Non-PHI def.
        const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
        if (!MI) {
          report("No instruction at def index", MF);
          *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
              << " in " << LI << '\n';
          continue;
        }

        bool hasDef = false;
        bool isEarlyClobber = false;
        for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
          if (!MOI->isReg() || !MOI->isDef())
            continue;
          if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
            if (MOI->getReg() != LI.reg)
              continue;
          } else {
            if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
                !TRI->regsOverlap(LI.reg, MOI->getReg()))
              continue;
          }
          hasDef = true;
          if (MOI->isEarlyClobber())
            isEarlyClobber = true;
        }

        if (!hasDef) {
          report("Defining instruction does not modify register", MI);
          *OS << "Valno #" << VNI->id << " in " << LI << '\n';
        }

        // Early clobber defs begin at USE slots, but other defs must begin at
        // DEF slots.
        if (isEarlyClobber) {
          if (!VNI->def.isEarlyClobber()) {
            report("Early clobber def must be at an early-clobber slot", MF);
            *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
                << " in " << LI << '\n';
          }
        } else if (!VNI->def.isRegister()) {
          report("Non-PHI, non-early clobber def must be at a register slot",
                 MF);
          *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
              << " in " << LI << '\n';
        }
      }
    }

    for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
      const VNInfo *VNI = I->valno;
      assert(VNI && "Live range has no valno");

      if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
        report("Foreign valno in live range", MF);
        I->print(*OS);
        *OS << " has a valno not in " << LI << '\n';
      }

      if (VNI->isUnused()) {
        report("Live range valno is marked unused", MF);
        I->print(*OS);
        *OS << " in " << LI << '\n';
      }

      const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
      if (!MBB) {
        report("Bad start of live segment, no basic block", MF);
        I->print(*OS);
        *OS << " in " << LI << '\n';
        continue;
      }
      SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
      if (I->start != MBBStartIdx && I->start != VNI->def) {
        report("Live segment must begin at MBB entry or valno def", MBB);
        I->print(*OS);
        *OS << " in " << LI << '\n' << "Basic block starts at "
            << MBBStartIdx << '\n';
      }

      const MachineBasicBlock *EndMBB =
                                LiveInts->getMBBFromIndex(I->end.getPrevSlot());
      if (!EndMBB) {
        report("Bad end of live segment, no basic block", MF);
        I->print(*OS);
        *OS << " in " << LI << '\n';
        continue;
      }

      // No more checks for live-out segments.
      if (I->end == LiveInts->getMBBEndIdx(EndMBB))
        continue;

      // The live segment is ending inside EndMBB
      const MachineInstr *MI =
        LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
      if (!MI) {
        report("Live segment doesn't end at a valid instruction", EndMBB);
        I->print(*OS);
        *OS << " in " << LI << '\n' << "Basic block starts at "
          << MBBStartIdx << '\n';
        continue;
      }

      // The block slot must refer to a basic block boundary.
      if (I->end.isBlock()) {
        report("Live segment ends at B slot of an instruction", MI);
        I->print(*OS);
        *OS << " in " << LI << '\n';
      }

      if (I->end.isDead()) {
        // Segment ends on the dead slot.
        // That means there must be a dead def.
        if (!SlotIndex::isSameInstr(I->start, I->end)) {
          report("Live segment ending at dead slot spans instructions", MI);
          I->print(*OS);
          *OS << " in " << LI << '\n';
        }
      }

      // A live segment can only end at an early-clobber slot if it is being
      // redefined by an early-clobber def.
      if (I->end.isEarlyClobber()) {
        if (I+1 == E || (I+1)->start != I->end) {
          report("Live segment ending at early clobber slot must be "
                 "redefined by an EC def in the same instruction", MI);
          I->print(*OS);
          *OS << " in " << LI << '\n';
        }
      }

      // The following checks only apply to virtual registers. Physreg liveness
      // is too weird to check.
      if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
        // A live range can end with either a redefinition, a kill flag on a
        // use, or a dead flag on a def.
        bool hasRead = false;
        bool hasDeadDef = false;
        for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
          if (!MOI->isReg() || MOI->getReg() != LI.reg)
            continue;
          if (MOI->readsReg())
            hasRead = true;
          if (MOI->isDef() && MOI->isDead())
            hasDeadDef = true;
        }

        if (I->end.isDead()) {
          if (!hasDeadDef) {
            report("Instruction doesn't have a dead def operand", MI);
            I->print(*OS);
            *OS << " in " << LI << '\n';
          }
        } else {
          if (!hasRead) {
            report("Instruction ending live range doesn't read the register",
                   MI);
            I->print(*OS);
            *OS << " in " << LI << '\n';
          }
        }
      }

      // Now check all the basic blocks in this live segment.
      MachineFunction::const_iterator MFI = MBB;
      // Is this live range the beginning of a non-PHIDef VN?
      if (I->start == VNI->def && !VNI->isPHIDef()) {
        // Not live-in to any blocks.
        if (MBB == EndMBB)
          continue;
        // Skip this block.
        ++MFI;
      }
      for (;;) {
        assert(LiveInts->isLiveInToMBB(LI, MFI));
        // We don't know how to track physregs into a landing pad.
        if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
            MFI->isLandingPad()) {
          if (&*MFI == EndMBB)
            break;
          ++MFI;
          continue;
        }
        // Check that VNI is live-out of all predecessors.
        for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
             PE = MFI->pred_end(); PI != PE; ++PI) {
          SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
          const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);

          if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI))
            continue;

          if (!PVNI) {
            report("Register not marked live out of predecessor", *PI);
            *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
                << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
                << PEnd << " in " << LI << '\n';
            continue;
          }

          if (PVNI != VNI) {
            report("Different value live out of predecessor", *PI);
            *OS << "Valno #" << PVNI->id << " live out of BB#"
                << (*PI)->getNumber() << '@' << PEnd
                << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
                << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
          }
        }
        if (&*MFI == EndMBB)
          break;
        ++MFI;
      }
    }

    // Check the LI only has one connected component.
    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
      ConnectedVNInfoEqClasses ConEQ(*LiveInts);
      unsigned NumComp = ConEQ.Classify(&LI);
      if (NumComp > 1) {
        report("Multiple connected components in live interval", MF);
        *OS << NumComp << " components in " << LI << '\n';
        for (unsigned comp = 0; comp != NumComp; ++comp) {
          *OS << comp << ": valnos";
          for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
               E = LI.vni_end(); I!=E; ++I)
            if (comp == ConEQ.getEqClass(*I))
              *OS << ' ' << (*I)->id;
          *OS << '\n';
        }
      }
    }
  }
}