llvm.org GIT mirror llvm / release_30 lib / CodeGen / MachineInstr.cpp
release_30

Tree @release_30 (Download .tar.gz)

MachineInstr.cpp @release_30raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Methods common to all machine instructions.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/InlineAsm.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Value.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/FoldingSet.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
// MachineOperand Implementation
//===----------------------------------------------------------------------===//

/// AddRegOperandToRegInfo - Add this register operand to the specified
/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
/// explicitly nulled out.
void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
  assert(isReg() && "Can only add reg operand to use lists");

  // If the reginfo pointer is null, just explicitly null out or next/prev
  // pointers, to ensure they are not garbage.
  if (RegInfo == 0) {
    Contents.Reg.Prev = 0;
    Contents.Reg.Next = 0;
    return;
  }

  // Otherwise, add this operand to the head of the registers use/def list.
  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());

  // For SSA values, we prefer to keep the definition at the start of the list.
  // we do this by skipping over the definition if it is at the head of the
  // list.
  if (*Head && (*Head)->isDef())
    Head = &(*Head)->Contents.Reg.Next;

  Contents.Reg.Next = *Head;
  if (Contents.Reg.Next) {
    assert(getReg() == Contents.Reg.Next->getReg() &&
           "Different regs on the same list!");
    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
  }

  Contents.Reg.Prev = Head;
  *Head = this;
}

/// RemoveRegOperandFromRegInfo - Remove this register operand from the
/// MachineRegisterInfo it is linked with.
void MachineOperand::RemoveRegOperandFromRegInfo() {
  assert(isOnRegUseList() && "Reg operand is not on a use list");
  // Unlink this from the doubly linked list of operands.
  MachineOperand *NextOp = Contents.Reg.Next;
  *Contents.Reg.Prev = NextOp;
  if (NextOp) {
    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
  }
  Contents.Reg.Prev = 0;
  Contents.Reg.Next = 0;
}

void MachineOperand::setReg(unsigned Reg) {
  if (getReg() == Reg) return; // No change.

  // Otherwise, we have to change the register.  If this operand is embedded
  // into a machine function, we need to update the old and new register's
  // use/def lists.
  if (MachineInstr *MI = getParent())
    if (MachineBasicBlock *MBB = MI->getParent())
      if (MachineFunction *MF = MBB->getParent()) {
        RemoveRegOperandFromRegInfo();
        SmallContents.RegNo = Reg;
        AddRegOperandToRegInfo(&MF->getRegInfo());
        return;
      }

  // Otherwise, just change the register, no problem.  :)
  SmallContents.RegNo = Reg;
}

void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
                                  const TargetRegisterInfo &TRI) {
  assert(TargetRegisterInfo::isVirtualRegister(Reg));
  if (SubIdx && getSubReg())
    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
  setReg(Reg);
  if (SubIdx)
    setSubReg(SubIdx);
}

void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
  if (getSubReg()) {
    Reg = TRI.getSubReg(Reg, getSubReg());
    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
    // That won't happen in legal code.
    setSubReg(0);
  }
  setReg(Reg);
}

/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value.  If an operand is known to be an immediate already,
/// the setImm method should be used.
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
  // If this operand is currently a register operand, and if this is in a
  // function, deregister the operand from the register's use/def list.
  if (isReg() && getParent() && getParent()->getParent() &&
      getParent()->getParent()->getParent())
    RemoveRegOperandFromRegInfo();

  OpKind = MO_Immediate;
  Contents.ImmVal = ImmVal;
}

/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value.  If an operand is known to be an register already,
/// the setReg method should be used.
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
                                      bool isKill, bool isDead, bool isUndef,
                                      bool isDebug) {
  // If this operand is already a register operand, use setReg to update the
  // register's use/def lists.
  if (isReg()) {
    assert(!isEarlyClobber());
    setReg(Reg);
  } else {
    // Otherwise, change this to a register and set the reg#.
    OpKind = MO_Register;
    SmallContents.RegNo = Reg;

    // If this operand is embedded in a function, add the operand to the
    // register's use/def list.
    if (MachineInstr *MI = getParent())
      if (MachineBasicBlock *MBB = MI->getParent())
        if (MachineFunction *MF = MBB->getParent())
          AddRegOperandToRegInfo(&MF->getRegInfo());
  }

  IsDef = isDef;
  IsImp = isImp;
  IsKill = isKill;
  IsDead = isDead;
  IsUndef = isUndef;
  IsEarlyClobber = false;
  IsDebug = isDebug;
  SubReg = 0;
}

/// isIdenticalTo - Return true if this operand is identical to the specified
/// operand.
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
  if (getType() != Other.getType() ||
      getTargetFlags() != Other.getTargetFlags())
    return false;

  switch (getType()) {
  default: llvm_unreachable("Unrecognized operand type");
  case MachineOperand::MO_Register:
    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
           getSubReg() == Other.getSubReg();
  case MachineOperand::MO_Immediate:
    return getImm() == Other.getImm();
  case MachineOperand::MO_CImmediate:
    return getCImm() == Other.getCImm();
  case MachineOperand::MO_FPImmediate:
    return getFPImm() == Other.getFPImm();
  case MachineOperand::MO_MachineBasicBlock:
    return getMBB() == Other.getMBB();
  case MachineOperand::MO_FrameIndex:
    return getIndex() == Other.getIndex();
  case MachineOperand::MO_ConstantPoolIndex:
    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
  case MachineOperand::MO_JumpTableIndex:
    return getIndex() == Other.getIndex();
  case MachineOperand::MO_GlobalAddress:
    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
  case MachineOperand::MO_ExternalSymbol:
    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
           getOffset() == Other.getOffset();
  case MachineOperand::MO_BlockAddress:
    return getBlockAddress() == Other.getBlockAddress();
  case MachineOperand::MO_MCSymbol:
    return getMCSymbol() == Other.getMCSymbol();
  case MachineOperand::MO_Metadata:
    return getMetadata() == Other.getMetadata();
  }
}

/// print - Print the specified machine operand.
///
void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
  // If the instruction is embedded into a basic block, we can find the
  // target info for the instruction.
  if (!TM)
    if (const MachineInstr *MI = getParent())
      if (const MachineBasicBlock *MBB = MI->getParent())
        if (const MachineFunction *MF = MBB->getParent())
          TM = &MF->getTarget();
  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;

  switch (getType()) {
  case MachineOperand::MO_Register:
    OS << PrintReg(getReg(), TRI, getSubReg());

    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
        isEarlyClobber()) {
      OS << '<';
      bool NeedComma = false;
      if (isDef()) {
        if (NeedComma) OS << ',';
        if (isEarlyClobber())
          OS << "earlyclobber,";
        if (isImplicit())
          OS << "imp-";
        OS << "def";
        NeedComma = true;
      } else if (isImplicit()) {
          OS << "imp-use";
          NeedComma = true;
      }

      if (isKill() || isDead() || isUndef()) {
        if (NeedComma) OS << ',';
        if (isKill())  OS << "kill";
        if (isDead())  OS << "dead";
        if (isUndef()) {
          if (isKill() || isDead())
            OS << ',';
          OS << "undef";
        }
      }
      OS << '>';
    }
    break;
  case MachineOperand::MO_Immediate:
    OS << getImm();
    break;
  case MachineOperand::MO_CImmediate:
    getCImm()->getValue().print(OS, false);
    break;
  case MachineOperand::MO_FPImmediate:
    if (getFPImm()->getType()->isFloatTy())
      OS << getFPImm()->getValueAPF().convertToFloat();
    else
      OS << getFPImm()->getValueAPF().convertToDouble();
    break;
  case MachineOperand::MO_MachineBasicBlock:
    OS << "<BB#" << getMBB()->getNumber() << ">";
    break;
  case MachineOperand::MO_FrameIndex:
    OS << "<fi#" << getIndex() << '>';
    break;
  case MachineOperand::MO_ConstantPoolIndex:
    OS << "<cp#" << getIndex();
    if (getOffset()) OS << "+" << getOffset();
    OS << '>';
    break;
  case MachineOperand::MO_JumpTableIndex:
    OS << "<jt#" << getIndex() << '>';
    break;
  case MachineOperand::MO_GlobalAddress:
    OS << "<ga:";
    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
    if (getOffset()) OS << "+" << getOffset();
    OS << '>';
    break;
  case MachineOperand::MO_ExternalSymbol:
    OS << "<es:" << getSymbolName();
    if (getOffset()) OS << "+" << getOffset();
    OS << '>';
    break;
  case MachineOperand::MO_BlockAddress:
    OS << '<';
    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
    OS << '>';
    break;
  case MachineOperand::MO_Metadata:
    OS << '<';
    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
    OS << '>';
    break;
  case MachineOperand::MO_MCSymbol:
    OS << "<MCSym=" << *getMCSymbol() << '>';
    break;
  default:
    llvm_unreachable("Unrecognized operand type");
  }

  if (unsigned TF = getTargetFlags())
    OS << "[TF=" << TF << ']';
}

//===----------------------------------------------------------------------===//
// MachineMemOperand Implementation
//===----------------------------------------------------------------------===//

/// getAddrSpace - Return the LLVM IR address space number that this pointer
/// points into.
unsigned MachinePointerInfo::getAddrSpace() const {
  if (V == 0) return 0;
  return cast<PointerType>(V->getType())->getAddressSpace();
}

/// getConstantPool - Return a MachinePointerInfo record that refers to the
/// constant pool.
MachinePointerInfo MachinePointerInfo::getConstantPool() {
  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
}

/// getFixedStack - Return a MachinePointerInfo record that refers to the
/// the specified FrameIndex.
MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
}

MachinePointerInfo MachinePointerInfo::getJumpTable() {
  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
}

MachinePointerInfo MachinePointerInfo::getGOT() {
  return MachinePointerInfo(PseudoSourceValue::getGOT());
}

MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
}

MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
                                     uint64_t s, unsigned int a,
                                     const MDNode *TBAAInfo)
  : PtrInfo(ptrinfo), Size(s),
    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
    TBAAInfo(TBAAInfo) {
  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
         "invalid pointer value");
  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
  assert((isLoad() || isStore()) && "Not a load/store!");
}

/// Profile - Gather unique data for the object.
///
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
  ID.AddInteger(getOffset());
  ID.AddInteger(Size);
  ID.AddPointer(getValue());
  ID.AddInteger(Flags);
}

void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
  // The Value and Offset may differ due to CSE. But the flags and size
  // should be the same.
  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
  assert(MMO->getSize() == getSize() && "Size mismatch!");

  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
    // Update the alignment value.
    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
    // Also update the base and offset, because the new alignment may
    // not be applicable with the old ones.
    PtrInfo = MMO->PtrInfo;
  }
}

/// getAlignment - Return the minimum known alignment in bytes of the
/// actual memory reference.
uint64_t MachineMemOperand::getAlignment() const {
  return MinAlign(getBaseAlignment(), getOffset());
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
  assert((MMO.isLoad() || MMO.isStore()) &&
         "SV has to be a load, store or both.");

  if (MMO.isVolatile())
    OS << "Volatile ";

  if (MMO.isLoad())
    OS << "LD";
  if (MMO.isStore())
    OS << "ST";
  OS << MMO.getSize();

  // Print the address information.
  OS << "[";
  if (!MMO.getValue())
    OS << "<unknown>";
  else
    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);

  // If the alignment of the memory reference itself differs from the alignment
  // of the base pointer, print the base alignment explicitly, next to the base
  // pointer.
  if (MMO.getBaseAlignment() != MMO.getAlignment())
    OS << "(align=" << MMO.getBaseAlignment() << ")";

  if (MMO.getOffset() != 0)
    OS << "+" << MMO.getOffset();
  OS << "]";

  // Print the alignment of the reference.
  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
      MMO.getBaseAlignment() != MMO.getSize())
    OS << "(align=" << MMO.getAlignment() << ")";

  // Print TBAA info.
  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
    OS << "(tbaa=";
    if (TBAAInfo->getNumOperands() > 0)
      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
    else
      OS << "<unknown>";
    OS << ")";
  }

  // Print nontemporal info.
  if (MMO.isNonTemporal())
    OS << "(nontemporal)";

  return OS;
}

//===----------------------------------------------------------------------===//
// MachineInstr Implementation
//===----------------------------------------------------------------------===//

/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
/// MCID NULL and no operands.
MachineInstr::MachineInstr()
  : MCID(0), Flags(0), AsmPrinterFlags(0),
    MemRefs(0), MemRefsEnd(0),
    Parent(0) {
  // Make sure that we get added to a machine basicblock
  LeakDetector::addGarbageObject(this);
}

void MachineInstr::addImplicitDefUseOperands() {
  if (MCID->ImplicitDefs)
    for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
  if (MCID->ImplicitUses)
    for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
}

/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
/// implicit operands. It reserves space for the number of operands specified by
/// the MCInstrDesc.
MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    MemRefs(0), MemRefsEnd(0), Parent(0) {
  unsigned NumImplicitOps = 0;
  if (!NoImp)
    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
  if (!NoImp)
    addImplicitDefUseOperands();
  // Make sure that we get added to a machine basicblock
  LeakDetector::addGarbageObject(this);
}

/// MachineInstr ctor - As above, but with a DebugLoc.
MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
                           bool NoImp)
  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
  unsigned NumImplicitOps = 0;
  if (!NoImp)
    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
  if (!NoImp)
    addImplicitDefUseOperands();
  // Make sure that we get added to a machine basicblock
  LeakDetector::addGarbageObject(this);
}

/// MachineInstr ctor - Work exactly the same as the ctor two above, except
/// that the MachineInstr is created and added to the end of the specified
/// basic block.
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    MemRefs(0), MemRefsEnd(0), Parent(0) {
  assert(MBB && "Cannot use inserting ctor with null basic block!");
  unsigned NumImplicitOps =
    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
  addImplicitDefUseOperands();
  // Make sure that we get added to a machine basicblock
  LeakDetector::addGarbageObject(this);
  MBB->push_back(this);  // Add instruction to end of basic block!
}

/// MachineInstr ctor - As above, but with a DebugLoc.
///
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
                           const MCInstrDesc &tid)
  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
  assert(MBB && "Cannot use inserting ctor with null basic block!");
  unsigned NumImplicitOps =
    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
  addImplicitDefUseOperands();
  // Make sure that we get added to a machine basicblock
  LeakDetector::addGarbageObject(this);
  MBB->push_back(this);  // Add instruction to end of basic block!
}

/// MachineInstr ctor - Copies MachineInstr arg exactly
///
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
  : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
    Parent(0), debugLoc(MI.getDebugLoc()) {
  Operands.reserve(MI.getNumOperands());

  // Add operands
  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
    addOperand(MI.getOperand(i));

  // Copy all the flags.
  Flags = MI.Flags;

  // Set parent to null.
  Parent = 0;

  LeakDetector::addGarbageObject(this);
}

MachineInstr::~MachineInstr() {
  LeakDetector::removeGarbageObject(this);
#ifndef NDEBUG
  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
           "Reg operand def/use list corrupted");
  }
#endif
}

/// getRegInfo - If this instruction is embedded into a MachineFunction,
/// return the MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *MachineInstr::getRegInfo() {
  if (MachineBasicBlock *MBB = getParent())
    return &MBB->getParent()->getRegInfo();
  return 0;
}

/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
/// this instruction from their respective use lists.  This requires that the
/// operands already be on their use lists.
void MachineInstr::RemoveRegOperandsFromUseLists() {
  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    if (Operands[i].isReg())
      Operands[i].RemoveRegOperandFromRegInfo();
  }
}

/// AddRegOperandsToUseLists - Add all of the register operands in
/// this instruction from their respective use lists.  This requires that the
/// operands not be on their use lists yet.
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    if (Operands[i].isReg())
      Operands[i].AddRegOperandToRegInfo(&RegInfo);
  }
}


/// addOperand - Add the specified operand to the instruction.  If it is an
/// implicit operand, it is added to the end of the operand list.  If it is
/// an explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
void MachineInstr::addOperand(const MachineOperand &Op) {
  assert(MCID && "Cannot add operands before providing an instr descriptor");
  bool isImpReg = Op.isReg() && Op.isImplicit();
  MachineRegisterInfo *RegInfo = getRegInfo();

  // If the Operands backing store is reallocated, all register operands must
  // be removed and re-added to RegInfo.  It is storing pointers to operands.
  bool Reallocate = RegInfo &&
    !Operands.empty() && Operands.size() == Operands.capacity();

  // Find the insert location for the new operand.  Implicit registers go at
  // the end, everything goes before the implicit regs.
  unsigned OpNo = Operands.size();

  // Remove all the implicit operands from RegInfo if they need to be shifted.
  // FIXME: Allow mixed explicit and implicit operands on inline asm.
  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
  // implicit-defs, but they must not be moved around.  See the FIXME in
  // InstrEmitter.cpp.
  if (!isImpReg && !isInlineAsm()) {
    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
      --OpNo;
      if (RegInfo)
        Operands[OpNo].RemoveRegOperandFromRegInfo();
    }
  }

  // OpNo now points as the desired insertion point.  Unless this is a variadic
  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
  assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
         "Trying to add an operand to a machine instr that is already done!");

  // All operands from OpNo have been removed from RegInfo.  If the Operands
  // backing store needs to be reallocated, we also need to remove any other
  // register operands.
  if (Reallocate)
    for (unsigned i = 0; i != OpNo; ++i)
      if (Operands[i].isReg())
        Operands[i].RemoveRegOperandFromRegInfo();

  // Insert the new operand at OpNo.
  Operands.insert(Operands.begin() + OpNo, Op);
  Operands[OpNo].ParentMI = this;

  // The Operands backing store has now been reallocated, so we can re-add the
  // operands before OpNo.
  if (Reallocate)
    for (unsigned i = 0; i != OpNo; ++i)
      if (Operands[i].isReg())
        Operands[i].AddRegOperandToRegInfo(RegInfo);

  // When adding a register operand, tell RegInfo about it.
  if (Operands[OpNo].isReg()) {
    // Add the new operand to RegInfo, even when RegInfo is NULL.
    // This will initialize the linked list pointers.
    Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
    // If the register operand is flagged as early, mark the operand as such.
    if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
      Operands[OpNo].setIsEarlyClobber(true);
  }

  // Re-add all the implicit ops.
  if (RegInfo) {
    for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
      assert(Operands[i].isReg() && "Should only be an implicit reg!");
      Operands[i].AddRegOperandToRegInfo(RegInfo);
    }
  }
}

/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
/// fewer operand than it started with.
///
void MachineInstr::RemoveOperand(unsigned OpNo) {
  assert(OpNo < Operands.size() && "Invalid operand number");

  // Special case removing the last one.
  if (OpNo == Operands.size()-1) {
    // If needed, remove from the reg def/use list.
    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
      Operands.back().RemoveRegOperandFromRegInfo();

    Operands.pop_back();
    return;
  }

  // Otherwise, we are removing an interior operand.  If we have reginfo to
  // update, remove all operands that will be shifted down from their reg lists,
  // move everything down, then re-add them.
  MachineRegisterInfo *RegInfo = getRegInfo();
  if (RegInfo) {
    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
      if (Operands[i].isReg())
        Operands[i].RemoveRegOperandFromRegInfo();
    }
  }

  Operands.erase(Operands.begin()+OpNo);

  if (RegInfo) {
    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
      if (Operands[i].isReg())
        Operands[i].AddRegOperandToRegInfo(RegInfo);
    }
  }
}

/// addMemOperand - Add a MachineMemOperand to the machine instruction.
/// This function should be used only occasionally. The setMemRefs function
/// is the primary method for setting up a MachineInstr's MemRefs list.
void MachineInstr::addMemOperand(MachineFunction &MF,
                                 MachineMemOperand *MO) {
  mmo_iterator OldMemRefs = MemRefs;
  mmo_iterator OldMemRefsEnd = MemRefsEnd;

  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;

  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
  NewMemRefs[NewNum - 1] = MO;

  MemRefs = NewMemRefs;
  MemRefsEnd = NewMemRefsEnd;
}

bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
                                 MICheckType Check) const {
  // If opcodes or number of operands are not the same then the two
  // instructions are obviously not identical.
  if (Other->getOpcode() != getOpcode() ||
      Other->getNumOperands() != getNumOperands())
    return false;

  // Check operands to make sure they match.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    const MachineOperand &OMO = Other->getOperand(i);
    if (!MO.isReg()) {
      if (!MO.isIdenticalTo(OMO))
        return false;
      continue;
    }

    // Clients may or may not want to ignore defs when testing for equality.
    // For example, machine CSE pass only cares about finding common
    // subexpressions, so it's safe to ignore virtual register defs.
    if (MO.isDef()) {
      if (Check == IgnoreDefs)
        continue;
      else if (Check == IgnoreVRegDefs) {
        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
          if (MO.getReg() != OMO.getReg())
            return false;
      } else {
        if (!MO.isIdenticalTo(OMO))
          return false;
        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
          return false;
      }
    } else {
      if (!MO.isIdenticalTo(OMO))
        return false;
      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
        return false;
    }
  }
  // If DebugLoc does not match then two dbg.values are not identical.
  if (isDebugValue())
    if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
        && getDebugLoc() != Other->getDebugLoc())
      return false;
  return true;
}

/// removeFromParent - This method unlinks 'this' from the containing basic
/// block, and returns it, but does not delete it.
MachineInstr *MachineInstr::removeFromParent() {
  assert(getParent() && "Not embedded in a basic block!");
  getParent()->remove(this);
  return this;
}


/// eraseFromParent - This method unlinks 'this' from the containing basic
/// block, and deletes it.
void MachineInstr::eraseFromParent() {
  assert(getParent() && "Not embedded in a basic block!");
  getParent()->erase(this);
}


/// getNumExplicitOperands - Returns the number of non-implicit operands.
///
unsigned MachineInstr::getNumExplicitOperands() const {
  unsigned NumOperands = MCID->getNumOperands();
  if (!MCID->isVariadic())
    return NumOperands;

  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isImplicit())
      NumOperands++;
  }
  return NumOperands;
}

bool MachineInstr::isStackAligningInlineAsm() const {
  if (isInlineAsm()) {
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
      return true;
  }
  return false;
}

int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
                                       unsigned *GroupNo) const {
  assert(isInlineAsm() && "Expected an inline asm instruction");
  assert(OpIdx < getNumOperands() && "OpIdx out of range");

  // Ignore queries about the initial operands.
  if (OpIdx < InlineAsm::MIOp_FirstOperand)
    return -1;

  unsigned Group = 0;
  unsigned NumOps;
  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
       i += NumOps) {
    const MachineOperand &FlagMO = getOperand(i);
    // If we reach the implicit register operands, stop looking.
    if (!FlagMO.isImm())
      return -1;
    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
    if (i + NumOps > OpIdx) {
      if (GroupNo)
        *GroupNo = Group;
      return i;
    }
    ++Group;
  }
  return -1;
}

const TargetRegisterClass*
MachineInstr::getRegClassConstraint(unsigned OpIdx,
                                    const TargetInstrInfo *TII,
                                    const TargetRegisterInfo *TRI) const {
  // Most opcodes have fixed constraints in their MCInstrDesc.
  if (!isInlineAsm())
    return TII->getRegClass(getDesc(), OpIdx, TRI);

  if (!getOperand(OpIdx).isReg())
    return NULL;

  // For tied uses on inline asm, get the constraint from the def.
  unsigned DefIdx;
  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
    OpIdx = DefIdx;

  // Inline asm stores register class constraints in the flag word.
  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
  if (FlagIdx < 0)
    return NULL;

  unsigned Flag = getOperand(FlagIdx).getImm();
  unsigned RCID;
  if (InlineAsm::hasRegClassConstraint(Flag, RCID))
    return TRI->getRegClass(RCID);

  // Assume that all registers in a memory operand are pointers.
  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
    return TRI->getPointerRegClass();

  return NULL;
}

/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
                                          const TargetRegisterInfo *TRI) const {
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    unsigned MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MOReg == Reg ||
        (TRI &&
         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
         TargetRegisterInfo::isPhysicalRegister(Reg) &&
         TRI->isSubRegister(MOReg, Reg)))
      if (!isKill || MO.isKill())
        return i;
  }
  return -1;
}

/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
/// indicating if this instruction reads or writes Reg. This also considers
/// partial defines.
std::pair<bool,bool>
MachineInstr::readsWritesVirtualRegister(unsigned Reg,
                                         SmallVectorImpl<unsigned> *Ops) const {
  bool PartDef = false; // Partial redefine.
  bool FullDef = false; // Full define.
  bool Use = false;

  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || MO.getReg() != Reg)
      continue;
    if (Ops)
      Ops->push_back(i);
    if (MO.isUse())
      Use |= !MO.isUndef();
    else if (MO.getSubReg() && !MO.isUndef())
      // A partial <def,undef> doesn't count as reading the register.
      PartDef = true;
    else
      FullDef = true;
  }
  // A partial redefine uses Reg unless there is also a full define.
  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
}

/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
/// the specified register or -1 if it is not found. If isDead is true, defs
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
/// also checks if there is a def of a super-register.
int
MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
                                        const TargetRegisterInfo *TRI) const {
  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    unsigned MOReg = MO.getReg();
    bool Found = (MOReg == Reg);
    if (!Found && TRI && isPhys &&
        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
      if (Overlap)
        Found = TRI->regsOverlap(MOReg, Reg);
      else
        Found = TRI->isSubRegister(MOReg, Reg);
    }
    if (Found && (!isDead || MO.isDead()))
      return i;
  }
  return -1;
}

/// findFirstPredOperandIdx() - Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int MachineInstr::findFirstPredOperandIdx() const {
  // Don't call MCID.findFirstPredOperandIdx() because this variant
  // is sometimes called on an instruction that's not yet complete, and
  // so the number of operands is less than the MCID indicates. In
  // particular, the PTX target does this.
  const MCInstrDesc &MCID = getDesc();
  if (MCID.isPredicable()) {
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
      if (MCID.OpInfo[i].isPredicate())
        return i;
  }

  return -1;
}

/// isRegTiedToUseOperand - Given the index of a register def operand,
/// check if the register def is tied to a source operand, due to either
/// two-address elimination or inline assembly constraints. Returns the
/// first tied use operand index by reference is UseOpIdx is not null.
bool MachineInstr::
isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
  if (isInlineAsm()) {
    assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
    const MachineOperand &MO = getOperand(DefOpIdx);
    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
      return false;
    // Determine the actual operand index that corresponds to this index.
    unsigned DefNo = 0;
    int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
    if (FlagIdx < 0)
      return false;

    // Which part of the group is DefOpIdx?
    unsigned DefPart = DefOpIdx - (FlagIdx + 1);

    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
         i != e; ++i) {
      const MachineOperand &FMO = getOperand(i);
      if (!FMO.isImm())
        continue;
      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
        continue;
      unsigned Idx;
      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
          Idx == DefNo) {
        if (UseOpIdx)
          *UseOpIdx = (unsigned)i + 1 + DefPart;
        return true;
      }
    }
    return false;
  }

  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
  const MCInstrDesc &MCID = getDesc();
  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (MO.isReg() && MO.isUse() &&
        MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
      if (UseOpIdx)
        *UseOpIdx = (unsigned)i;
      return true;
    }
  }
  return false;
}

/// isRegTiedToDefOperand - Return true if the operand of the specified index
/// is a register use and it is tied to an def operand. It also returns the def
/// operand index by reference.
bool MachineInstr::
isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
  if (isInlineAsm()) {
    const MachineOperand &MO = getOperand(UseOpIdx);
    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
      return false;

    // Find the flag operand corresponding to UseOpIdx
    int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
    if (FlagIdx < 0)
      return false;

    const MachineOperand &UFMO = getOperand(FlagIdx);
    unsigned DefNo;
    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
      if (!DefOpIdx)
        return true;

      unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
      // Remember to adjust the index. First operand is asm string, second is
      // the HasSideEffects and AlignStack bits, then there is a flag for each.
      while (DefNo) {
        const MachineOperand &FMO = getOperand(DefIdx);
        assert(FMO.isImm());
        // Skip over this def.
        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
        --DefNo;
      }
      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
      return true;
    }
    return false;
  }

  const MCInstrDesc &MCID = getDesc();
  if (UseOpIdx >= MCID.getNumOperands())
    return false;
  const MachineOperand &MO = getOperand(UseOpIdx);
  if (!MO.isReg() || !MO.isUse())
    return false;
  int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
  if (DefIdx == -1)
    return false;
  if (DefOpIdx)
    *DefOpIdx = (unsigned)DefIdx;
  return true;
}

/// clearKillInfo - Clears kill flags on all operands.
///
void MachineInstr::clearKillInfo() {
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    MachineOperand &MO = getOperand(i);
    if (MO.isReg() && MO.isUse())
      MO.setIsKill(false);
  }
}

/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
///
void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
      continue;
    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
      MachineOperand &MOp = getOperand(j);
      if (!MOp.isIdenticalTo(MO))
        continue;
      if (MO.isKill())
        MOp.setIsKill();
      else
        MOp.setIsDead();
      break;
    }
  }
}

/// copyPredicates - Copies predicate operand(s) from MI.
void MachineInstr::copyPredicates(const MachineInstr *MI) {
  const MCInstrDesc &MCID = MI->getDesc();
  if (!MCID.isPredicable())
    return;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    if (MCID.OpInfo[i].isPredicate()) {
      // Predicated operands must be last operands.
      addOperand(MI->getOperand(i));
    }
  }
}

void MachineInstr::substituteRegister(unsigned FromReg,
                                      unsigned ToReg,
                                      unsigned SubIdx,
                                      const TargetRegisterInfo &RegInfo) {
  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
    if (SubIdx)
      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
      MachineOperand &MO = getOperand(i);
      if (!MO.isReg() || MO.getReg() != FromReg)
        continue;
      MO.substPhysReg(ToReg, RegInfo);
    }
  } else {
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
      MachineOperand &MO = getOperand(i);
      if (!MO.isReg() || MO.getReg() != FromReg)
        continue;
      MO.substVirtReg(ToReg, SubIdx, RegInfo);
    }
  }
}

/// isSafeToMove - Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
                                AliasAnalysis *AA,
                                bool &SawStore) const {
  // Ignore stuff that we obviously can't move.
  if (MCID->mayStore() || MCID->isCall()) {
    SawStore = true;
    return false;
  }

  if (isLabel() || isDebugValue() ||
      MCID->isTerminator() || hasUnmodeledSideEffects())
    return false;

  // See if this instruction does a load.  If so, we have to guarantee that the
  // loaded value doesn't change between the load and the its intended
  // destination. The check for isInvariantLoad gives the targe the chance to
  // classify the load as always returning a constant, e.g. a constant pool
  // load.
  if (MCID->mayLoad() && !isInvariantLoad(AA))
    // Otherwise, this is a real load.  If there is a store between the load and
    // end of block, or if the load is volatile, we can't move it.
    return !SawStore && !hasVolatileMemoryRef();

  return true;
}

/// isSafeToReMat - Return true if it's safe to rematerialize the specified
/// instruction which defined the specified register instead of copying it.
bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
                                 AliasAnalysis *AA,
                                 unsigned DstReg) const {
  bool SawStore = false;
  if (!TII->isTriviallyReMaterializable(this, AA) ||
      !isSafeToMove(TII, AA, SawStore))
    return false;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg())
      continue;
    // FIXME: For now, do not remat any instruction with register operands.
    // Later on, we can loosen the restriction is the register operands have
    // not been modified between the def and use. Note, this is different from
    // MachineSink because the code is no longer in two-address form (at least
    // partially).
    if (MO.isUse())
      return false;
    else if (!MO.isDead() && MO.getReg() != DstReg)
      return false;
  }
  return true;
}

/// hasVolatileMemoryRef - Return true if this instruction may have a
/// volatile memory reference, or if the information describing the
/// memory reference is not available. Return false if it is known to
/// have no volatile memory references.
bool MachineInstr::hasVolatileMemoryRef() const {
  // An instruction known never to access memory won't have a volatile access.
  if (!MCID->mayStore() &&
      !MCID->mayLoad() &&
      !MCID->isCall() &&
      !hasUnmodeledSideEffects())
    return false;

  // Otherwise, if the instruction has no memory reference information,
  // conservatively assume it wasn't preserved.
  if (memoperands_empty())
    return true;

  // Check the memory reference information for volatile references.
  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
    if ((*I)->isVolatile())
      return true;

  return false;
}

/// isInvariantLoad - Return true if this instruction is loading from a
/// location whose value is invariant across the function.  For example,
/// loading a value from the constant pool or from the argument area
/// of a function if it does not change.  This should only return true of
/// *all* loads the instruction does are invariant (if it does multiple loads).
bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
  // If the instruction doesn't load at all, it isn't an invariant load.
  if (!MCID->mayLoad())
    return false;

  // If the instruction has lost its memoperands, conservatively assume that
  // it may not be an invariant load.
  if (memoperands_empty())
    return false;

  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();

  for (mmo_iterator I = memoperands_begin(),
       E = memoperands_end(); I != E; ++I) {
    if ((*I)->isVolatile()) return false;
    if ((*I)->isStore()) return false;

    if (const Value *V = (*I)->getValue()) {
      // A load from a constant PseudoSourceValue is invariant.
      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
        if (PSV->isConstant(MFI))
          continue;
      // If we have an AliasAnalysis, ask it whether the memory is constant.
      if (AA && AA->pointsToConstantMemory(
                      AliasAnalysis::Location(V, (*I)->getSize(),
                                              (*I)->getTBAAInfo())))
        continue;
    }

    // Otherwise assume conservatively.
    return false;
  }

  // Everything checks out.
  return true;
}

/// isConstantValuePHI - If the specified instruction is a PHI that always
/// merges together the same virtual register, return the register, otherwise
/// return 0.
unsigned MachineInstr::isConstantValuePHI() const {
  if (!isPHI())
    return 0;
  assert(getNumOperands() >= 3 &&
         "It's illegal to have a PHI without source operands");

  unsigned Reg = getOperand(1).getReg();
  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
    if (getOperand(i).getReg() != Reg)
      return 0;
  return Reg;
}

bool MachineInstr::hasUnmodeledSideEffects() const {
  if (getDesc().hasUnmodeledSideEffects())
    return true;
  if (isInlineAsm()) {
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
      return true;
  }

  return false;
}

/// allDefsAreDead - Return true if all the defs of this instruction are dead.
///
bool MachineInstr::allDefsAreDead() const {
  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
    const MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || MO.isUse())
      continue;
    if (!MO.isDead())
      return false;
  }
  return true;
}

/// copyImplicitOps - Copy implicit register operands from specified
/// instruction to this instruction.
void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
       i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isImplicit())
      addOperand(MO);
  }
}

void MachineInstr::dump() const {
  dbgs() << "  " << *this;
}

static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
                         raw_ostream &CommentOS) {
  const LLVMContext &Ctx = MF->getFunction()->getContext();
  if (!DL.isUnknown()) {          // Print source line info.
    DIScope Scope(DL.getScope(Ctx));
    // Omit the directory, because it's likely to be long and uninteresting.
    if (Scope.Verify())
      CommentOS << Scope.getFilename();
    else
      CommentOS << "<unknown>";
    CommentOS << ':' << DL.getLine();
    if (DL.getCol() != 0)
      CommentOS << ':' << DL.getCol();
    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
    if (!InlinedAtDL.isUnknown()) {
      CommentOS << " @[ ";
      printDebugLoc(InlinedAtDL, MF, CommentOS);
      CommentOS << " ]";
    }
  }
}

void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
  const MachineFunction *MF = 0;
  const MachineRegisterInfo *MRI = 0;
  if (const MachineBasicBlock *MBB = getParent()) {
    MF = MBB->getParent();
    if (!TM && MF)
      TM = &MF->getTarget();
    if (MF)
      MRI = &MF->getRegInfo();
  }

  // Save a list of virtual registers.
  SmallVector<unsigned, 8> VirtRegs;

  // Print explicitly defined operands on the left of an assignment syntax.
  unsigned StartOp = 0, e = getNumOperands();
  for (; StartOp < e && getOperand(StartOp).isReg() &&
         getOperand(StartOp).isDef() &&
         !getOperand(StartOp).isImplicit();
       ++StartOp) {
    if (StartOp != 0) OS << ", ";
    getOperand(StartOp).print(OS, TM);
    unsigned Reg = getOperand(StartOp).getReg();
    if (TargetRegisterInfo::isVirtualRegister(Reg))
      VirtRegs.push_back(Reg);
  }

  if (StartOp != 0)
    OS << " = ";

  // Print the opcode name.
  OS << getDesc().getName();

  // Print the rest of the operands.
  bool OmittedAnyCallClobbers = false;
  bool FirstOp = true;
  unsigned AsmDescOp = ~0u;
  unsigned AsmOpCount = 0;

  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
    // Print asm string.
    OS << " ";
    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);

    // Print HasSideEffects, IsAlignStack
    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
      OS << " [sideeffect]";
    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
      OS << " [alignstack]";

    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
    FirstOp = false;
  }


  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = getOperand(i);

    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
      VirtRegs.push_back(MO.getReg());

    // Omit call-clobbered registers which aren't used anywhere. This makes
    // call instructions much less noisy on targets where calls clobber lots
    // of registers. Don't rely on MO.isDead() because we may be called before
    // LiveVariables is run, or we may be looking at a non-allocatable reg.
    if (MF && getDesc().isCall() &&
        MO.isReg() && MO.isImplicit() && MO.isDef()) {
      unsigned Reg = MO.getReg();
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        const MachineRegisterInfo &MRI = MF->getRegInfo();
        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
          bool HasAliasLive = false;
          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
               unsigned AliasReg = *Alias; ++Alias)
            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
              HasAliasLive = true;
              break;
            }
          if (!HasAliasLive) {
            OmittedAnyCallClobbers = true;
            continue;
          }
        }
      }
    }

    if (FirstOp) FirstOp = false; else OS << ",";
    OS << " ";
    if (i < getDesc().NumOperands) {
      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
      if (MCOI.isPredicate())
        OS << "pred:";
      if (MCOI.isOptionalDef())
        OS << "opt:";
    }
    if (isDebugValue() && MO.isMetadata()) {
      // Pretty print DBG_VALUE instructions.
      const MDNode *MD = MO.getMetadata();
      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
        OS << "!\"" << MDS->getString() << '\"';
      else
        MO.print(OS, TM);
    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
    } else if (i == AsmDescOp && MO.isImm()) {
      // Pretty print the inline asm operand descriptor.
      OS << '$' << AsmOpCount++;
      unsigned Flag = MO.getImm();
      switch (InlineAsm::getKind(Flag)) {
      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
      }

      unsigned RCID = 0;
      if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
        if (TM)
          OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
        else
          OS << ":RC" << RCID;
      }

      unsigned TiedTo = 0;
      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
        OS << " tiedto:$" << TiedTo;

      OS << ']';

      // Compute the index of the next operand descriptor.
      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
    } else
      MO.print(OS, TM);
  }

  // Briefly indicate whether any call clobbers were omitted.
  if (OmittedAnyCallClobbers) {
    if (!FirstOp) OS << ",";
    OS << " ...";
  }

  bool HaveSemi = false;
  if (Flags) {
    if (!HaveSemi) OS << ";"; HaveSemi = true;
    OS << " flags: ";

    if (Flags & FrameSetup)
      OS << "FrameSetup";
  }

  if (!memoperands_empty()) {
    if (!HaveSemi) OS << ";"; HaveSemi = true;

    OS << " mem:";
    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
         i != e; ++i) {
      OS << **i;
      if (llvm::next(i) != e)
        OS << " ";
    }
  }

  // Print the regclass of any virtual registers encountered.
  if (MRI && !VirtRegs.empty()) {
    if (!HaveSemi) OS << ";"; HaveSemi = true;
    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
      for (unsigned j = i+1; j != VirtRegs.size();) {
        if (MRI->getRegClass(VirtRegs[j]) != RC) {
          ++j;
          continue;
        }
        if (VirtRegs[i] != VirtRegs[j])
          OS << "," << PrintReg(VirtRegs[j]);
        VirtRegs.erase(VirtRegs.begin()+j);
      }
    }
  }

  // Print debug location information.
  if (isDebugValue() && getOperand(e - 1).isMetadata()) {
    if (!HaveSemi) OS << ";"; HaveSemi = true;
    DIVariable DV(getOperand(e - 1).getMetadata());
    OS << " line no:" <<  DV.getLineNumber();
    if (MDNode *InlinedAt = DV.getInlinedAt()) {
      DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
      if (!InlinedAtDL.isUnknown()) {
        OS << " inlined @[ ";
        printDebugLoc(InlinedAtDL, MF, OS);
        OS << " ]";
      }
    }
  } else if (!debugLoc.isUnknown() && MF) {
    if (!HaveSemi) OS << ";"; HaveSemi = true;
    OS << " dbg:";
    printDebugLoc(debugLoc, MF, OS);
  }

  OS << '\n';
}

bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
                                     const TargetRegisterInfo *RegInfo,
                                     bool AddIfNotFound) {
  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
  bool Found = false;
  SmallVector<unsigned,4> DeadOps;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;

    if (Reg == IncomingReg) {
      if (!Found) {
        if (MO.isKill())
          // The register is already marked kill.
          return true;
        if (isPhysReg && isRegTiedToDefOperand(i))
          // Two-address uses of physregs must not be marked kill.
          return true;
        MO.setIsKill();
        Found = true;
      }
    } else if (hasAliases && MO.isKill() &&
               TargetRegisterInfo::isPhysicalRegister(Reg)) {
      // A super-register kill already exists.
      if (RegInfo->isSuperRegister(IncomingReg, Reg))
        return true;
      if (RegInfo->isSubRegister(IncomingReg, Reg))
        DeadOps.push_back(i);
    }
  }

  // Trim unneeded kill operands.
  while (!DeadOps.empty()) {
    unsigned OpIdx = DeadOps.back();
    if (getOperand(OpIdx).isImplicit())
      RemoveOperand(OpIdx);
    else
      getOperand(OpIdx).setIsKill(false);
    DeadOps.pop_back();
  }

  // If not found, this means an alias of one of the operands is killed. Add a
  // new implicit operand if required.
  if (!Found && AddIfNotFound) {
    addOperand(MachineOperand::CreateReg(IncomingReg,
                                         false /*IsDef*/,
                                         true  /*IsImp*/,
                                         true  /*IsKill*/));
    return true;
  }
  return Found;
}

bool MachineInstr::addRegisterDead(unsigned IncomingReg,
                                   const TargetRegisterInfo *RegInfo,
                                   bool AddIfNotFound) {
  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
  bool Found = false;
  SmallVector<unsigned,4> DeadOps;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;

    if (Reg == IncomingReg) {
      MO.setIsDead();
      Found = true;
    } else if (hasAliases && MO.isDead() &&
               TargetRegisterInfo::isPhysicalRegister(Reg)) {
      // There exists a super-register that's marked dead.
      if (RegInfo->isSuperRegister(IncomingReg, Reg))
        return true;
      if (RegInfo->getSubRegisters(IncomingReg) &&
          RegInfo->getSuperRegisters(Reg) &&
          RegInfo->isSubRegister(IncomingReg, Reg))
        DeadOps.push_back(i);
    }
  }

  // Trim unneeded dead operands.
  while (!DeadOps.empty()) {
    unsigned OpIdx = DeadOps.back();
    if (getOperand(OpIdx).isImplicit())
      RemoveOperand(OpIdx);
    else
      getOperand(OpIdx).setIsDead(false);
    DeadOps.pop_back();
  }

  // If not found, this means an alias of one of the operands is dead. Add a
  // new implicit operand if required.
  if (Found || !AddIfNotFound)
    return Found;

  addOperand(MachineOperand::CreateReg(IncomingReg,
                                       true  /*IsDef*/,
                                       true  /*IsImp*/,
                                       false /*IsKill*/,
                                       true  /*IsDead*/));
  return true;
}

void MachineInstr::addRegisterDefined(unsigned IncomingReg,
                                      const TargetRegisterInfo *RegInfo) {
  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
    if (MO)
      return;
  } else {
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = getOperand(i);
      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
          MO.getSubReg() == 0)
        return;
    }
  }
  addOperand(MachineOperand::CreateReg(IncomingReg,
                                       true  /*IsDef*/,
                                       true  /*IsImp*/));
}

void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
                                         const TargetRegisterInfo &TRI) {
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    MachineOperand &MO = getOperand(i);
    if (!MO.isReg() || !MO.isDef()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;
    bool Dead = true;
    for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
         E = UsedRegs.end(); I != E; ++I)
      if (TRI.regsOverlap(*I, Reg)) {
        Dead = false;
        break;
      }
    // If there are no uses, including partial uses, the def is dead.
    if (Dead) MO.setIsDead();
  }
}

unsigned
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
  unsigned Hash = MI->getOpcode() * 37;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    uint64_t Key = (uint64_t)MO.getType() << 32;
    switch (MO.getType()) {
    default: break;
    case MachineOperand::MO_Register:
      if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        continue;  // Skip virtual register defs.
      Key |= MO.getReg();
      break;
    case MachineOperand::MO_Immediate:
      Key |= MO.getImm();
      break;
    case MachineOperand::MO_FrameIndex:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      Key |= MO.getIndex();
      break;
    case MachineOperand::MO_MachineBasicBlock:
      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
      break;
    case MachineOperand::MO_GlobalAddress:
      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
      break;
    case MachineOperand::MO_BlockAddress:
      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
      break;
    case MachineOperand::MO_MCSymbol:
      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
      break;
    }
    Key += ~(Key << 32);
    Key ^= (Key >> 22);
    Key += ~(Key << 13);
    Key ^= (Key >> 8);
    Key += (Key << 3);
    Key ^= (Key >> 15);
    Key += ~(Key << 27);
    Key ^= (Key >> 31);
    Hash = (unsigned)Key + Hash * 37;
  }
  return Hash;
}

void MachineInstr::emitError(StringRef Msg) const {
  // Find the source location cookie.
  unsigned LocCookie = 0;
  const MDNode *LocMD = 0;
  for (unsigned i = getNumOperands(); i != 0; --i) {
    if (getOperand(i-1).isMetadata() &&
        (LocMD = getOperand(i-1).getMetadata()) &&
        LocMD->getNumOperands() != 0) {
      if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
        LocCookie = CI->getZExtValue();
        break;
      }
    }
  }

  if (const MachineBasicBlock *MBB = getParent())
    if (const MachineFunction *MF = MBB->getParent())
      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
  report_fatal_error(Msg);
}