llvm.org GIT mirror llvm / release_29 lib / Target / ARM / ARMRegisterInfo.td
release_29

Tree @release_29 (Download .tar.gz)

ARMRegisterInfo.td @release_29raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//  Declarations that describe the ARM register file
//===----------------------------------------------------------------------===//

// Registers are identified with 4-bit ID numbers.
class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
  field bits<4> Num;
  let Namespace = "ARM";
  let SubRegs = subregs;
}

class ARMFReg<bits<6> num, string n> : Register<n> {
  field bits<6> Num;
  let Namespace = "ARM";
}

// Subregister indices.
let Namespace = "ARM" in {
// Note: Code depends on these having consecutive numbers.
def ssub_0  : SubRegIndex;
def ssub_1  : SubRegIndex;
def ssub_2  : SubRegIndex; // In a Q reg.
def ssub_3  : SubRegIndex;
def ssub_4  : SubRegIndex; // In a QQ reg.
def ssub_5  : SubRegIndex;
def ssub_6  : SubRegIndex;
def ssub_7  : SubRegIndex;
def ssub_8  : SubRegIndex; // In a QQQQ reg.
def ssub_9  : SubRegIndex;
def ssub_10 : SubRegIndex;
def ssub_11 : SubRegIndex;
def ssub_12 : SubRegIndex;
def ssub_13 : SubRegIndex;
def ssub_14 : SubRegIndex;
def ssub_15 : SubRegIndex;

def dsub_0 : SubRegIndex;
def dsub_1 : SubRegIndex;
def dsub_2 : SubRegIndex;
def dsub_3 : SubRegIndex;
def dsub_4 : SubRegIndex;
def dsub_5 : SubRegIndex;
def dsub_6 : SubRegIndex;
def dsub_7 : SubRegIndex;

def qsub_0 : SubRegIndex;
def qsub_1 : SubRegIndex;
def qsub_2 : SubRegIndex;
def qsub_3 : SubRegIndex;

def qqsub_0 : SubRegIndex;
def qqsub_1 : SubRegIndex;
}

// Integer registers
def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;

// Float registers
def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;

// Aliases of the F* registers used to hold 64-bit fp values (doubles)
let SubRegIndices = [ssub_0, ssub_1] in {
def D0  : ARMReg< 0,  "d0", [S0,   S1]>;
def D1  : ARMReg< 1,  "d1", [S2,   S3]>;
def D2  : ARMReg< 2,  "d2", [S4,   S5]>;
def D3  : ARMReg< 3,  "d3", [S6,   S7]>;
def D4  : ARMReg< 4,  "d4", [S8,   S9]>;
def D5  : ARMReg< 5,  "d5", [S10, S11]>;
def D6  : ARMReg< 6,  "d6", [S12, S13]>;
def D7  : ARMReg< 7,  "d7", [S14, S15]>;
def D8  : ARMReg< 8,  "d8", [S16, S17]>;
def D9  : ARMReg< 9,  "d9", [S18, S19]>;
def D10 : ARMReg<10, "d10", [S20, S21]>;
def D11 : ARMReg<11, "d11", [S22, S23]>;
def D12 : ARMReg<12, "d12", [S24, S25]>;
def D13 : ARMReg<13, "d13", [S26, S27]>;
def D14 : ARMReg<14, "d14", [S28, S29]>;
def D15 : ARMReg<15, "d15", [S30, S31]>;
}

// VFP3 defines 16 additional double registers
def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d17">;
def D18 : ARMFReg<18, "d18">; def D19 : ARMFReg<19, "d19">;
def D20 : ARMFReg<20, "d20">; def D21 : ARMFReg<21, "d21">;
def D22 : ARMFReg<22, "d22">; def D23 : ARMFReg<23, "d23">;
def D24 : ARMFReg<24, "d24">; def D25 : ARMFReg<25, "d25">;
def D26 : ARMFReg<26, "d26">; def D27 : ARMFReg<27, "d27">;
def D28 : ARMFReg<28, "d28">; def D29 : ARMFReg<29, "d29">;
def D30 : ARMFReg<30, "d30">; def D31 : ARMFReg<31, "d31">;

// Advanced SIMD (NEON) defines 16 quad-word aliases
let SubRegIndices = [dsub_0, dsub_1],
 CompositeIndices = [(ssub_2 dsub_1, ssub_0),
                     (ssub_3 dsub_1, ssub_1)] in {
def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
}
let SubRegIndices = [dsub_0, dsub_1] in {
def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
def Q10 : ARMReg<10, "q10", [D20, D21]>;
def Q11 : ARMReg<11, "q11", [D22, D23]>;
def Q12 : ARMReg<12, "q12", [D24, D25]>;
def Q13 : ARMReg<13, "q13", [D26, D27]>;
def Q14 : ARMReg<14, "q14", [D28, D29]>;
def Q15 : ARMReg<15, "q15", [D30, D31]>;
}

// Pseudo 256-bit registers to represent pairs of Q registers. These should
// never be present in the emitted code.
// These are used for NEON load / store instructions, e.g., vld4, vst3.
// NOTE: It's possible to define more QQ registers since technically the
// starting D register number doesn't have to be multiple of 4, e.g.,
// D1, D2, D3, D4 would be a legal quad, but that would make the subregister
// stuff very messy.
let SubRegIndices = [qsub_0, qsub_1] in {
let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1),
                        (ssub_4 qsub_1, ssub_0), (ssub_5 qsub_1, ssub_1),
                        (ssub_6 qsub_1, ssub_2), (ssub_7 qsub_1, ssub_3)] in {
def QQ0 : ARMReg<0, "qq0", [Q0,  Q1]>;
def QQ1 : ARMReg<1, "qq1", [Q2,  Q3]>;
def QQ2 : ARMReg<2, "qq2", [Q4,  Q5]>;
def QQ3 : ARMReg<3, "qq3", [Q6,  Q7]>;
}
let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
def QQ4 : ARMReg<4, "qq4", [Q8,  Q9]>;
def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
}
}

// Pseudo 512-bit registers to represent four consecutive Q registers.
let SubRegIndices = [qqsub_0, qqsub_1] in {
let CompositeIndices = [(qsub_2  qqsub_1, qsub_0), (qsub_3  qqsub_1, qsub_1),
                        (dsub_4  qqsub_1, dsub_0), (dsub_5  qqsub_1, dsub_1),
                        (dsub_6  qqsub_1, dsub_2), (dsub_7  qqsub_1, dsub_3),
                        (ssub_8  qqsub_1, ssub_0), (ssub_9  qqsub_1, ssub_1),
                        (ssub_10 qqsub_1, ssub_2), (ssub_11 qqsub_1, ssub_3),
                        (ssub_12 qqsub_1, ssub_4), (ssub_13 qqsub_1, ssub_5),
                        (ssub_14 qqsub_1, ssub_6), (ssub_15 qqsub_1, ssub_7)] in
{
def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
}
let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1),
                        (dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1),
                        (dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in {
def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
}
}

// Current Program Status Register.
def CPSR    : ARMReg<0, "cpsr">;
def FPSCR   : ARMReg<1, "fpscr">;
def ITSTATE : ARMReg<2, "itstate">;

// Special Registers - only available in privileged mode.
def FPSID   : ARMReg<0, "fpsid">;
def FPEXC   : ARMReg<8, "fpexc">;

// Register classes.
//
// pc  == Program Counter
// lr  == Link Register
// sp  == Stack Pointer
// r12 == ip (scratch)
// r7  == Frame Pointer (thumb-style backtraces)
// r9  == May be reserved as Thread Register
// r11 == Frame Pointer (arm-style backtraces)
// r10 == Stack Limit
//
def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
                                           R7, R8, R9, R10, R11, R12,
                                           SP, LR, PC]> {
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    static const unsigned ARM_GPR_AO[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
      ARM::R12,ARM::LR,
      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
      ARM::R8, ARM::R9, ARM::R10, ARM::R11 };

    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
    // don't know how to spill them. If we make our prologue/epilogue code
    // smarter at some point, we can go back to using the above allocation
    // orders for the Thumb1 instructions that know how to use hi regs.
    static const unsigned THUMB_GPR_AO[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };

    GPRClass::iterator
    GPRClass::allocation_order_begin(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
      if (Subtarget.isThumb1Only())
        return THUMB_GPR_AO;
      return ARM_GPR_AO;
    }

    GPRClass::iterator
    GPRClass::allocation_order_end(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
      if (Subtarget.isThumb1Only())
        return THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned));
      return ARM_GPR_AO + (sizeof(ARM_GPR_AO)/sizeof(unsigned));
    }
  }];
}

// restricted GPR register class. Many Thumb2 instructions allow the full
// register range for operands, but have undefined behaviours when PC
// or SP (R13 or R15) are used. The ARM ISA refers to these operands
// via the BadReg() pseudo-code description.
def rGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
                                            R7, R8, R9, R10, R11, R12, LR]> {
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    static const unsigned ARM_rGPR_AO[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
      ARM::R12,ARM::LR,
      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
      ARM::R8, ARM::R9, ARM::R10,
      ARM::R11 };

    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
    // don't know how to spill them. If we make our prologue/epilogue code
    // smarter at some point, we can go back to using the above allocation
    // orders for the Thumb1 instructions that know how to use hi regs.
    static const unsigned THUMB_rGPR_AO[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };

    rGPRClass::iterator
    rGPRClass::allocation_order_begin(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
      if (Subtarget.isThumb1Only())
        return THUMB_rGPR_AO;
      return ARM_rGPR_AO;
    }

    rGPRClass::iterator
    rGPRClass::allocation_order_end(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();

      if (Subtarget.isThumb1Only())
        return THUMB_rGPR_AO + (sizeof(THUMB_rGPR_AO)/sizeof(unsigned));
      return ARM_rGPR_AO + (sizeof(ARM_rGPR_AO)/sizeof(unsigned));
    }
  }];
}

// Thumb registers are R0-R7 normally. Some instructions can still use
// the general GPR register class above (MOV, e.g.)
def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {}

// For tail calls, we can't use callee-saved registers, as they are restored
// to the saved value before the tail call, which would clobber a call address.
// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
// this class and the preceding one(!)  This is what we want.
def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> {
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    // R9 is available.
    static const unsigned ARM_GPR_R9_TC[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
      ARM::R9, ARM::R12 };
    // R9 is not available.
    static const unsigned ARM_GPR_NOR9_TC[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
      ARM::R12 };

    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
    // don't know how to spill them. If we make our prologue/epilogue code
    // smarter at some point, we can go back to using the above allocation
    // orders for the Thumb1 instructions that know how to use hi regs.
    static const unsigned THUMB_GPR_AO_TC[] = {
      ARM::R0, ARM::R1, ARM::R2, ARM::R3 };

    tcGPRClass::iterator
    tcGPRClass::allocation_order_begin(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
      if (Subtarget.isThumb1Only())
        return THUMB_GPR_AO_TC;
      return Subtarget.isTargetDarwin() ? ARM_GPR_R9_TC : ARM_GPR_NOR9_TC;
    }

    tcGPRClass::iterator
    tcGPRClass::allocation_order_end(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();

      if (Subtarget.isThumb1Only())
        return THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned));

      return Subtarget.isTargetDarwin() ?
        ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned)) :
        ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
    }
  }];
}


// Scalar single precision floating point register class..
def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8,
  S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
  S23, S24, S25, S26, S27, S28, S29, S30, S31]>;

// Subset of SPR which can be used as a source of NEON scalars for 16-bit
// operations
def SPR_8 : RegisterClass<"ARM", [f32], 32,
                          [S0, S1,  S2,  S3,  S4,  S5,  S6,  S7,
                           S8, S9, S10, S11, S12, S13, S14, S15]>;

// Scalar double precision floating point / generic 64-bit vector register
// class.
// ARM requires only word alignment for double. It's more performant if it
// is double-word alignment though.
def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
                        [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
                         D8,  D9,  D10, D11, D12, D13, D14, D15,
                         D16, D17, D18, D19, D20, D21, D22, D23,
                         D24, D25, D26, D27, D28, D29, D30, D31]> {
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    // VFP2 / VFPv3-D16
    static const unsigned ARM_DPR_VFP2[] = {
      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
      ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
    // VFP3: D8-D15 are callee saved and should be allocated last.
    // Save other low registers for use as DPR_VFP2 and DPR_8 classes.
    static const unsigned ARM_DPR_VFP3[] = {
      ARM::D16, ARM::D17, ARM::D18, ARM::D19,
      ARM::D20, ARM::D21, ARM::D22, ARM::D23,
      ARM::D24, ARM::D25, ARM::D26, ARM::D27,
      ARM::D28, ARM::D29, ARM::D30, ARM::D31,
      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
      ARM::D12, ARM::D13, ARM::D14, ARM::D15 };

    DPRClass::iterator
    DPRClass::allocation_order_begin(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
      if (Subtarget.hasVFP3() && !Subtarget.hasD16())
        return ARM_DPR_VFP3;
      return ARM_DPR_VFP2;
    }

    DPRClass::iterator
    DPRClass::allocation_order_end(const MachineFunction &MF) const {
      const TargetMachine &TM = MF.getTarget();
      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
      if (Subtarget.hasVFP3() && !Subtarget.hasD16())
        return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned));
      else
        return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned));
    }
  }];
}

// Subset of DPR that are accessible with VFP2 (and so that also have
// 32-bit SPR subregs).
def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
                             [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
                              D8,  D9,  D10, D11, D12, D13, D14, D15]> {
  let SubRegClasses = [(SPR ssub_0, ssub_1)];
}

// Subset of DPR which can be used as a source of NEON scalars for 16-bit
// operations
def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
                          [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7]> {
  let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
}

// Generic 128-bit vector register class.
def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
                        [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7,
                         Q8,  Q9,  Q10, Q11, Q12, Q13, Q14, Q15]> {
  let SubRegClasses = [(DPR dsub_0, dsub_1)];
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    // Q4-Q7 are callee saved and should be allocated last.
    // Save other low registers for use as QPR_VFP2 and QPR_8 classes.
    static const unsigned ARM_QPR[] = {
      ARM::Q8,  ARM::Q9,  ARM::Q10, ARM::Q11,
      ARM::Q12, ARM::Q13, ARM::Q14, ARM::Q15,
      ARM::Q0,  ARM::Q1,  ARM::Q2,  ARM::Q3,
      ARM::Q4,  ARM::Q5,  ARM::Q6,  ARM::Q7 };

    QPRClass::iterator
    QPRClass::allocation_order_begin(const MachineFunction &MF) const {
      return ARM_QPR;
    }

    QPRClass::iterator
    QPRClass::allocation_order_end(const MachineFunction &MF) const {
      return ARM_QPR + (sizeof(ARM_QPR)/sizeof(unsigned));
    }
  }];
}

// Subset of QPR that have 32-bit SPR subregs.
def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                             128,
                             [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7]> {
  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
                       (DPR_VFP2 dsub_0, dsub_1)];
}

// Subset of QPR that have DPR_8 and SPR_8 subregs.
def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                           128,
                           [Q0,  Q1,  Q2,  Q3]> {
  let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
                       (DPR_8 dsub_0, dsub_1)];
}

// Pseudo 256-bit vector register class to model pairs of Q registers
// (4 consecutive D registers).
def QQPR : RegisterClass<"ARM", [v4i64],
                         256,
                         [QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> {
  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
                       (QPR qsub_0, qsub_1)];
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    // QQ2-QQ3 are callee saved and should be allocated last.
    // Save other low registers for use as QPR_VFP2 and QPR_8 classes.
    static const unsigned ARM_QQPR[] = {
      ARM::QQ4, ARM::QQ5, ARM::QQ6, ARM::QQ7,
      ARM::QQ0, ARM::QQ1, ARM::QQ2, ARM::QQ3 };

    QQPRClass::iterator
    QQPRClass::allocation_order_begin(const MachineFunction &MF) const {
      return ARM_QQPR;
    }

    QQPRClass::iterator
    QQPRClass::allocation_order_end(const MachineFunction &MF) const {
      return ARM_QQPR + (sizeof(ARM_QQPR)/sizeof(unsigned));
    }
  }];
}

// Subset of QQPR that have 32-bit SPR subregs.
def QQPR_VFP2 : RegisterClass<"ARM", [v4i64],
                              256,
                              [QQ0, QQ1, QQ2, QQ3]> {
  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
                       (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
                       (QPR_VFP2 qsub_0, qsub_1)];

}

// Pseudo 512-bit vector register class to model 4 consecutive Q registers
// (8 consecutive D registers).
def QQQQPR : RegisterClass<"ARM", [v8i64],
                         256,
                         [QQQQ0, QQQQ1, QQQQ2, QQQQ3]> {
  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
                            dsub_4, dsub_5, dsub_6, dsub_7),
                       (QPR qsub_0, qsub_1, qsub_2, qsub_3)];
  let MethodProtos = [{
    iterator allocation_order_begin(const MachineFunction &MF) const;
    iterator allocation_order_end(const MachineFunction &MF) const;
  }];
  let MethodBodies = [{
    // QQQQ1 is callee saved and should be allocated last.
    // Save QQQQ0 for use as QPR_VFP2 and QPR_8 classes.
    static const unsigned ARM_QQQQPR[] = {
      ARM::QQQQ2, ARM::QQQQ3, ARM::QQQQ0, ARM::QQQQ1 };

    QQQQPRClass::iterator
    QQQQPRClass::allocation_order_begin(const MachineFunction &MF) const {
      return ARM_QQQQPR;
    }

    QQQQPRClass::iterator
    QQQQPRClass::allocation_order_end(const MachineFunction &MF) const {
      return ARM_QQQQPR + (sizeof(ARM_QQQQPR)/sizeof(unsigned));
    }
  }];
}

// Condition code registers.
def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;