llvm.org GIT mirror llvm / release_29 lib / CodeGen / RegAllocGreedy.cpp
release_29

Tree @release_29 (Download .tar.gz)

RegAllocGreedy.cpp @release_29raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
#include "LiveIntervalUnion.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "SpillPlacement.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopRanges.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"

#include <queue>

using namespace llvm;

STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits,  "Number of split local live ranges");
STATISTIC(NumReassigned,   "Number of interferences reassigned");
STATISTIC(NumEvicted,      "Number of interferences evicted");

static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                       createGreedyRegisterAllocator);

namespace {
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
  // context
  MachineFunction *MF;
  BitVector ReservedRegs;

  // analyses
  SlotIndexes *Indexes;
  LiveStacks *LS;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineLoopRanges *LoopRanges;
  EdgeBundles *Bundles;
  SpillPlacement *SpillPlacer;

  // state
  std::auto_ptr<Spiller> SpillerInstance;
  std::priority_queue<std::pair<unsigned, unsigned> > Queue;

  // Live ranges pass through a number of stages as we try to allocate them.
  // Some of the stages may also create new live ranges:
  //
  // - Region splitting.
  // - Per-block splitting.
  // - Local splitting.
  // - Spilling.
  //
  // Ranges produced by one of the stages skip the previous stages when they are
  // dequeued. This improves performance because we can skip interference checks
  // that are unlikely to give any results. It also guarantees that the live
  // range splitting algorithm terminates, something that is otherwise hard to
  // ensure.
  enum LiveRangeStage {
    RS_Original, ///< Never seen before, never split.
    RS_Second,   ///< Second time in the queue.
    RS_Region,   ///< Produced by region splitting.
    RS_Block,    ///< Produced by per-block splitting.
    RS_Local,    ///< Produced by local splitting.
    RS_Spill     ///< Produced by spilling.
  };

  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;

  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    return LiveRangeStage(LRStage[VirtReg.reg]);
  }

  template<typename Iterator>
  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    LRStage.resize(MRI->getNumVirtRegs());
    for (;Begin != End; ++Begin)
      LRStage[(*Begin)->reg] = NewStage;
  }

  // splitting state.
  std::auto_ptr<SplitAnalysis> SA;
  std::auto_ptr<SplitEditor> SE;

  /// All basic blocks where the current register is live.
  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;

  typedef std::pair<SlotIndex, SlotIndex> IndexPair;

  /// Global live range splitting candidate info.
  struct GlobalSplitCandidate {
    unsigned PhysReg;
    SmallVector<IndexPair, 8> Interference;
    BitVector LiveBundles;
  };

  /// Candidate info for for each PhysReg in AllocationOrder.
  /// This vector never shrinks, but grows to the size of the largest register
  /// class.
  SmallVector<GlobalSplitCandidate, 32> GlobalCand;

  /// For every instruction in SA->UseSlots, store the previous non-copy
  /// instruction.
  SmallVector<SlotIndex, 8> PrevSlot;

public:
  RAGreedy();

  /// Return the pass name.
  virtual const char* getPassName() const {
    return "Greedy Register Allocator";
  }

  /// RAGreedy analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  virtual void releaseMemory();
  virtual Spiller &spiller() { return *SpillerInstance; }
  virtual void enqueue(LiveInterval *LI);
  virtual LiveInterval *dequeue();
  virtual unsigned selectOrSplit(LiveInterval&,
                                 SmallVectorImpl<LiveInterval*>&);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;

private:
  bool checkUncachedInterference(LiveInterval&, unsigned);
  LiveInterval *getSingleInterference(LiveInterval&, unsigned);
  bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);

  void mapGlobalInterference(unsigned, SmallVectorImpl<IndexPair>&);
  float calcSplitConstraints(const SmallVectorImpl<IndexPair>&);

  float calcGlobalSplitCost(const BitVector&);
  void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
                         SmallVectorImpl<LiveInterval*>&);
  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
  SlotIndex getPrevMappedIndex(const MachineInstr*);
  void calcPrevSlots();
  unsigned nextSplitPoint(unsigned);
  bool canEvictInterference(LiveInterval&, unsigned, float&);

  unsigned tryReassign(LiveInterval&, AllocationOrder&,
                              SmallVectorImpl<LiveInterval*>&);
  unsigned tryEvict(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&);
  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
                          SmallVectorImpl<LiveInterval*>&);
  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    SmallVectorImpl<LiveInterval*>&);
  unsigned trySplit(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace

char RAGreedy::ID = 0;

FunctionPass* llvm::createGreedyRegisterAllocator() {
  return new RAGreedy();
}

RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_Original) {
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}

void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitive<RegisterCoalescer>();
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineLoopRanges>();
  AU.addPreserved<MachineLoopRanges>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  AU.addRequired<EdgeBundles>();
  AU.addRequired<SpillPlacement>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void RAGreedy::releaseMemory() {
  SpillerInstance.reset(0);
  LRStage.clear();
  RegAllocBase::releaseMemory();
}

void RAGreedy::enqueue(LiveInterval *LI) {
  // Prioritize live ranges by size, assigning larger ranges first.
  // The queue holds (size, reg) pairs.
  const unsigned Size = LI->getSize();
  const unsigned Reg = LI->reg;
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Can only enqueue virtual registers");
  unsigned Prio;

  LRStage.grow(Reg);
  if (LRStage[Reg] == RS_Original)
    // 1st generation ranges are handled first, long -> short.
    Prio = (1u << 31) + Size;
  else
    // Repeat offenders are handled second, short -> long
    Prio = (1u << 30) - Size;

  // Boost ranges that have a physical register hint.
  const unsigned Hint = VRM->getRegAllocPref(Reg);
  if (TargetRegisterInfo::isPhysicalRegister(Hint))
    Prio |= (1u << 30);

  Queue.push(std::make_pair(Prio, Reg));
}

LiveInterval *RAGreedy::dequeue() {
  if (Queue.empty())
    return 0;
  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
  Queue.pop();
  return LI;
}

//===----------------------------------------------------------------------===//
//                         Register Reassignment
//===----------------------------------------------------------------------===//

// Check interference without using the cache.
bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
                                         unsigned PhysReg) {
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
    if (subQ.checkInterference())
      return true;
  }
  return false;
}

/// getSingleInterference - Return the single interfering virtual register
/// assigned to PhysReg. Return 0 if more than one virtual register is
/// interfering.
LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
                                              unsigned PhysReg) {
  // Check physreg and aliases.
  LiveInterval *Interference = 0;
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    if (Q.checkInterference()) {
      if (Interference)
        return 0;
      if (Q.collectInterferingVRegs(2) > 1)
        return 0;
      Interference = Q.interferingVRegs().front();
    }
  }
  return Interference;
}

// Attempt to reassign this virtual register to a different physical register.
//
// FIXME: we are not yet caching these "second-level" interferences discovered
// in the sub-queries. These interferences can change with each call to
// selectOrSplit. However, we could implement a "may-interfere" cache that
// could be conservatively dirtied when we reassign or split.
//
// FIXME: This may result in a lot of alias queries. We could summarize alias
// live intervals in their parent register's live union, but it's messy.
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
                            unsigned WantedPhysReg) {
  assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
         "Can only reassign virtual registers");
  assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
         "inconsistent phys reg assigment");

  AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
  while (unsigned PhysReg = Order.next()) {
    // Don't reassign to a WantedPhysReg alias.
    if (TRI->regsOverlap(PhysReg, WantedPhysReg))
      continue;

    if (checkUncachedInterference(InterferingVReg, PhysReg))
      continue;

    // Reassign the interfering virtual reg to this physical reg.
    unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
    DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
          TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
    unassign(InterferingVReg, OldAssign);
    assign(InterferingVReg, PhysReg);
    ++NumReassigned;
    return true;
  }
  return false;
}

/// tryReassign - Try to reassign a single interference to a different physreg.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order,
                               SmallVectorImpl<LiveInterval*> &NewVRegs){
  NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
    if (!InterferingVReg)
      continue;
    if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
      continue;
    if (reassignVReg(*InterferingVReg, PhysReg))
      return PhysReg;
  }
  return 0;
}


//===----------------------------------------------------------------------===//
//                         Interference eviction
//===----------------------------------------------------------------------===//

/// canEvict - Return true if all interferences between VirtReg and PhysReg can
/// be evicted. Set maxWeight to the maximal spill weight of an interference.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
                                    float &MaxWeight) {
  float Weight = 0;
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    // If there is 10 or more interferences, chances are one is smaller.
    if (Q.collectInterferingVRegs(10) >= 10)
      return false;

    // Check if any interfering live range is heavier than VirtReg.
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
      LiveInterval *Intf = Q.interferingVRegs()[i];
      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
        return false;
      if (Intf->weight >= VirtReg.weight)
        return false;
      Weight = std::max(Weight, Intf->weight);
    }
  }
  MaxWeight = Weight;
  return true;
}

/// tryEvict - Try to evict all interferences for a physreg.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
                            AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*> &NewVRegs){
  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);

  // Keep track of the lightest single interference seen so far.
  float BestWeight = 0;
  unsigned BestPhys = 0;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    float Weight = 0;
    if (!canEvictInterference(VirtReg, PhysReg, Weight))
      continue;

    // This is an eviction candidate.
    DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
                 << Weight << '\n');
    if (BestPhys && Weight >= BestWeight)
      continue;

    // Best so far.
    BestPhys = PhysReg;
    BestWeight = Weight;
    // Stop if the hint can be used.
    if (Order.isHint(PhysReg))
      break;
  }

  if (!BestPhys)
    return 0;

  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
      LiveInterval *Intf = Q.interferingVRegs()[i];
      unassign(*Intf, VRM->getPhys(Intf->reg));
      ++NumEvicted;
      NewVRegs.push_back(Intf);
    }
  }
  return BestPhys;
}


//===----------------------------------------------------------------------===//
//                              Region Splitting
//===----------------------------------------------------------------------===//

/// mapGlobalInterference - Compute a map of the interference from PhysReg and
/// its aliases in each block in SA->LiveBlocks.
/// If LiveBlocks[i] is live-in, Ranges[i].first is the first interference.
/// If LiveBlocks[i] is live-out, Ranges[i].second is the last interference.
void RAGreedy::mapGlobalInterference(unsigned PhysReg,
                                     SmallVectorImpl<IndexPair> &Ranges) {
  Ranges.assign(SA->LiveBlocks.size(), IndexPair());
  LiveInterval &VirtReg = const_cast<LiveInterval&>(SA->getParent());
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
    if (!query(VirtReg, *AI).checkInterference())
      continue;
    LiveIntervalUnion::SegmentIter IntI =
      PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
    if (!IntI.valid())
      continue;
    for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
      const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
      IndexPair &IP = Ranges[i];

      // Skip interference-free blocks.
      if (IntI.start() >= BI.Stop)
        continue;

      // First interference in block.
      if (BI.LiveIn) {
        IntI.advanceTo(BI.Start);
        if (!IntI.valid())
          break;
        if (IntI.start() >= BI.Stop)
          continue;
        if (!IP.first.isValid() || IntI.start() < IP.first)
          IP.first = IntI.start();
      }

      // Last interference in block.
      if (BI.LiveOut) {
        IntI.advanceTo(BI.Stop);
        if (!IntI.valid() || IntI.start() >= BI.Stop)
          --IntI;
        if (IntI.stop() <= BI.Start)
          continue;
        if (!IP.second.isValid() || IntI.stop() > IP.second)
          IP.second = IntI.stop();
      }
    }
  }
}

/// calcSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Intf. Return the static cost of this split,
/// assuming that all preferences in SplitConstraints are met.
float RAGreedy::calcSplitConstraints(const SmallVectorImpl<IndexPair> &Intf) {
  // Reset interference dependent info.
  SplitConstraints.resize(SA->LiveBlocks.size());
  float StaticCost = 0;
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    IndexPair IP = Intf[i];

    BC.Number = BI.MBB->getNumber();
    BC.Entry = (BI.Uses && BI.LiveIn) ?
      SpillPlacement::PrefReg : SpillPlacement::DontCare;
    BC.Exit = (BI.Uses && BI.LiveOut) ?
      SpillPlacement::PrefReg : SpillPlacement::DontCare;

    // Number of spill code instructions to insert.
    unsigned Ins = 0;

    // Interference for the live-in value.
    if (IP.first.isValid()) {
      if (IP.first <= BI.Start)
        BC.Entry = SpillPlacement::MustSpill, Ins += BI.Uses;
      else if (!BI.Uses)
        BC.Entry = SpillPlacement::PrefSpill;
      else if (IP.first < BI.FirstUse)
        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
      else if (IP.first < (BI.LiveThrough ? BI.LastUse : BI.Kill))
        ++Ins;
    }

    // Interference for the live-out value.
    if (IP.second.isValid()) {
      if (IP.second >= BI.LastSplitPoint)
        BC.Exit = SpillPlacement::MustSpill, Ins += BI.Uses;
      else if (!BI.Uses)
        BC.Exit = SpillPlacement::PrefSpill;
      else if (IP.second > BI.LastUse)
        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
      else if (IP.second > (BI.LiveThrough ? BI.FirstUse : BI.Def))
        ++Ins;
    }

    // Accumulate the total frequency of inserted spill code.
    if (Ins)
      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
  }
  return StaticCost;
}


/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SplitConstraints.
///
float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
  float GlobalCost = 0;
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
    unsigned Ins = 0;

    if (!BI.Uses)
      Ins += RegIn != RegOut;
    else {
      if (BI.LiveIn)
        Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
      if (BI.LiveOut)
        Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    }
    if (Ins)
      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
  }
  return GlobalCost;
}

/// splitAroundRegion - Split VirtReg around the region determined by
/// LiveBundles. Make an effort to avoid interference from PhysReg.
///
/// The 'register' interval is going to contain as many uses as possible while
/// avoiding interference. The 'stack' interval is the complement constructed by
/// SplitEditor. It will contain the rest.
///
void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
                                 const BitVector &LiveBundles,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  DEBUG({
    dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
           << " with bundles";
    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
      dbgs() << " EB#" << i;
    dbgs() << ".\n";
  });

  // First compute interference ranges in the live blocks.
  SmallVector<IndexPair, 8> InterferenceRanges;
  mapGlobalInterference(PhysReg, InterferenceRanges);

  LiveRangeEdit LREdit(VirtReg, NewVRegs);
  SE->reset(LREdit);

  // Create the main cross-block interval.
  SE->openIntv();

  // First add all defs that are live out of a block.
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Should the register be live out?
    if (!BI.LiveOut || !RegOut)
      continue;

    IndexPair &IP = InterferenceRanges[i];
    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
                 << " intf [" << IP.first << ';' << IP.second << ')');

    // The interference interval should either be invalid or overlap MBB.
    assert((!IP.first.isValid() || IP.first < BI.Stop) && "Bad interference");
    assert((!IP.second.isValid() || IP.second > BI.Start)
           && "Bad interference");

    // Check interference leaving the block.
    if (!IP.second.isValid()) {
      // Block is interference-free.
      DEBUG(dbgs() << ", no interference");
      if (!BI.Uses) {
        assert(BI.LiveThrough && "No uses, but not live through block?");
        // Block is live-through without interference.
        DEBUG(dbgs() << ", no uses"
                     << (RegIn ? ", live-through.\n" : ", stack in.\n"));
        if (!RegIn)
          SE->enterIntvAtEnd(*BI.MBB);
        continue;
      }
      if (!BI.LiveThrough) {
        DEBUG(dbgs() << ", not live-through.\n");
        SE->useIntv(SE->enterIntvBefore(BI.Def), BI.Stop);
        continue;
      }
      if (!RegIn) {
        // Block is live-through, but entry bundle is on the stack.
        // Reload just before the first use.
        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), BI.Stop);
        continue;
      }
      DEBUG(dbgs() << ", live-through.\n");
      continue;
    }

    // Block has interference.
    DEBUG(dbgs() << ", interference to " << IP.second);

    if (!BI.LiveThrough && IP.second <= BI.Def) {
      // The interference doesn't reach the outgoing segment.
      DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
      SE->useIntv(BI.Def, BI.Stop);
      continue;
    }


    if (!BI.Uses) {
      // No uses in block, avoid interference by reloading as late as possible.
      DEBUG(dbgs() << ", no uses.\n");
      SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
      assert(SegStart >= IP.second && "Couldn't avoid interference");
      continue;
    }

    if (IP.second.getBoundaryIndex() < BI.LastUse) {
      // There are interference-free uses at the end of the block.
      // Find the first use that can get the live-out register.
      SmallVectorImpl<SlotIndex>::const_iterator UI =
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
                         IP.second.getBoundaryIndex());
      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
      SlotIndex Use = *UI;
      assert(Use <= BI.LastUse && "Couldn't find last use");
      // Only attempt a split befroe the last split point.
      if (Use.getBaseIndex() <= BI.LastSplitPoint) {
        DEBUG(dbgs() << ", free use at " << Use << ".\n");
        SlotIndex SegStart = SE->enterIntvBefore(Use);
        assert(SegStart >= IP.second && "Couldn't avoid interference");
        assert(SegStart < BI.LastSplitPoint && "Impossible split point");
        SE->useIntv(SegStart, BI.Stop);
        continue;
      }
    }

    // Interference is after the last use.
    DEBUG(dbgs() << " after last use.\n");
    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
    assert(SegStart >= IP.second && "Couldn't avoid interference");
  }

  // Now all defs leading to live bundles are handled, do everything else.
  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Is the register live-in?
    if (!BI.LiveIn || !RegIn)
      continue;

    // We have an incoming register. Check for interference.
    IndexPair &IP = InterferenceRanges[i];

    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
                 << " -> BB#" << BI.MBB->getNumber());

    // Check interference entering the block.
    if (!IP.first.isValid()) {
      // Block is interference-free.
      DEBUG(dbgs() << ", no interference");
      if (!BI.Uses) {
        assert(BI.LiveThrough && "No uses, but not live through block?");
        // Block is live-through without interference.
        if (RegOut) {
          DEBUG(dbgs() << ", no uses, live-through.\n");
          SE->useIntv(BI.Start, BI.Stop);
        } else {
          DEBUG(dbgs() << ", no uses, stack-out.\n");
          SE->leaveIntvAtTop(*BI.MBB);
        }
        continue;
      }
      if (!BI.LiveThrough) {
        DEBUG(dbgs() << ", killed in block.\n");
        SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.Kill));
        continue;
      }
      if (!RegOut) {
        // Block is live-through, but exit bundle is on the stack.
        // Spill immediately after the last use.
        if (BI.LastUse < BI.LastSplitPoint) {
          DEBUG(dbgs() << ", uses, stack-out.\n");
          SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.LastUse));
          continue;
        }
        // The last use is after the last split point, it is probably an
        // indirect jump.
        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
                     << BI.LastSplitPoint << ", stack-out.\n");
        SlotIndex SegEnd = SE->leaveIntvBefore(BI.LastSplitPoint);
        SE->useIntv(BI.Start, SegEnd);
        // Run a double interval from the split to the last use.
        // This makes it possible to spill the complement without affecting the
        // indirect branch.
        SE->overlapIntv(SegEnd, BI.LastUse);
        continue;
      }
      // Register is live-through.
      DEBUG(dbgs() << ", uses, live-through.\n");
      SE->useIntv(BI.Start, BI.Stop);
      continue;
    }

    // Block has interference.
    DEBUG(dbgs() << ", interference from " << IP.first);

    if (!BI.LiveThrough && IP.first >= BI.Kill) {
      // The interference doesn't reach the outgoing segment.
      DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
      SE->useIntv(BI.Start, BI.Kill);
      continue;
    }

    if (!BI.Uses) {
      // No uses in block, avoid interference by spilling as soon as possible.
      DEBUG(dbgs() << ", no uses.\n");
      SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
      assert(SegEnd <= IP.first && "Couldn't avoid interference");
      continue;
    }
    if (IP.first.getBaseIndex() > BI.FirstUse) {
      // There are interference-free uses at the beginning of the block.
      // Find the last use that can get the register.
      SmallVectorImpl<SlotIndex>::const_iterator UI =
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
                         IP.first.getBaseIndex());
      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
      SlotIndex Use = (--UI)->getBoundaryIndex();
      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
      assert(SegEnd <= IP.first && "Couldn't avoid interference");
      SE->useIntv(BI.Start, SegEnd);
      continue;
    }

    // Interference is before the first use.
    DEBUG(dbgs() << " before first use.\n");
    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
    assert(SegEnd <= IP.first && "Couldn't avoid interference");
  }

  SE->closeIntv();

  // FIXME: Should we be more aggressive about splitting the stack region into
  // per-block segments? The current approach allows the stack region to
  // separate into connected components. Some components may be allocatable.
  SE->finish();
  ++NumGlobalSplits;

  if (VerifyEnabled) {
    MF->verify(this, "After splitting live range around region");

#ifndef NDEBUG
    // Make sure that at least one of the new intervals can allocate to PhysReg.
    // That was the whole point of splitting the live range.
    bool found = false;
    for (LiveRangeEdit::iterator I = LREdit.begin(), E = LREdit.end(); I != E;
         ++I)
      if (!checkUncachedInterference(**I, PhysReg)) {
        found = true;
        break;
      }
    assert(found && "No allocatable intervals after pointless splitting");
#endif
  }
}

unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
  BitVector LiveBundles, BestBundles;
  float BestCost = 0;
  unsigned BestReg = 0;

  Order.rewind();
  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
    if (GlobalCand.size() <= Cand)
      GlobalCand.resize(Cand+1);
    GlobalCand[Cand].PhysReg = PhysReg;

    mapGlobalInterference(PhysReg, GlobalCand[Cand].Interference);
    float Cost = calcSplitConstraints(GlobalCand[Cand].Interference);
    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
    if (BestReg && Cost >= BestCost) {
      DEBUG(dbgs() << " higher.\n");
      continue;
    }

    SpillPlacer->placeSpills(SplitConstraints, LiveBundles);
    // No live bundles, defer to splitSingleBlocks().
    if (!LiveBundles.any()) {
      DEBUG(dbgs() << " no bundles.\n");
      continue;
    }

    Cost += calcGlobalSplitCost(LiveBundles);
    DEBUG({
      dbgs() << ", total = " << Cost << " with bundles";
      for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
        dbgs() << " EB#" << i;
      dbgs() << ".\n";
    });
    if (!BestReg || Cost < BestCost) {
      BestReg = PhysReg;
      BestCost = 0.98f * Cost; // Prevent rounding effects.
      BestBundles.swap(LiveBundles);
    }
  }

  if (!BestReg)
    return 0;

  splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Region);
  return 0;
}


//===----------------------------------------------------------------------===//
//                             Local Splitting
//===----------------------------------------------------------------------===//


/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
                              SmallVectorImpl<float> &GapWeight) {
  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  const unsigned NumGaps = Uses.size()-1;

  // Start and end points for the interference check.
  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;

  GapWeight.assign(NumGaps, 0.0f);

  // Add interference from each overlapping register.
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
           .checkInterference())
      continue;

    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
    // so we don't need InterferenceQuery.
    //
    // Interference that overlaps an instruction is counted in both gaps
    // surrounding the instruction. The exception is interference before
    // StartIdx and after StopIdx.
    //
    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
      // Skip the gaps before IntI.
      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
        if (++Gap == NumGaps)
          break;
      if (Gap == NumGaps)
        break;

      // Update the gaps covered by IntI.
      const float weight = IntI.value()->weight;
      for (; Gap != NumGaps; ++Gap) {
        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
          break;
      }
      if (Gap == NumGaps)
        break;
    }
  }
}

/// getPrevMappedIndex - Return the slot index of the last non-copy instruction
/// before MI that has a slot index. If MI is the first mapped instruction in
/// its block, return the block start index instead.
///
SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
  assert(MI && "Missing MachineInstr");
  const MachineBasicBlock *MBB = MI->getParent();
  MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
  while (I != B)
    if (!(--I)->isDebugValue() && !I->isCopy())
      return Indexes->getInstructionIndex(I);
  return Indexes->getMBBStartIdx(MBB);
}

/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
/// real non-copy instruction for each instruction in SA->UseSlots.
///
void RAGreedy::calcPrevSlots() {
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  PrevSlot.clear();
  PrevSlot.reserve(Uses.size());
  for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
    const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
    PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
  }
}

/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
/// be beneficial to split before UseSlots[i].
///
/// 0 is always a valid split point
unsigned RAGreedy::nextSplitPoint(unsigned i) {
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  const unsigned Size = Uses.size();
  assert(i != Size && "No split points after the end");
  // Allow split before i when Uses[i] is not adjacent to the previous use.
  while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
    ;
  return i;
}

/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();

  // Note that it is possible to have an interval that is live-in or live-out
  // while only covering a single block - A phi-def can use undef values from
  // predecessors, and the block could be a single-block loop.
  // We don't bother doing anything clever about such a case, we simply assume
  // that the interval is continuous from FirstUse to LastUse. We should make
  // sure that we don't do anything illegal to such an interval, though.

  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  if (Uses.size() <= 2)
    return 0;
  const unsigned NumGaps = Uses.size()-1;

  DEBUG({
    dbgs() << "tryLocalSplit: ";
    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
      dbgs() << ' ' << SA->UseSlots[i];
    dbgs() << '\n';
  });

  // For every use, find the previous mapped non-copy instruction.
  // We use this to detect valid split points, and to estimate new interval
  // sizes.
  calcPrevSlots();

  unsigned BestBefore = NumGaps;
  unsigned BestAfter = 0;
  float BestDiff = 0;

  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
  SmallVector<float, 8> GapWeight;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    // Keep track of the largest spill weight that would need to be evicted in
    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
    calcGapWeights(PhysReg, GapWeight);

    // Try to find the best sequence of gaps to close.
    // The new spill weight must be larger than any gap interference.

    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
    unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;

    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
    // It is the spill weight that needs to be evicted.
    float MaxGap = GapWeight[0];
    for (unsigned i = 1; i != SplitAfter; ++i)
      MaxGap = std::max(MaxGap, GapWeight[i]);

    for (;;) {
      // Live before/after split?
      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;

      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
                   << " i=" << MaxGap);

      // Stop before the interval gets so big we wouldn't be making progress.
      if (!LiveBefore && !LiveAfter) {
        DEBUG(dbgs() << " all\n");
        break;
      }
      // Should the interval be extended or shrunk?
      bool Shrink = true;
      if (MaxGap < HUGE_VALF) {
        // Estimate the new spill weight.
        //
        // Each instruction reads and writes the register, except the first
        // instr doesn't read when !FirstLive, and the last instr doesn't write
        // when !LastLive.
        //
        // We will be inserting copies before and after, so the total number of
        // reads and writes is 2 * EstUses.
        //
        const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
                                 2*(LiveBefore + LiveAfter);

        // Try to guess the size of the new interval. This should be trivial,
        // but the slot index of an inserted copy can be a lot smaller than the
        // instruction it is inserted before if there are many dead indexes
        // between them.
        //
        // We measure the distance from the instruction before SplitBefore to
        // get a conservative estimate.
        //
        // The final distance can still be different if inserting copies
        // triggers a slot index renumbering.
        //
        const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
                              PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
        // Would this split be possible to allocate?
        // Never allocate all gaps, we wouldn't be making progress.
        float Diff = EstWeight - MaxGap;
        DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
        if (Diff > 0) {
          Shrink = false;
          if (Diff > BestDiff) {
            DEBUG(dbgs() << " (best)");
            BestDiff = Diff;
            BestBefore = SplitBefore;
            BestAfter = SplitAfter;
          }
        }
      }

      // Try to shrink.
      if (Shrink) {
        SplitBefore = nextSplitPoint(SplitBefore);
        if (SplitBefore < SplitAfter) {
          DEBUG(dbgs() << " shrink\n");
          // Recompute the max when necessary.
          if (GapWeight[SplitBefore - 1] >= MaxGap) {
            MaxGap = GapWeight[SplitBefore];
            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
              MaxGap = std::max(MaxGap, GapWeight[i]);
          }
          continue;
        }
        MaxGap = 0;
      }

      // Try to extend the interval.
      if (SplitAfter >= NumGaps) {
        DEBUG(dbgs() << " end\n");
        break;
      }

      DEBUG(dbgs() << " extend\n");
      for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
           SplitAfter != e; ++SplitAfter)
        MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
          continue;
    }
  }

  // Didn't find any candidates?
  if (BestBefore == NumGaps)
    return 0;

  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
               << '-' << Uses[BestAfter] << ", " << BestDiff
               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");

  LiveRangeEdit LREdit(VirtReg, NewVRegs);
  SE->reset(LREdit);

  SE->openIntv();
  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
  SE->useIntv(SegStart, SegStop);
  SE->closeIntv();
  SE->finish();
  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
  ++NumLocalSplits;

  return 0;
}

//===----------------------------------------------------------------------===//
//                          Live Range Splitting
//===----------------------------------------------------------------------===//

/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
  // Local intervals are handled separately.
  if (LIS->intervalIsInOneMBB(VirtReg)) {
    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
    SA->analyze(&VirtReg);
    return tryLocalSplit(VirtReg, Order, NewVRegs);
  }

  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);

  // Don't iterate global splitting.
  // Move straight to spilling if this range was produced by a global split.
  LiveRangeStage Stage = getStage(VirtReg);
  if (Stage >= RS_Block)
    return 0;

  SA->analyze(&VirtReg);

  // First try to split around a region spanning multiple blocks.
  if (Stage < RS_Region) {
    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
    if (PhysReg || !NewVRegs.empty())
      return PhysReg;
  }

  // Then isolate blocks with multiple uses.
  if (Stage < RS_Block) {
    SplitAnalysis::BlockPtrSet Blocks;
    if (SA->getMultiUseBlocks(Blocks)) {
      LiveRangeEdit LREdit(VirtReg, NewVRegs);
      SE->reset(LREdit);
      SE->splitSingleBlocks(Blocks);
      setStage(NewVRegs.begin(), NewVRegs.end(), RS_Block);
      if (VerifyEnabled)
        MF->verify(this, "After splitting live range around basic blocks");
    }
  }

  // Don't assign any physregs.
  return 0;
}


//===----------------------------------------------------------------------===//
//                            Main Entry Point
//===----------------------------------------------------------------------===//

unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  LiveRangeStage Stage = getStage(VirtReg);
  if (Stage == RS_Original)
    LRStage[VirtReg.reg] = RS_Second;

  // First try assigning a free register.
  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
  while (unsigned PhysReg = Order.next()) {
    if (!checkPhysRegInterference(VirtReg, PhysReg))
      return PhysReg;
  }

  if (unsigned PhysReg = tryReassign(VirtReg, Order, NewVRegs))
    return PhysReg;

  if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
    return PhysReg;

  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");

  // The first time we see a live range, don't try to split or spill.
  // Wait until the second time, when all smaller ranges have been allocated.
  // This gives a better picture of the interference to split around.
  if (Stage == RS_Original) {
    NewVRegs.push_back(&VirtReg);
    return 0;
  }

  assert(Stage < RS_Spill && "Cannot allocate after spilling");

  // Try splitting VirtReg or interferences.
  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
  if (PhysReg || !NewVRegs.empty())
    return PhysReg;

  // Finally spill VirtReg itself.
  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
  SmallVector<LiveInterval*, 1> pendingSpills;
  spiller().spill(&VirtReg, NewVRegs, pendingSpills);

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
               << "********** Function: "
               << ((Value*)mf.getFunction())->getName() << '\n');

  MF = &mf;
  if (VerifyEnabled)
    MF->verify(this, "Before greedy register allocator");

  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
  Indexes = &getAnalysis<SlotIndexes>();
  DomTree = &getAnalysis<MachineDominatorTree>();
  ReservedRegs = TRI->getReservedRegs(*MF);
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
  Loops = &getAnalysis<MachineLoopInfo>();
  LoopRanges = &getAnalysis<MachineLoopRanges>();
  Bundles = &getAnalysis<EdgeBundles>();
  SpillPlacer = &getAnalysis<SpillPlacement>();

  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
  LRStage.clear();
  LRStage.resize(MRI->getNumVirtRegs());

  allocatePhysRegs();
  addMBBLiveIns(MF);
  LIS->addKillFlags();

  // Run rewriter
  {
    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
    VRM->rewrite(Indexes);
  }

  // The pass output is in VirtRegMap. Release all the transient data.
  releaseMemory();

  return true;
}