llvm.org GIT mirror llvm / release_28 utils / TableGen / EDEmitter.cpp
release_28

Tree @release_28 (Download .tar.gz)

EDEmitter.cpp @release_28raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
//===- EDEmitter.cpp - Generate instruction descriptions for ED -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of each
// instruction in a format that the enhanced disassembler can use to tokenize
// and parse instructions.
//
//===----------------------------------------------------------------------===//

#include "EDEmitter.h"

#include "AsmWriterInst.h"
#include "CodeGenTarget.h"
#include "Record.h"

#include "llvm/MC/EDInstInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"

#include <map>
#include <string>
#include <vector>

using namespace llvm;

///////////////////////////////////////////////////////////
// Support classes for emitting nested C data structures //
///////////////////////////////////////////////////////////

namespace {
  
  class EnumEmitter {
  private:
    std::string Name;
    std::vector<std::string> Entries;
  public:
    EnumEmitter(const char *N) : Name(N) { 
    }
    int addEntry(const char *e) { 
      Entries.push_back(std::string(e));
      return Entries.size() - 1; 
    }
    void emit(raw_ostream &o, unsigned int &i) {
      o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
      i += 2;
      
      unsigned int index = 0;
      unsigned int numEntries = Entries.size();
      for (index = 0; index < numEntries; ++index) {
        o.indent(i) << Entries[index];
        if (index < (numEntries - 1))
          o << ",";
        o << "\n";
      }
      
      i -= 2;
      o.indent(i) << "};" << "\n";
    }
    
    void emitAsFlags(raw_ostream &o, unsigned int &i) {
      o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
      i += 2;
      
      unsigned int index = 0;
      unsigned int numEntries = Entries.size();
      unsigned int flag = 1;
      for (index = 0; index < numEntries; ++index) {
        o.indent(i) << Entries[index] << " = " << format("0x%x", flag);
        if (index < (numEntries - 1))
          o << ",";
        o << "\n";
        flag <<= 1;
      }
      
      i -= 2;
      o.indent(i) << "};" << "\n";
    }
  };

  class ConstantEmitter {
  public:
    virtual ~ConstantEmitter() { }
    virtual void emit(raw_ostream &o, unsigned int &i) = 0;
  };
  
  class LiteralConstantEmitter : public ConstantEmitter {
  private:
    bool IsNumber;
    union {
      int Number;
      const char* String;
    };
  public:
    LiteralConstantEmitter(int number = 0) : 
      IsNumber(true),
      Number(number) {
    }
    void set(const char *string) {
      IsNumber = false;
      Number = 0;
      String = string;
    }
    bool is(const char *string) {
      return !strcmp(String, string);
    }
    void emit(raw_ostream &o, unsigned int &i) {
      if (IsNumber)
        o << Number;
      else
        o << String;
    }
  };
  
  class CompoundConstantEmitter : public ConstantEmitter {
  private:
    unsigned int Padding;
    std::vector<ConstantEmitter *> Entries;
  public:
    CompoundConstantEmitter(unsigned int padding = 0) : Padding(padding) {
    }
    CompoundConstantEmitter &addEntry(ConstantEmitter *e) {
      Entries.push_back(e);
      
      return *this;
    }
    ~CompoundConstantEmitter() {
      while (Entries.size()) {
        ConstantEmitter *entry = Entries.back();
        Entries.pop_back();
        delete entry;
      }
    }
    void emit(raw_ostream &o, unsigned int &i) {
      o << "{" << "\n";
      i += 2;
  
      unsigned int index;
      unsigned int numEntries = Entries.size();
      
      unsigned int numToPrint;
      
      if (Padding) {
        if (numEntries > Padding) {
          fprintf(stderr, "%u entries but %u padding\n", numEntries, Padding);
          llvm_unreachable("More entries than padding");
        }
        numToPrint = Padding;
      } else {
        numToPrint = numEntries;
      }
          
      for (index = 0; index < numToPrint; ++index) {
        o.indent(i);
        if (index < numEntries)
          Entries[index]->emit(o, i);
        else
          o << "-1";
        
        if (index < (numToPrint - 1))
          o << ",";
        o << "\n";
      }
      
      i -= 2;
      o.indent(i) << "}";
    }
  };
  
  class FlagsConstantEmitter : public ConstantEmitter {
  private:
    std::vector<std::string> Flags;
  public:
    FlagsConstantEmitter() {
    }
    FlagsConstantEmitter &addEntry(const char *f) {
      Flags.push_back(std::string(f));
      return *this;
    }
    void emit(raw_ostream &o, unsigned int &i) {
      unsigned int index;
      unsigned int numFlags = Flags.size();
      if (numFlags == 0)
        o << "0";
      
      for (index = 0; index < numFlags; ++index) {
        o << Flags[index].c_str();
        if (index < (numFlags - 1))
          o << " | ";
      }
    }
  };
}

EDEmitter::EDEmitter(RecordKeeper &R) : Records(R) {
}

/// populateOperandOrder - Accepts a CodeGenInstruction and generates its
///   AsmWriterInst for the desired assembly syntax, giving an ordered list of
///   operands in the order they appear in the printed instruction.  Then, for
///   each entry in that list, determines the index of the same operand in the
///   CodeGenInstruction, and emits the resulting mapping into an array, filling
///   in unused slots with -1.
///
/// @arg operandOrder - The array that will be populated with the operand
///                     mapping.  Each entry will contain -1 (invalid index
///                     into the operands present in the AsmString) or a number
///                     representing an index in the operand descriptor array.
/// @arg inst         - The instruction to use when looking up the operands
/// @arg syntax       - The syntax to use, according to LLVM's enumeration
void populateOperandOrder(CompoundConstantEmitter *operandOrder,
                          const CodeGenInstruction &inst,
                          unsigned syntax) {
  unsigned int numArgs = 0;
  
  AsmWriterInst awInst(inst, syntax, -1, -1);
  
  std::vector<AsmWriterOperand>::iterator operandIterator;
  
  for (operandIterator = awInst.Operands.begin();
       operandIterator != awInst.Operands.end();
       ++operandIterator) {
    if (operandIterator->OperandType == 
        AsmWriterOperand::isMachineInstrOperand) {
      operandOrder->addEntry(
        new LiteralConstantEmitter(operandIterator->CGIOpNo));
      numArgs++;
    }
  }
}

/////////////////////////////////////////////////////
// Support functions for handling X86 instructions //
/////////////////////////////////////////////////////

#define SET(flag) { type->set(flag); return 0; }

#define REG(str) if (name == str) SET("kOperandTypeRegister");
#define MEM(str) if (name == str) SET("kOperandTypeX86Memory");
#define LEA(str) if (name == str) SET("kOperandTypeX86EffectiveAddress");
#define IMM(str) if (name == str) SET("kOperandTypeImmediate");
#define PCR(str) if (name == str) SET("kOperandTypeX86PCRelative");

/// X86TypeFromOpName - Processes the name of a single X86 operand (which is
///   actually its type) and translates it into an operand type
///
/// @arg flags    - The type object to set
/// @arg name     - The name of the operand
static int X86TypeFromOpName(LiteralConstantEmitter *type,
                             const std::string &name) {
  REG("GR8");
  REG("GR8_NOREX");
  REG("GR16");
  REG("GR32");
  REG("GR32_NOREX");
  REG("GR32_TC");
  REG("FR32");
  REG("RFP32");
  REG("GR64");
  REG("GR64_TC");
  REG("FR64");
  REG("VR64");
  REG("RFP64");
  REG("RFP80");
  REG("VR128");
  REG("VR256");
  REG("RST");
  REG("SEGMENT_REG");
  REG("DEBUG_REG");
  REG("CONTROL_REG");
  
  IMM("i8imm");
  IMM("i16imm");
  IMM("i16i8imm");
  IMM("i32imm");
  IMM("i32i8imm");
  IMM("i64imm");
  IMM("i64i8imm");
  IMM("i64i32imm");
  IMM("SSECC");
  
  // all R, I, R, I, R
  MEM("i8mem");
  MEM("i8mem_NOREX");
  MEM("i16mem");
  MEM("i32mem");
  MEM("i32mem_TC");
  MEM("f32mem");
  MEM("ssmem");
  MEM("opaque32mem");
  MEM("opaque48mem");
  MEM("i64mem");
  MEM("i64mem_TC");
  MEM("f64mem");
  MEM("sdmem");
  MEM("f80mem");
  MEM("opaque80mem");
  MEM("i128mem");
  MEM("i256mem");
  MEM("f128mem");
  MEM("f256mem");
  MEM("opaque512mem");
  
  // all R, I, R, I
  LEA("lea32mem");
  LEA("lea64_32mem");
  LEA("lea64mem");
  
  // all I
  PCR("i16imm_pcrel");
  PCR("i32imm_pcrel");
  PCR("i64i32imm_pcrel");
  PCR("brtarget8");
  PCR("offset8");
  PCR("offset16");
  PCR("offset32");
  PCR("offset64");
  PCR("brtarget");
  
  return 1;
}

#undef REG
#undef MEM
#undef LEA
#undef IMM
#undef PCR

#undef SET

/// X86PopulateOperands - Handles all the operands in an X86 instruction, adding
///   the appropriate flags to their descriptors
///
/// @operandFlags - A reference the array of operand flag objects
/// @inst         - The instruction to use as a source of information
static void X86PopulateOperands(
  LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
  const CodeGenInstruction &inst) {
  if (!inst.TheDef->isSubClassOf("X86Inst"))
    return;
  
  unsigned int index;
  unsigned int numOperands = inst.OperandList.size();
  
  for (index = 0; index < numOperands; ++index) {
    const CodeGenInstruction::OperandInfo &operandInfo = 
      inst.OperandList[index];
    Record &rec = *operandInfo.Rec;
    
    if (X86TypeFromOpName(operandTypes[index], rec.getName())) {
      errs() << "Operand type: " << rec.getName().c_str() << "\n";
      errs() << "Operand name: " << operandInfo.Name.c_str() << "\n";
      errs() << "Instruction mame: " << inst.TheDef->getName().c_str() << "\n";
      llvm_unreachable("Unhandled type");
    }
  }
}

/// decorate1 - Decorates a named operand with a new flag
///
/// @operandFlags - The array of operand flag objects, which don't have names
/// @inst         - The CodeGenInstruction, which provides a way to translate
///                 between names and operand indices
/// @opName       - The name of the operand
/// @flag         - The name of the flag to add
static inline void decorate1(
  FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
  const CodeGenInstruction &inst,
  const char *opName,
  const char *opFlag) {
  unsigned opIndex;
  
  opIndex = inst.getOperandNamed(std::string(opName));
  
  operandFlags[opIndex]->addEntry(opFlag);
}

#define DECORATE1(opName, opFlag) decorate1(operandFlags, inst, opName, opFlag)

#define MOV(source, target) {               \
  instType.set("kInstructionTypeMove");     \
  DECORATE1(source, "kOperandFlagSource");  \
  DECORATE1(target, "kOperandFlagTarget");  \
}

#define BRANCH(target) {                    \
  instType.set("kInstructionTypeBranch");   \
  DECORATE1(target, "kOperandFlagTarget");  \
}

#define PUSH(source) {                      \
  instType.set("kInstructionTypePush");     \
  DECORATE1(source, "kOperandFlagSource");  \
}

#define POP(target) {                       \
  instType.set("kInstructionTypePop");      \
  DECORATE1(target, "kOperandFlagTarget");  \
}

#define CALL(target) {                      \
  instType.set("kInstructionTypeCall");     \
  DECORATE1(target, "kOperandFlagTarget");  \
}

#define RETURN() {                          \
  instType.set("kInstructionTypeReturn");   \
}

/// X86ExtractSemantics - Performs various checks on the name of an X86
///   instruction to determine what sort of an instruction it is and then adds 
///   the appropriate flags to the instruction and its operands
///
/// @arg instType     - A reference to the type for the instruction as a whole
/// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst         - A reference to the original instruction
static void X86ExtractSemantics(
  LiteralConstantEmitter &instType,
  FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
  const CodeGenInstruction &inst) {
  const std::string &name = inst.TheDef->getName();
    
  if (name.find("MOV") != name.npos) {
    if (name.find("MOV_V") != name.npos) {
      // ignore (this is a pseudoinstruction)
    } else if (name.find("MASK") != name.npos) {
      // ignore (this is a masking move)
    } else if (name.find("r0") != name.npos) {
      // ignore (this is a pseudoinstruction)
    } else if (name.find("PS") != name.npos ||
             name.find("PD") != name.npos) {
      // ignore (this is a shuffling move)
    } else if (name.find("MOVS") != name.npos) {
      // ignore (this is a string move)
    } else if (name.find("_F") != name.npos) {
      // TODO handle _F moves to ST(0)
    } else if (name.find("a") != name.npos) {
      // TODO handle moves to/from %ax
    } else if (name.find("CMOV") != name.npos) {
      MOV("src2", "dst");
    } else if (name.find("PC") != name.npos) {
      MOV("label", "reg")
    } else {
      MOV("src", "dst");
    }
  }
  
  if (name.find("JMP") != name.npos ||
      name.find("J") == 0) {
    if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
      BRANCH("off");
    } else {
      BRANCH("dst");
    }
  }
  
  if (name.find("PUSH") != name.npos) {
    if (name.find("FS") != name.npos ||
        name.find("GS") != name.npos) {
      instType.set("kInstructionTypePush");
      // TODO add support for fixed operands
    } else if (name.find("F") != name.npos) {
      // ignore (this pushes onto the FP stack)
    } else if (name.find("A") != name.npos) {
      // ignore (pushes all GP registoers onto the stack)
    } else if (name[name.length() - 1] == 'm') {
      PUSH("src");
    } else if (name.find("i") != name.npos) {
      PUSH("imm");
    } else {
      PUSH("reg");
    }
  }
  
  if (name.find("POP") != name.npos) {
    if (name.find("POPCNT") != name.npos) {
      // ignore (not a real pop)
    } else if (name.find("FS") != name.npos ||
             name.find("GS") != name.npos) {
      instType.set("kInstructionTypePop");
      // TODO add support for fixed operands
    } else if (name.find("F") != name.npos) {
      // ignore (this pops from the FP stack)
    } else if (name.find("A") != name.npos) {
      // ignore (pushes all GP registoers onto the stack)
    } else if (name[name.length() - 1] == 'm') {
      POP("dst");
    } else {
      POP("reg");
    }
  }
  
  if (name.find("CALL") != name.npos) {
    if (name.find("ADJ") != name.npos) {
      // ignore (not a call)
    } else if (name.find("SYSCALL") != name.npos) {
      // ignore (doesn't go anywhere we know about)
    } else if (name.find("VMCALL") != name.npos) {
      // ignore (rather different semantics than a regular call)
    } else if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
      CALL("off");
    } else {
      CALL("dst");
    }
  }
  
  if (name.find("RET") != name.npos) {
    RETURN();
  }
}

#undef MOV
#undef BRANCH
#undef PUSH
#undef POP
#undef CALL
#undef RETURN

/////////////////////////////////////////////////////
// Support functions for handling ARM instructions //
/////////////////////////////////////////////////////

#define SET(flag) { type->set(flag); return 0; }

#define REG(str)    if (name == str) SET("kOperandTypeRegister");
#define IMM(str)    if (name == str) SET("kOperandTypeImmediate");

#define MISC(str, type)   if (name == str) SET(type);

/// ARMFlagFromOpName - Processes the name of a single ARM operand (which is
///   actually its type) and translates it into an operand type
///
/// @arg type     - The type object to set
/// @arg name     - The name of the operand
static int ARMFlagFromOpName(LiteralConstantEmitter *type,
                             const std::string &name) {
  REG("GPR");
  REG("rGPR");
  REG("tcGPR");
  REG("cc_out");
  REG("s_cc_out");
  REG("tGPR");
  REG("DPR");
  REG("DPR_VFP2");
  REG("DPR_8");
  REG("SPR");
  REG("QPR");
  REG("QQPR");
  REG("QQQQPR");
  
  IMM("i32imm");
  IMM("bf_inv_mask_imm");
  IMM("jtblock_operand");
  IMM("nohash_imm");
  IMM("cpinst_operand");
  IMM("cps_opt");
  IMM("vfp_f64imm");
  IMM("vfp_f32imm");
  IMM("memb_opt");
  IMM("msr_mask");
  IMM("neg_zero");
  IMM("imm0_31");
  IMM("nModImm");
  IMM("imm0_4095");
  IMM("jt2block_operand");
  IMM("t_imm_s4");
  IMM("pclabel");
  IMM("shift_imm");
  
  MISC("brtarget", "kOperandTypeARMBranchTarget");                // ?
  MISC("so_reg", "kOperandTypeARMSoReg");                         // R, R, I
  MISC("t2_so_reg", "kOperandTypeThumb2SoReg");                   // R, I
  MISC("so_imm", "kOperandTypeARMSoImm");                         // I
  MISC("t2_so_imm", "kOperandTypeThumb2SoImm");                   // I
  MISC("so_imm2part", "kOperandTypeARMSoImm2Part");               // I
  MISC("pred", "kOperandTypeARMPredicate");                       // I, R
  MISC("it_pred", "kOperandTypeARMPredicate");                    // I
  MISC("addrmode2", "kOperandTypeARMAddrMode2");                  // R, R, I
  MISC("am2offset", "kOperandTypeARMAddrMode2Offset");            // R, I
  MISC("addrmode3", "kOperandTypeARMAddrMode3");                  // R, R, I
  MISC("am3offset", "kOperandTypeARMAddrMode3Offset");            // R, I
  MISC("addrmode4", "kOperandTypeARMAddrMode4");                  // R, I
  MISC("addrmode5", "kOperandTypeARMAddrMode5");                  // R, I
  MISC("addrmode6", "kOperandTypeARMAddrMode6");                  // R, R, I, I
  MISC("am6offset", "kOperandTypeARMAddrMode6Offset");            // R, I, I
  MISC("addrmodepc", "kOperandTypeARMAddrModePC");                // R, I
  MISC("reglist", "kOperandTypeARMRegisterList");                 // I, R, ...
  MISC("it_mask", "kOperandTypeThumbITMask");                     // I
  MISC("t2addrmode_imm8", "kOperandTypeThumb2AddrModeImm8");      // R, I
  MISC("t2am_imm8_offset", "kOperandTypeThumb2AddrModeImm8Offset");//I
  MISC("t2addrmode_imm12", "kOperandTypeThumb2AddrModeImm12");    // R, I
  MISC("t2addrmode_so_reg", "kOperandTypeThumb2AddrModeSoReg");   // R, R, I
  MISC("t2addrmode_imm8s4", "kOperandTypeThumb2AddrModeImm8s4");  // R, I
  MISC("t2am_imm8s4_offset", "kOperandTypeThumb2AddrModeImm8s4Offset");  
                                                                  // R, I
  MISC("tb_addrmode", "kOperandTypeARMTBAddrMode");               // I
  MISC("t_addrmode_s1", "kOperandTypeThumbAddrModeS1");           // R, I, R
  MISC("t_addrmode_s2", "kOperandTypeThumbAddrModeS2");           // R, I, R
  MISC("t_addrmode_s4", "kOperandTypeThumbAddrModeS4");           // R, I, R
  MISC("t_addrmode_rr", "kOperandTypeThumbAddrModeRR");           // R, R
  MISC("t_addrmode_sp", "kOperandTypeThumbAddrModeSP");           // R, I
  
  return 1;
}

#undef SOREG
#undef SOIMM
#undef PRED
#undef REG
#undef MEM
#undef LEA
#undef IMM
#undef PCR

#undef SET

/// ARMPopulateOperands - Handles all the operands in an ARM instruction, adding
///   the appropriate flags to their descriptors
///
/// @operandFlags - A reference the array of operand flag objects
/// @inst         - The instruction to use as a source of information
static void ARMPopulateOperands(
  LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
  const CodeGenInstruction &inst) {
  if (!inst.TheDef->isSubClassOf("InstARM") &&
      !inst.TheDef->isSubClassOf("InstThumb"))
    return;
  
  unsigned int index;
  unsigned int numOperands = inst.OperandList.size();
  
  if (numOperands > EDIS_MAX_OPERANDS) {
    errs() << "numOperands == " << numOperands << " > " << 
      EDIS_MAX_OPERANDS << '\n';
    llvm_unreachable("Too many operands");
  }
  
  for (index = 0; index < numOperands; ++index) {
    const CodeGenInstruction::OperandInfo &operandInfo = 
    inst.OperandList[index];
    Record &rec = *operandInfo.Rec;
    
    if (ARMFlagFromOpName(operandTypes[index], rec.getName())) {
      errs() << "Operand type: " << rec.getName() << '\n';
      errs() << "Operand name: " << operandInfo.Name << '\n';
      errs() << "Instruction mame: " << inst.TheDef->getName() << '\n';
      llvm_unreachable("Unhandled type");
    }
  }
}

#define BRANCH(target) {                    \
  instType.set("kInstructionTypeBranch");   \
  DECORATE1(target, "kOperandFlagTarget");  \
}

/// ARMExtractSemantics - Performs various checks on the name of an ARM
///   instruction to determine what sort of an instruction it is and then adds 
///   the appropriate flags to the instruction and its operands
///
/// @arg instType     - A reference to the type for the instruction as a whole
/// @arg operandTypes - A reference to the array of operand type object pointers
/// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst         - A reference to the original instruction
static void ARMExtractSemantics(
  LiteralConstantEmitter &instType,
  LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
  FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
  const CodeGenInstruction &inst) {
  const std::string &name = inst.TheDef->getName();
  
  if (name == "tBcc"   ||
      name == "tB"     ||
      name == "t2Bcc"  ||
      name == "Bcc"    ||
      name == "tCBZ"   ||
      name == "tCBNZ") {
    BRANCH("target");
  }
  
  if (name == "tBLr9"      ||
      name == "BLr9_pred"  ||
      name == "tBLXi_r9"   ||
      name == "tBLXr_r9"   ||
      name == "BLXr9"      ||
      name == "t2BXJ"      ||
      name == "BXJ") {
    BRANCH("func");
    
    unsigned opIndex;
    opIndex = inst.getOperandNamed("func");
    if (operandTypes[opIndex]->is("kOperandTypeImmediate"))
      operandTypes[opIndex]->set("kOperandTypeARMBranchTarget");
  }
}

#undef BRANCH

/// populateInstInfo - Fills an array of InstInfos with information about each 
///   instruction in a target
///
/// @arg infoArray  - The array of InstInfo objects to populate
/// @arg target     - The CodeGenTarget to use as a source of instructions
static void populateInstInfo(CompoundConstantEmitter &infoArray,
                             CodeGenTarget &target) {
  const std::vector<const CodeGenInstruction*> &numberedInstructions =
    target.getInstructionsByEnumValue();
  
  unsigned int index;
  unsigned int numInstructions = numberedInstructions.size();
  
  for (index = 0; index < numInstructions; ++index) {
    const CodeGenInstruction& inst = *numberedInstructions[index];
    
    CompoundConstantEmitter *infoStruct = new CompoundConstantEmitter;
    infoArray.addEntry(infoStruct);
    
    LiteralConstantEmitter *instType = new LiteralConstantEmitter;
    infoStruct->addEntry(instType);
    
    LiteralConstantEmitter *numOperandsEmitter = 
      new LiteralConstantEmitter(inst.OperandList.size());
    infoStruct->addEntry(numOperandsEmitter);
    
    CompoundConstantEmitter *operandTypeArray = new CompoundConstantEmitter;
    infoStruct->addEntry(operandTypeArray);
    
    LiteralConstantEmitter *operandTypes[EDIS_MAX_OPERANDS];
                         
    CompoundConstantEmitter *operandFlagArray = new CompoundConstantEmitter;
    infoStruct->addEntry(operandFlagArray);
        
    FlagsConstantEmitter *operandFlags[EDIS_MAX_OPERANDS];
    
    for (unsigned operandIndex = 0; 
         operandIndex < EDIS_MAX_OPERANDS; 
         ++operandIndex) {
      operandTypes[operandIndex] = new LiteralConstantEmitter;
      operandTypeArray->addEntry(operandTypes[operandIndex]);
      
      operandFlags[operandIndex] = new FlagsConstantEmitter;
      operandFlagArray->addEntry(operandFlags[operandIndex]);
    }
 
    unsigned numSyntaxes = 0;
    
    if (target.getName() == "X86") {
      X86PopulateOperands(operandTypes, inst);
      X86ExtractSemantics(*instType, operandFlags, inst);
      numSyntaxes = 2;
    }
    else if (target.getName() == "ARM") {
      ARMPopulateOperands(operandTypes, inst);
      ARMExtractSemantics(*instType, operandTypes, operandFlags, inst);
      numSyntaxes = 1;
    }
    
    CompoundConstantEmitter *operandOrderArray = new CompoundConstantEmitter;    
    
    infoStruct->addEntry(operandOrderArray);
    
    for (unsigned syntaxIndex = 0; 
         syntaxIndex < EDIS_MAX_SYNTAXES; 
         ++syntaxIndex) {
      CompoundConstantEmitter *operandOrder = 
        new CompoundConstantEmitter(EDIS_MAX_OPERANDS);
      
      operandOrderArray->addEntry(operandOrder);
      
      if (syntaxIndex < numSyntaxes) {
        populateOperandOrder(operandOrder, inst, syntaxIndex);
      }
    }
    
    infoStruct = NULL;
  }
}

static void emitCommonEnums(raw_ostream &o, unsigned int &i) {
  EnumEmitter operandTypes("OperandTypes");
  operandTypes.addEntry("kOperandTypeNone");
  operandTypes.addEntry("kOperandTypeImmediate");
  operandTypes.addEntry("kOperandTypeRegister");
  operandTypes.addEntry("kOperandTypeX86Memory");
  operandTypes.addEntry("kOperandTypeX86EffectiveAddress");
  operandTypes.addEntry("kOperandTypeX86PCRelative");
  operandTypes.addEntry("kOperandTypeARMBranchTarget");
  operandTypes.addEntry("kOperandTypeARMSoReg");
  operandTypes.addEntry("kOperandTypeARMSoImm");
  operandTypes.addEntry("kOperandTypeARMSoImm2Part");
  operandTypes.addEntry("kOperandTypeARMPredicate");
  operandTypes.addEntry("kOperandTypeARMAddrMode2");
  operandTypes.addEntry("kOperandTypeARMAddrMode2Offset");
  operandTypes.addEntry("kOperandTypeARMAddrMode3");
  operandTypes.addEntry("kOperandTypeARMAddrMode3Offset");
  operandTypes.addEntry("kOperandTypeARMAddrMode4");
  operandTypes.addEntry("kOperandTypeARMAddrMode5");
  operandTypes.addEntry("kOperandTypeARMAddrMode6");
  operandTypes.addEntry("kOperandTypeARMAddrMode6Offset");
  operandTypes.addEntry("kOperandTypeARMAddrModePC");
  operandTypes.addEntry("kOperandTypeARMRegisterList");
  operandTypes.addEntry("kOperandTypeARMTBAddrMode");
  operandTypes.addEntry("kOperandTypeThumbITMask");
  operandTypes.addEntry("kOperandTypeThumbAddrModeS1");
  operandTypes.addEntry("kOperandTypeThumbAddrModeS2");
  operandTypes.addEntry("kOperandTypeThumbAddrModeS4");
  operandTypes.addEntry("kOperandTypeThumbAddrModeRR");
  operandTypes.addEntry("kOperandTypeThumbAddrModeSP");
  operandTypes.addEntry("kOperandTypeThumb2SoReg");
  operandTypes.addEntry("kOperandTypeThumb2SoImm");
  operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8");
  operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8Offset");
  operandTypes.addEntry("kOperandTypeThumb2AddrModeImm12");
  operandTypes.addEntry("kOperandTypeThumb2AddrModeSoReg");
  operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4");
  operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4Offset");
  operandTypes.emit(o, i);
  
  o << "\n";
  
  EnumEmitter operandFlags("OperandFlags");
  operandFlags.addEntry("kOperandFlagSource");
  operandFlags.addEntry("kOperandFlagTarget");
  operandFlags.emitAsFlags(o, i);
  
  o << "\n";
  
  EnumEmitter instructionTypes("InstructionTypes");
  instructionTypes.addEntry("kInstructionTypeNone");
  instructionTypes.addEntry("kInstructionTypeMove");
  instructionTypes.addEntry("kInstructionTypeBranch");
  instructionTypes.addEntry("kInstructionTypePush");
  instructionTypes.addEntry("kInstructionTypePop");
  instructionTypes.addEntry("kInstructionTypeCall");
  instructionTypes.addEntry("kInstructionTypeReturn");
  instructionTypes.emit(o, i);
  
  o << "\n";
}

void EDEmitter::run(raw_ostream &o) {
  unsigned int i = 0;
  
  CompoundConstantEmitter infoArray;
  CodeGenTarget target;
  
  populateInstInfo(infoArray, target);
  
  emitCommonEnums(o, i);
  
  o << "namespace {\n";
  
  o << "llvm::EDInstInfo instInfo" << target.getName().c_str() << "[] = ";
  infoArray.emit(o, i);
  o << ";" << "\n";
  
  o << "}\n";
}