llvm.org GIT mirror llvm / release_27 lib / Target / X86 / X86InstrFPStack.td
release_27

Tree @release_27 (Download .tar.gz)

X86InstrFPStack.td @release_27raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
//==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=//
// 
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file describes the X86 x87 FPU instruction set, defining the
// instructions, and properties of the instructions which are needed for code
// generation, machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// FPStack specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, 
                                           SDTCisVT<1, f80>]>;
def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
                                           SDTCisPtrTy<1>, 
                                           SDTCisVT<2, OtherVT>]>;
def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
                                           SDTCisPtrTy<1>, 
                                           SDTCisVT<2, OtherVT>]>;
def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
                                           SDTCisVT<2, OtherVT>]>;
def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;

def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;

def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
                             [SDNPHasChain, SDNPMayLoad]>;
def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
                             [SDNPHasChain, SDNPInFlag, SDNPMayStore]>;
def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
                             [SDNPHasChain, SDNPMayLoad]>;
def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
                             [SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>;
def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
                             [SDNPHasChain, SDNPMayStore]>;
def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
                             [SDNPHasChain, SDNPMayStore]>;
def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
                             [SDNPHasChain, SDNPMayStore]>;
def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect]>;

//===----------------------------------------------------------------------===//
// FPStack pattern fragments
//===----------------------------------------------------------------------===//

def fpimm0 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(+0.0);
}]>;

def fpimmneg0 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(-0.0);
}]>;

def fpimm1 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(+1.0);
}]>;

def fpimmneg1 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(-1.0);
}]>;

// Some 'special' instructions
let usesCustomInserter = 1 in {  // Expanded after instruction selection.
  def FP32_TO_INT16_IN_MEM : I<0, Pseudo,
                              (outs), (ins i16mem:$dst, RFP32:$src),
                              "##FP32_TO_INT16_IN_MEM PSEUDO!",
                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
  def FP32_TO_INT32_IN_MEM : I<0, Pseudo,
                              (outs), (ins i32mem:$dst, RFP32:$src),
                              "##FP32_TO_INT32_IN_MEM PSEUDO!",
                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
  def FP32_TO_INT64_IN_MEM : I<0, Pseudo,
                              (outs), (ins i64mem:$dst, RFP32:$src),
                              "##FP32_TO_INT64_IN_MEM PSEUDO!",
                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
  def FP64_TO_INT16_IN_MEM : I<0, Pseudo,
                              (outs), (ins i16mem:$dst, RFP64:$src),
                              "##FP64_TO_INT16_IN_MEM PSEUDO!",
                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
  def FP64_TO_INT32_IN_MEM : I<0, Pseudo,
                              (outs), (ins i32mem:$dst, RFP64:$src),
                              "##FP64_TO_INT32_IN_MEM PSEUDO!",
                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
  def FP64_TO_INT64_IN_MEM : I<0, Pseudo,
                              (outs), (ins i64mem:$dst, RFP64:$src),
                              "##FP64_TO_INT64_IN_MEM PSEUDO!",
                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
  def FP80_TO_INT16_IN_MEM : I<0, Pseudo,
                              (outs), (ins i16mem:$dst, RFP80:$src),
                              "##FP80_TO_INT16_IN_MEM PSEUDO!",
                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
  def FP80_TO_INT32_IN_MEM : I<0, Pseudo,
                              (outs), (ins i32mem:$dst, RFP80:$src),
                              "##FP80_TO_INT32_IN_MEM PSEUDO!",
                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
  def FP80_TO_INT64_IN_MEM : I<0, Pseudo,
                              (outs), (ins i64mem:$dst, RFP80:$src),
                              "##FP80_TO_INT64_IN_MEM PSEUDO!",
                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
}

let isTerminator = 1 in
  let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
    def FP_REG_KILL  : I<0, Pseudo, (outs), (ins), "##FP_REG_KILL", []>;

// All FP Stack operations are represented with four instructions here.  The
// first three instructions, generated by the instruction selector, use "RFP32"
// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
// 64-bit or 80-bit floating point values.  These sizes apply to the values, 
// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
// copied to each other without losing information.  These instructions are all
// pseudo instructions and use the "_Fp" suffix.
// In some cases there are additional variants with a mixture of different
// register sizes.
// The second instruction is defined with FPI, which is the actual instruction
// emitted by the assembler.  These use "RST" registers, although frequently
// the actual register(s) used are implicit.  These are always 80 bits.
// The FP stackifier pass converts one to the other after register allocation 
// occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).

// Pseudo Instructions for FP stack return values.
def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0)

// FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when
// there are two values live out on the stack from a call or inlineasm.  This
// magic is handled by the stackifier.  It is not valid to emit FpGET_ST1* and
// then FpGET_ST0*.  In addition, it is invalid for any FP-using operations to
// occur between them.
def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1)

let Defs = [ST0] in {
def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR
def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR
def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR
}

let Defs = [ST1] in {
def FpSET_ST1_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(1) = FPR
def FpSET_ST1_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(1) = FPR
def FpSET_ST1_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(1) = FPR
}

// FpIf32, FpIf64 - Floating Point Psuedo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
// f80 instructions cannot use SSE and use neither of these.
class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;

// Register copies.  Just copies, the shortening ones do not truncate.
let neverHasSideEffects = 1 in {
  def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; 
  def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; 
  def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; 
  def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; 
  def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; 
  def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; 
  def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; 
  def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; 
  def MOV_Fp8080 : FpI_  <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; 
}

// Factoring for arithmetic.
multiclass FPBinary_rr<SDNode OpNode> {
// Register op register -> register
// These are separated out because they have no reversed form.
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
}
// The FopST0 series are not included here because of the irregularities
// in where the 'r' goes in assembly output.
// These instructions cannot address 80-bit memory.
multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
// ST(0) = ST(0) + [mem]
def _Fp32m  : FpIf32<(outs RFP32:$dst), 
                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
                  [(set RFP32:$dst, 
                    (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
def _Fp64m  : FpIf64<(outs RFP64:$dst), 
                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
                  [(set RFP64:$dst, 
                    (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
def _Fp64m32: FpIf64<(outs RFP64:$dst), 
                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
                  [(set RFP64:$dst, 
                    (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
def _Fp80m32: FpI_<(outs RFP80:$dst), 
                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
                  [(set RFP80:$dst, 
                    (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
def _Fp80m64: FpI_<(outs RFP80:$dst), 
                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
                  [(set RFP80:$dst, 
                    (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src), 
                 !strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { 
  let mayLoad = 1; 
}
def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src), 
                 !strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { 
  let mayLoad = 1; 
}
// ST(0) = ST(0) + [memint]
def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), 
                       OneArgFPRW,
                    [(set RFP32:$dst, (OpNode RFP32:$src1,
                                       (X86fild addr:$src2, i16)))]>;
def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), 
                       OneArgFPRW,
                    [(set RFP32:$dst, (OpNode RFP32:$src1,
                                       (X86fild addr:$src2, i32)))]>;
def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), 
                       OneArgFPRW,
                    [(set RFP64:$dst, (OpNode RFP64:$src1,
                                       (X86fild addr:$src2, i16)))]>;
def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), 
                       OneArgFPRW,
                    [(set RFP64:$dst, (OpNode RFP64:$src1,
                                       (X86fild addr:$src2, i32)))]>;
def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), 
                       OneArgFPRW,
                    [(set RFP80:$dst, (OpNode RFP80:$src1,
                                       (X86fild addr:$src2, i16)))]>;
def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), 
                       OneArgFPRW,
                    [(set RFP80:$dst, (OpNode RFP80:$src1,
                                       (X86fild addr:$src2, i32)))]>;
def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src), 
                  !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { 
  let mayLoad = 1; 
}
def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src), 
                  !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { 
  let mayLoad = 1; 
}
}

defm ADD : FPBinary_rr<fadd>;
defm SUB : FPBinary_rr<fsub>;
defm MUL : FPBinary_rr<fmul>;
defm DIV : FPBinary_rr<fdiv>;
defm ADD : FPBinary<fadd, MRM0m, "add">;
defm SUB : FPBinary<fsub, MRM4m, "sub">;
defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
defm MUL : FPBinary<fmul, MRM1m, "mul">;
defm DIV : FPBinary<fdiv, MRM6m, "div">;
defm DIVR: FPBinary<fdiv, MRM7m, "divr">;

class FPST0rInst<bits<8> o, string asm>
  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8;
class FPrST0Inst<bits<8> o, string asm>
  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC;
class FPrST0PInst<bits<8> o, string asm>
  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE;

// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
// we have to put some 'r's in and take them out of weird places.
def ADD_FST0r   : FPST0rInst <0xC0, "fadd\t$op">;
def ADD_FrST0   : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, %ST(0)}">;
def ADD_FPrST0  : FPrST0PInst<0xC0, "faddp\t$op">;
def SUBR_FST0r  : FPST0rInst <0xE8, "fsubr\t$op">;
def SUB_FrST0   : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, %ST(0)}">;
def SUB_FPrST0  : FPrST0PInst<0xE8, "fsub{r}p\t$op">;
def SUB_FST0r   : FPST0rInst <0xE0, "fsub\t$op">;
def SUBR_FrST0  : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, %ST(0)}">;
def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">;
def MUL_FST0r   : FPST0rInst <0xC8, "fmul\t$op">;
def MUL_FrST0   : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, %ST(0)}">;
def MUL_FPrST0  : FPrST0PInst<0xC8, "fmulp\t$op">;
def DIVR_FST0r  : FPST0rInst <0xF8, "fdivr\t$op">;
def DIV_FrST0   : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, %ST(0)}">;
def DIV_FPrST0  : FPrST0PInst<0xF8, "fdiv{r}p\t$op">;
def DIV_FST0r   : FPST0rInst <0xF0, "fdiv\t$op">;
def DIVR_FrST0  : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, %ST(0)}">;
def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;

def COM_FST0r   : FPST0rInst <0xD0, "fcom\t$op">;
def COMP_FST0r  : FPST0rInst <0xD8, "fcomp\t$op">;

// Unary operations.
multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
}

defm CHS : FPUnary<fneg, 0xE0, "fchs">;
defm ABS : FPUnary<fabs, 0xE1, "fabs">;
defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
defm SIN : FPUnary<fsin, 0xFE, "fsin">;
defm COS : FPUnary<fcos, 0xFF, "fcos">;

let neverHasSideEffects = 1 in {
def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
}
def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;

// Versions of FP instructions that take a single memory operand.  Added for the
//   disassembler; remove as they are included with patterns elsewhere.
def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{l}\t$src">;
def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{l}\t$src">;

def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;

def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;

def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{ll}\t$src">;
def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{ll}\t$src">;

def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
def FNSTSWm  : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;

def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{w}\t$src">;
def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{w}\t$src">;

def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;

// Floating point cmovs.
multiclass FPCMov<PatLeaf cc> {
  def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
                       CondMovFP,
                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
                                        cc, EFLAGS))]>;
  def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
                       CondMovFP,
                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
                                        cc, EFLAGS))]>;
  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
                     CondMovFP,
                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
                                        cc, EFLAGS))]>;
}
let Uses = [EFLAGS], isTwoAddress = 1 in {
defm CMOVB  : FPCMov<X86_COND_B>;
defm CMOVBE : FPCMov<X86_COND_BE>;
defm CMOVE  : FPCMov<X86_COND_E>;
defm CMOVP  : FPCMov<X86_COND_P>;
defm CMOVNB : FPCMov<X86_COND_AE>;
defm CMOVNBE: FPCMov<X86_COND_A>;
defm CMOVNE : FPCMov<X86_COND_NE>;
defm CMOVNP : FPCMov<X86_COND_NP>;
}

// These are not factored because there's no clean way to pass DA/DB.
def CMOVB_F  : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovb\t{$op, %st(0)|%ST(0), $op}">, DA;
def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovbe\t{$op, %st(0)|%ST(0), $op}">, DA;
def CMOVE_F  : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
                  "fcmove\t{$op, %st(0)|%ST(0), $op}">, DA;
def CMOVP_F  : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovu\t {$op, %st(0)|%ST(0), $op}">, DA;
def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovnb\t{$op, %st(0)|%ST(0), $op}">, DB;
def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovnbe\t{$op, %st(0)|%ST(0), $op}">, DB;
def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovne\t{$op, %st(0)|%ST(0), $op}">, DB;
def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
                  "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB;

// Floating point loads & stores.
let canFoldAsLoad = 1 in {
def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
let isReMaterializable = 1 in
  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
}
def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;

def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
                  [(store RFP32:$src, addr:$op)]>;
def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
                  [(truncstoref32 RFP64:$src, addr:$op)]>;
def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
                  [(store RFP64:$src, addr:$op)]>;
def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
                  [(truncstoref32 RFP80:$src, addr:$op)]>;
def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
                  [(truncstoref64 RFP80:$src, addr:$op)]>;
// FST does not support 80-bit memory target; FSTP must be used.

let mayStore = 1, neverHasSideEffects = 1 in {
def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
}
def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
                    [(store RFP80:$src, addr:$op)]>;
let mayStore = 1, neverHasSideEffects = 1 in {
def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
}

let mayLoad = 1 in {
def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
}
let mayStore = 1 in {
def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
}

// FISTTP requires SSE3 even though it's a FPStack op.
def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;
def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>,
                    Requires<[HasSSE3]>;

let mayStore = 1 in {
def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), 
  "fisttp{ll}\t$dst">;
}

// FP Stack manipulation instructions.
def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9;
def ST_Frr   : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD;
def ST_FPrr  : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD;
def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9;

// Floating point constant loads.
let isReMaterializable = 1 in {
def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
                [(set RFP32:$dst, fpimm0)]>;
def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
                [(set RFP32:$dst, fpimm1)]>;
def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
                [(set RFP64:$dst, fpimm0)]>;
def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
                [(set RFP64:$dst, fpimm1)]>;
def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
                [(set RFP80:$dst, fpimm0)]>;
def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
                [(set RFP80:$dst, fpimm1)]>;
}

def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9;
def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9;


// Floating point compares.
let Defs = [EFLAGS] in {
def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
                        []>;  // FPSW = cmp ST(0) with ST(i)
def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
                        []>;  // FPSW = cmp ST(0) with ST(i)
def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
                        []>;  // FPSW = cmp ST(0) with ST(i)
                        
def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
                  [(X86cmp RFP32:$lhs, RFP32:$rhs),
                   (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
                  [(X86cmp RFP64:$lhs, RFP64:$rhs),
                   (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
                  [(X86cmp RFP80:$lhs, RFP80:$rhs),
                   (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
}

let Defs = [EFLAGS], Uses = [ST0] in {
def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i)
                    (outs), (ins RST:$reg),
                    "fucom\t$reg">, DD;
def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop
                    (outs), (ins RST:$reg),
                    "fucomp\t$reg">, DD;
def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop
                    (outs), (ins),
                    "fucompp">, DA;

def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i)
                    (outs), (ins RST:$reg),
                    "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB;
def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop
                    (outs), (ins RST:$reg),
                    "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF;
}

def COM_FIr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
                  "fcomi\t{$reg, %st(0)|%ST(0), $reg}">, DB;
def COM_FIPr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
                   "fcomip\t{$reg, %st(0)|%ST(0), $reg}">, DF;

// Floating point flag ops.
let Defs = [AX] in
def FNSTSW8r  : I<0xE0, RawFrm,                  // AX = fp flags
                  (outs), (ins), "fnstsw %ax", []>, DF;

def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
                  [(X86fp_cwd_get16 addr:$dst)]>;
                  
let mayLoad = 1 in
def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
                  (outs), (ins i16mem:$dst), "fldcw\t$dst", []>;

// Register free

def FFREE : FPI<0xC0, AddRegFrm, (outs), (ins RST:$reg),
                "ffree\t$reg">, DD;

// Clear exceptions

def FNCLEX : I<0xE2, RawFrm, (outs), (ins), "fnclex", []>, DB;

// Operandless floating-point instructions for the disassembler

def FNOP : I<0xD0, RawFrm, (outs), (ins), "fnop", []>, D9;
def FXAM : I<0xE5, RawFrm, (outs), (ins), "fxam", []>, D9;
def FLDL2T : I<0xE9, RawFrm, (outs), (ins), "fldl2t", []>, D9;
def FLDL2E : I<0xEA, RawFrm, (outs), (ins), "fldl2e", []>, D9;
def FLDPI : I<0xEB, RawFrm, (outs), (ins), "fldpi", []>, D9;
def FLDLG2 : I<0xEC, RawFrm, (outs), (ins), "fldlg2", []>, D9;
def FLDLN2 : I<0xED, RawFrm, (outs), (ins), "fldln2", []>, D9;
def F2XM1 : I<0xF0, RawFrm, (outs), (ins), "f2xm1", []>, D9;
def FYL2X : I<0xF1, RawFrm, (outs), (ins), "fyl2x", []>, D9;
def FPTAN : I<0xF2, RawFrm, (outs), (ins), "fptan", []>, D9;
def FPATAN : I<0xF3, RawFrm, (outs), (ins), "fpatan", []>, D9;
def FXTRACT : I<0xF4, RawFrm, (outs), (ins), "fxtract", []>, D9;
def FPREM1 : I<0xF5, RawFrm, (outs), (ins), "fprem1", []>, D9;
def FDECSTP : I<0xF6, RawFrm, (outs), (ins), "fdecstp", []>, D9;
def FINCSTP : I<0xF7, RawFrm, (outs), (ins), "fincstp", []>, D9;
def FPREM : I<0xF8, RawFrm, (outs), (ins), "fprem", []>, D9;
def FYL2XP1 : I<0xF9, RawFrm, (outs), (ins), "fyl2xp1", []>, D9;
def FSINCOS : I<0xFB, RawFrm, (outs), (ins), "fsincos", []>, D9;
def FRNDINT : I<0xFC, RawFrm, (outs), (ins), "frndint", []>, D9;
def FSCALE : I<0xFD, RawFrm, (outs), (ins), "fscale", []>, D9;
def FCOMPP : I<0xD9, RawFrm, (outs), (ins), "fcompp", []>, DE;

def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
               "fxsave\t$dst", []>, TB;
def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
                "fxrstor\t$src", []>, TB;

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// Required for RET of f32 / f64 / f80 values.
def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;

// Required for CALL which return f32 / f64 / f80 values.
def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, 
                                                          RFP64:$src)>;
def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, 
                                                          RFP80:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, 
                                                          RFP80:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
                                                         RFP80:$src)>;

// Floating point constant -0.0 and -1.0
def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;

// Used to conv. i64 to f64 since there isn't a SSE version.
def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;

// FP extensions map onto simple pseudo-value conversions if they are to/from
// the FP stack.
def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>,
          Requires<[FPStackf32]>;
def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>,
           Requires<[FPStackf32]>;
def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>,
           Requires<[FPStackf64]>;

// FP truncations map onto simple pseudo-value conversions if they are to/from
// the FP stack.  We have validated that only value-preserving truncations make
// it through isel.
def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>,
          Requires<[FPStackf32]>;
def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>,
           Requires<[FPStackf32]>;
def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>,
           Requires<[FPStackf64]>;