llvm.org GIT mirror llvm / release_27 lib / CodeGen / Spiller.cpp
release_27

Tree @release_27 (Download .tar.gz)

Spiller.cpp @release_27raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//===-- llvm/CodeGen/Spiller.cpp -  Spiller -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "spiller"

#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <set>

using namespace llvm;

namespace {
  enum SpillerName { trivial, standard, splitting };
}

static cl::opt<SpillerName>
spillerOpt("spiller",
           cl::desc("Spiller to use: (default: standard)"),
           cl::Prefix,
           cl::values(clEnumVal(trivial,   "trivial spiller"),
                      clEnumVal(standard,  "default spiller"),
                      clEnumVal(splitting, "splitting spiller"),
                      clEnumValEnd),
           cl::init(standard));

// Spiller virtual destructor implementation.
Spiller::~Spiller() {}

namespace {

/// Utility class for spillers.
class SpillerBase : public Spiller {
protected:

  MachineFunction *mf;
  LiveIntervals *lis;
  MachineFrameInfo *mfi;
  MachineRegisterInfo *mri;
  const TargetInstrInfo *tii;
  VirtRegMap *vrm;
  
  /// Construct a spiller base. 
  SpillerBase(MachineFunction *mf, LiveIntervals *lis, VirtRegMap *vrm)
    : mf(mf), lis(lis), vrm(vrm)
  {
    mfi = mf->getFrameInfo();
    mri = &mf->getRegInfo();
    tii = mf->getTarget().getInstrInfo();
  }

  /// Add spill ranges for every use/def of the live interval, inserting loads
  /// immediately before each use, and stores after each def. No folding or
  /// remat is attempted.
  std::vector<LiveInterval*> trivialSpillEverywhere(LiveInterval *li) {
    DEBUG(dbgs() << "Spilling everywhere " << *li << "\n");

    assert(li->weight != HUGE_VALF &&
           "Attempting to spill already spilled value.");

    assert(!li->isStackSlot() &&
           "Trying to spill a stack slot.");

    DEBUG(dbgs() << "Trivial spill everywhere of reg" << li->reg << "\n");

    std::vector<LiveInterval*> added;
    
    const TargetRegisterClass *trc = mri->getRegClass(li->reg);
    unsigned ss = vrm->assignVirt2StackSlot(li->reg);

    // Iterate over reg uses/defs.
    for (MachineRegisterInfo::reg_iterator
         regItr = mri->reg_begin(li->reg); regItr != mri->reg_end();) {

      // Grab the use/def instr.
      MachineInstr *mi = &*regItr;

      DEBUG(dbgs() << "  Processing " << *mi);

      // Step regItr to the next use/def instr.
      do {
        ++regItr;
      } while (regItr != mri->reg_end() && (&*regItr == mi));
      
      // Collect uses & defs for this instr.
      SmallVector<unsigned, 2> indices;
      bool hasUse = false;
      bool hasDef = false;
      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
        MachineOperand &op = mi->getOperand(i);
        if (!op.isReg() || op.getReg() != li->reg)
          continue;
        hasUse |= mi->getOperand(i).isUse();
        hasDef |= mi->getOperand(i).isDef();
        indices.push_back(i);
      }

      // Create a new vreg & interval for this instr.
      unsigned newVReg = mri->createVirtualRegister(trc);
      vrm->grow();
      vrm->assignVirt2StackSlot(newVReg, ss);
      LiveInterval *newLI = &lis->getOrCreateInterval(newVReg);
      newLI->weight = HUGE_VALF;
      
      // Update the reg operands & kill flags.
      for (unsigned i = 0; i < indices.size(); ++i) {
        unsigned mopIdx = indices[i];
        MachineOperand &mop = mi->getOperand(mopIdx);
        mop.setReg(newVReg);
        if (mop.isUse() && !mi->isRegTiedToDefOperand(mopIdx)) {
          mop.setIsKill(true);
        }
      }
      assert(hasUse || hasDef);

      // Insert reload if necessary.
      MachineBasicBlock::iterator miItr(mi);
      if (hasUse) {
        tii->loadRegFromStackSlot(*mi->getParent(), miItr, newVReg, ss, trc);
        MachineInstr *loadInstr(prior(miItr));
        SlotIndex loadIndex =
          lis->InsertMachineInstrInMaps(loadInstr).getDefIndex();
        SlotIndex endIndex = loadIndex.getNextIndex();
        VNInfo *loadVNI =
          newLI->getNextValue(loadIndex, 0, true, lis->getVNInfoAllocator());
        loadVNI->addKill(endIndex);
        newLI->addRange(LiveRange(loadIndex, endIndex, loadVNI));
      }

      // Insert store if necessary.
      if (hasDef) {
        tii->storeRegToStackSlot(*mi->getParent(), llvm::next(miItr), newVReg, true,
                                 ss, trc);
        MachineInstr *storeInstr(llvm::next(miItr));
        SlotIndex storeIndex =
          lis->InsertMachineInstrInMaps(storeInstr).getDefIndex();
        SlotIndex beginIndex = storeIndex.getPrevIndex();
        VNInfo *storeVNI =
          newLI->getNextValue(beginIndex, 0, true, lis->getVNInfoAllocator());
        storeVNI->addKill(storeIndex);
        newLI->addRange(LiveRange(beginIndex, storeIndex, storeVNI));
      }

      added.push_back(newLI);
    }

    return added;
  }

};


/// Spills any live range using the spill-everywhere method with no attempt at
/// folding.
class TrivialSpiller : public SpillerBase {
public:

  TrivialSpiller(MachineFunction *mf, LiveIntervals *lis, VirtRegMap *vrm)
    : SpillerBase(mf, lis, vrm) {}

  std::vector<LiveInterval*> spill(LiveInterval *li,
                                   SmallVectorImpl<LiveInterval*> &spillIs,
                                   SlotIndex*) {
    // Ignore spillIs - we don't use it.
    return trivialSpillEverywhere(li);
  }

};

/// Falls back on LiveIntervals::addIntervalsForSpills.
class StandardSpiller : public Spiller {
protected:
  LiveIntervals *lis;
  const MachineLoopInfo *loopInfo;
  VirtRegMap *vrm;
public:
  StandardSpiller(LiveIntervals *lis, const MachineLoopInfo *loopInfo,
                  VirtRegMap *vrm)
    : lis(lis), loopInfo(loopInfo), vrm(vrm) {}

  /// Falls back on LiveIntervals::addIntervalsForSpills.
  std::vector<LiveInterval*> spill(LiveInterval *li,
                                   SmallVectorImpl<LiveInterval*> &spillIs,
                                   SlotIndex*) {
    return lis->addIntervalsForSpills(*li, spillIs, loopInfo, *vrm);
  }

};

/// When a call to spill is placed this spiller will first try to break the
/// interval up into its component values (one new interval per value).
/// If this fails, or if a call is placed to spill a previously split interval
/// then the spiller falls back on the standard spilling mechanism. 
class SplittingSpiller : public StandardSpiller {
public:
  SplittingSpiller(MachineFunction *mf, LiveIntervals *lis,
                   const MachineLoopInfo *loopInfo, VirtRegMap *vrm)
    : StandardSpiller(lis, loopInfo, vrm) {

    mri = &mf->getRegInfo();
    tii = mf->getTarget().getInstrInfo();
    tri = mf->getTarget().getRegisterInfo();
  }

  std::vector<LiveInterval*> spill(LiveInterval *li,
                                   SmallVectorImpl<LiveInterval*> &spillIs,
                                   SlotIndex *earliestStart) {
    
    if (worthTryingToSplit(li)) {
      return tryVNISplit(li, earliestStart);
    }
    // else
    return StandardSpiller::spill(li, spillIs, earliestStart);
  }

private:

  MachineRegisterInfo *mri;
  const TargetInstrInfo *tii;
  const TargetRegisterInfo *tri;  
  DenseSet<LiveInterval*> alreadySplit;

  bool worthTryingToSplit(LiveInterval *li) const {
    return (!alreadySplit.count(li) && li->getNumValNums() > 1);
  }

  /// Try to break a LiveInterval into its component values.
  std::vector<LiveInterval*> tryVNISplit(LiveInterval *li,
                                         SlotIndex *earliestStart) {

    DEBUG(dbgs() << "Trying VNI split of %reg" << *li << "\n");

    std::vector<LiveInterval*> added;
    SmallVector<VNInfo*, 4> vnis;

    std::copy(li->vni_begin(), li->vni_end(), std::back_inserter(vnis));
   
    for (SmallVectorImpl<VNInfo*>::iterator vniItr = vnis.begin(),
         vniEnd = vnis.end(); vniItr != vniEnd; ++vniItr) {
      VNInfo *vni = *vniItr;
      
      // Skip unused VNIs, or VNIs with no kills.
      if (vni->isUnused() || vni->kills.empty())
        continue;

      DEBUG(dbgs() << "  Extracted Val #" << vni->id << " as ");
      LiveInterval *splitInterval = extractVNI(li, vni);
      
      if (splitInterval != 0) {
        DEBUG(dbgs() << *splitInterval << "\n");
        added.push_back(splitInterval);
        alreadySplit.insert(splitInterval);
        if (earliestStart != 0) {
          if (splitInterval->beginIndex() < *earliestStart)
            *earliestStart = splitInterval->beginIndex();
        }
      } else {
        DEBUG(dbgs() << "0\n");
      }
    } 

    DEBUG(dbgs() << "Original LI: " << *li << "\n");

    // If there original interval still contains some live ranges
    // add it to added and alreadySplit.    
    if (!li->empty()) {
      added.push_back(li);
      alreadySplit.insert(li);
      if (earliestStart != 0) {
        if (li->beginIndex() < *earliestStart)
          *earliestStart = li->beginIndex();
      }
    }

    return added;
  }

  /// Extract the given value number from the interval.
  LiveInterval* extractVNI(LiveInterval *li, VNInfo *vni) const {
    assert(vni->isDefAccurate() || vni->isPHIDef());
    assert(!vni->kills.empty());

    // Create a new vreg and live interval, copy VNI kills & ranges over.                                                                                                                                                     
    const TargetRegisterClass *trc = mri->getRegClass(li->reg);
    unsigned newVReg = mri->createVirtualRegister(trc);
    vrm->grow();
    LiveInterval *newLI = &lis->getOrCreateInterval(newVReg);
    VNInfo *newVNI = newLI->createValueCopy(vni, lis->getVNInfoAllocator());

    // Start by copying all live ranges in the VN to the new interval.                                                                                                                                                        
    for (LiveInterval::iterator rItr = li->begin(), rEnd = li->end();
         rItr != rEnd; ++rItr) {
      if (rItr->valno == vni) {
        newLI->addRange(LiveRange(rItr->start, rItr->end, newVNI));
      }
    }

    // Erase the old VNI & ranges.                                                                                                                                                                                            
    li->removeValNo(vni);

    // Collect all current uses of the register belonging to the given VNI.
    // We'll use this to rename the register after we've dealt with the def.
    std::set<MachineInstr*> uses;
    for (MachineRegisterInfo::use_iterator
         useItr = mri->use_begin(li->reg), useEnd = mri->use_end();
         useItr != useEnd; ++useItr) {
      uses.insert(&*useItr);
    }

    // Process the def instruction for this VNI.
    if (newVNI->isPHIDef()) {
      // Insert a copy at the start of the MBB. The range proceeding the
      // copy will be attached to the original LiveInterval.
      MachineBasicBlock *defMBB = lis->getMBBFromIndex(newVNI->def);
      tii->copyRegToReg(*defMBB, defMBB->begin(), newVReg, li->reg, trc, trc);
      MachineInstr *copyMI = defMBB->begin();
      copyMI->addRegisterKilled(li->reg, tri);
      SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
      VNInfo *phiDefVNI = li->getNextValue(lis->getMBBStartIdx(defMBB),
                                           0, false, lis->getVNInfoAllocator());
      phiDefVNI->setIsPHIDef(true);
      phiDefVNI->addKill(copyIdx.getDefIndex());
      li->addRange(LiveRange(phiDefVNI->def, copyIdx.getDefIndex(), phiDefVNI));
      LiveRange *oldPHIDefRange =
        newLI->getLiveRangeContaining(lis->getMBBStartIdx(defMBB));

      // If the old phi def starts in the middle of the range chop it up.
      if (oldPHIDefRange->start < lis->getMBBStartIdx(defMBB)) {
        LiveRange oldPHIDefRange2(copyIdx.getDefIndex(), oldPHIDefRange->end,
                                  oldPHIDefRange->valno);
        oldPHIDefRange->end = lis->getMBBStartIdx(defMBB);
        newLI->addRange(oldPHIDefRange2);
      } else if (oldPHIDefRange->start == lis->getMBBStartIdx(defMBB)) {
        // Otherwise if it's at the start of the range just trim it.
        oldPHIDefRange->start = copyIdx.getDefIndex();
      } else {
        assert(false && "PHI def range doesn't cover PHI def?");
      }

      newVNI->def = copyIdx.getDefIndex();
      newVNI->setCopy(copyMI);
      newVNI->setIsPHIDef(false); // not a PHI def anymore.
      newVNI->setIsDefAccurate(true);
    } else {
      // non-PHI def. Rename the def. If it's two-addr that means renaming the use
      // and inserting a new copy too.
      MachineInstr *defInst = lis->getInstructionFromIndex(newVNI->def);
      // We'll rename this now, so we can remove it from uses.
      uses.erase(defInst);
      unsigned defOpIdx = defInst->findRegisterDefOperandIdx(li->reg);
      bool isTwoAddr = defInst->isRegTiedToUseOperand(defOpIdx),
        twoAddrUseIsUndef = false;

      for (unsigned i = 0; i < defInst->getNumOperands(); ++i) {
        MachineOperand &mo = defInst->getOperand(i);
        if (mo.isReg() && (mo.isDef() || isTwoAddr) && (mo.getReg()==li->reg)) {
          mo.setReg(newVReg);
          if (isTwoAddr && mo.isUse() && mo.isUndef())
            twoAddrUseIsUndef = true;
        }
      }
    
      SlotIndex defIdx = lis->getInstructionIndex(defInst);
      newVNI->def = defIdx.getDefIndex();

      if (isTwoAddr && !twoAddrUseIsUndef) {
        MachineBasicBlock *defMBB = defInst->getParent();
        tii->copyRegToReg(*defMBB, defInst, newVReg, li->reg, trc, trc);
        MachineInstr *copyMI = prior(MachineBasicBlock::iterator(defInst));
        SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
        copyMI->addRegisterKilled(li->reg, tri);
        LiveRange *origUseRange =
          li->getLiveRangeContaining(newVNI->def.getUseIndex());
        VNInfo *origUseVNI = origUseRange->valno;
        origUseRange->end = copyIdx.getDefIndex();
        bool updatedKills = false;
        for (unsigned k = 0; k < origUseVNI->kills.size(); ++k) {
          if (origUseVNI->kills[k] == defIdx.getDefIndex()) {
            origUseVNI->kills[k] = copyIdx.getDefIndex();
            updatedKills = true;
            break;
          }
        }
        assert(updatedKills && "Failed to update VNI kill list.");
        VNInfo *copyVNI = newLI->getNextValue(copyIdx.getDefIndex(), copyMI,
                                              true, lis->getVNInfoAllocator());
        copyVNI->addKill(defIdx.getDefIndex());
        LiveRange copyRange(copyIdx.getDefIndex(),defIdx.getDefIndex(),copyVNI);
        newLI->addRange(copyRange);
      }    
    }
    
    for (std::set<MachineInstr*>::iterator
         usesItr = uses.begin(), usesEnd = uses.end();
         usesItr != usesEnd; ++usesItr) {
      MachineInstr *useInst = *usesItr;
      SlotIndex useIdx = lis->getInstructionIndex(useInst);
      LiveRange *useRange =
        newLI->getLiveRangeContaining(useIdx.getUseIndex());

      // If this use doesn't belong to the new interval skip it.
      if (useRange == 0)
        continue;

      // This use doesn't belong to the VNI, skip it.
      if (useRange->valno != newVNI)
        continue;

      // Check if this instr is two address.
      unsigned useOpIdx = useInst->findRegisterUseOperandIdx(li->reg);
      bool isTwoAddress = useInst->isRegTiedToDefOperand(useOpIdx);
      
      // Rename uses (and defs for two-address instrs).
      for (unsigned i = 0; i < useInst->getNumOperands(); ++i) {
        MachineOperand &mo = useInst->getOperand(i);
        if (mo.isReg() && (mo.isUse() || isTwoAddress) &&
            (mo.getReg() == li->reg)) {
          mo.setReg(newVReg);
        }
      }

      // If this is a two address instruction we've got some extra work to do.
      if (isTwoAddress) {
        // We modified the def operand, so we need to copy back to the original
        // reg.
        MachineBasicBlock *useMBB = useInst->getParent();
        MachineBasicBlock::iterator useItr(useInst);
        tii->copyRegToReg(*useMBB, next(useItr), li->reg, newVReg, trc, trc);
        MachineInstr *copyMI = next(useItr);
        copyMI->addRegisterKilled(newVReg, tri);
        SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);

        // Change the old two-address defined range & vni to start at
        // (and be defined by) the copy.
        LiveRange *origDefRange =
          li->getLiveRangeContaining(useIdx.getDefIndex());
        origDefRange->start = copyIdx.getDefIndex();
        origDefRange->valno->def = copyIdx.getDefIndex();
        origDefRange->valno->setCopy(copyMI);

        // Insert a new range & vni for the two-address-to-copy value. This
        // will be attached to the new live interval.
        VNInfo *copyVNI =
          newLI->getNextValue(useIdx.getDefIndex(), 0, true,
                              lis->getVNInfoAllocator());
        copyVNI->addKill(copyIdx.getDefIndex());
        LiveRange copyRange(useIdx.getDefIndex(),copyIdx.getDefIndex(),copyVNI);
        newLI->addRange(copyRange);
      }
    }
    
    // Iterate over any PHI kills - we'll need to insert new copies for them.
    for (VNInfo::KillSet::iterator
         killItr = newVNI->kills.begin(), killEnd = newVNI->kills.end();
         killItr != killEnd; ++killItr) {
      SlotIndex killIdx(*killItr);
      if (killItr->isPHI()) {
        MachineBasicBlock *killMBB = lis->getMBBFromIndex(killIdx);
        LiveRange *oldKillRange =
          newLI->getLiveRangeContaining(killIdx);

        assert(oldKillRange != 0 && "No kill range?");

        tii->copyRegToReg(*killMBB, killMBB->getFirstTerminator(),
                          li->reg, newVReg, trc, trc);
        MachineInstr *copyMI = prior(killMBB->getFirstTerminator());
        copyMI->addRegisterKilled(newVReg, tri);
        SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);

        // Save the current end. We may need it to add a new range if the
        // current range runs of the end of the MBB.
        SlotIndex newKillRangeEnd = oldKillRange->end;
        oldKillRange->end = copyIdx.getDefIndex();

        if (newKillRangeEnd != lis->getMBBEndIdx(killMBB)) {
          assert(newKillRangeEnd > lis->getMBBEndIdx(killMBB) &&
                 "PHI kill range doesn't reach kill-block end. Not sane.");
          newLI->addRange(LiveRange(lis->getMBBEndIdx(killMBB),
                                    newKillRangeEnd, newVNI));
        }

        *killItr = oldKillRange->end;
        VNInfo *newKillVNI = li->getNextValue(copyIdx.getDefIndex(),
                                              copyMI, true,
                                              lis->getVNInfoAllocator());
        newKillVNI->addKill(lis->getMBBTerminatorGap(killMBB));
        newKillVNI->setHasPHIKill(true);
        li->addRange(LiveRange(copyIdx.getDefIndex(),
                               lis->getMBBEndIdx(killMBB),
                               newKillVNI));
      }

    }

    newVNI->setHasPHIKill(false);

    return newLI;
  }

};

}

llvm::Spiller* llvm::createSpiller(MachineFunction *mf, LiveIntervals *lis,
                                   const MachineLoopInfo *loopInfo,
                                   VirtRegMap *vrm) {
  switch (spillerOpt) {
    case trivial: return new TrivialSpiller(mf, lis, vrm); break;
    case standard: return new StandardSpiller(lis, loopInfo, vrm); break;
    case splitting: return new SplittingSpiller(mf, lis, loopInfo, vrm); break;
    default: llvm_unreachable("Unreachable!"); break;
  }
}