llvm.org GIT mirror llvm / release_27 lib / CodeGen / MachineLICM.cpp
release_27

Tree @release_27 (Download .tar.gz)

MachineLICM.cpp @release_27raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
// This pass does not attempt to throttle itself to limit register pressure.
// The register allocation phases are expected to perform rematerialization
// to recover when register pressure is high.
//
// This pass is not intended to be a replacement or a complete alternative
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-licm"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");

namespace {
  class MachineLICM : public MachineFunctionPass {
    MachineConstantPool *MCP;
    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    BitVector AllocatableSet;

    // Various analyses that we use...
    AliasAnalysis        *AA;      // Alias analysis info.
    MachineLoopInfo      *LI;      // Current MachineLoopInfo
    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
    MachineRegisterInfo  *RegInfo; // Machine register information

    // State that is updated as we process loops
    bool         Changed;          // True if a loop is changed.
    bool         FirstInLoop;      // True if it's the first LICM in the loop.
    MachineLoop *CurLoop;          // The current loop we are working on.
    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.

    // For each opcode, keep a list of potentail CSE instructions.
    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
  public:
    static char ID; // Pass identification, replacement for typeid
    MachineLICM() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    const char *getPassName() const { return "Machine Instruction LICM"; }

    // FIXME: Loop preheaders?
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<AliasAnalysis>();
      AU.addPreserved<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    virtual void releaseMemory() {
      CSEMap.clear();
    }

  private:
    /// IsLoopInvariantInst - Returns true if the instruction is loop
    /// invariant. I.e., all virtual register operands are defined outside of
    /// the loop, physical registers aren't accessed (explicitly or implicitly),
    /// and the instruction is hoistable.
    /// 
    bool IsLoopInvariantInst(MachineInstr &I);

    /// IsProfitableToHoist - Return true if it is potentially profitable to
    /// hoist the given loop invariant.
    bool IsProfitableToHoist(MachineInstr &MI);

    /// HoistRegion - Walk the specified region of the CFG (defined by all
    /// blocks dominated by the specified block, and that are in the current
    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
    /// visit definitions before uses, allowing us to hoist a loop body in one
    /// pass without iteration.
    ///
    void HoistRegion(MachineDomTreeNode *N);

    /// isLoadFromConstantMemory - Return true if the given instruction is a
    /// load from constant memory.
    bool isLoadFromConstantMemory(MachineInstr *MI);

    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
    /// the load itself could be hoisted. Return the unfolded and hoistable
    /// load, or null if the load couldn't be unfolded or if it wouldn't
    /// be hoistable.
    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);

    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
    /// duplicate of MI. Return this instruction if it's found.
    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
                                     std::vector<const MachineInstr*> &PrevMIs);

    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
    /// the preheader that compute the same value. If it's found, do a RAU on
    /// with the definition of the existing instruction rather than hoisting
    /// the instruction to the preheader.
    bool EliminateCSE(MachineInstr *MI,
           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);

    /// Hoist - When an instruction is found to only use loop invariant operands
    /// that is safe to hoist, this instruction is called to do the dirty work.
    ///
    void Hoist(MachineInstr *MI);

    /// InitCSEMap - Initialize the CSE map with instructions that are in the
    /// current loop preheader that may become duplicates of instructions that
    /// are hoisted out of the loop.
    void InitCSEMap(MachineBasicBlock *BB);
  };
} // end anonymous namespace

char MachineLICM::ID = 0;
static RegisterPass<MachineLICM>
X("machinelicm", "Machine Loop Invariant Code Motion");

FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }

/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
/// loop that has a preheader.
static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    if (L->getLoopPreheader())
      return false;
  return true;
}

/// Hoist expressions out of the specified loop. Note, alias info for inner loop
/// is not preserved so it is not a good idea to run LICM multiple times on one
/// loop.
///
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "******** Machine LICM ********\n");

  Changed = FirstInLoop = false;
  MCP = MF.getConstantPool();
  TM = &MF.getTarget();
  TII = TM->getInstrInfo();
  TRI = TM->getRegisterInfo();
  RegInfo = &MF.getRegInfo();
  AllocatableSet = TRI->getAllocatableSet(MF);

  // Get our Loop information...
  LI = &getAnalysis<MachineLoopInfo>();
  DT = &getAnalysis<MachineDominatorTree>();
  AA = &getAnalysis<AliasAnalysis>();

  for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
    CurLoop = *I;

    // Only visit outer-most preheader-sporting loops.
    if (!LoopIsOuterMostWithPreheader(CurLoop))
      continue;

    // Determine the block to which to hoist instructions. If we can't find a
    // suitable loop preheader, we can't do any hoisting.
    //
    // FIXME: We are only hoisting if the basic block coming into this loop
    // has only one successor. This isn't the case in general because we haven't
    // broken critical edges or added preheaders.
    CurPreheader = CurLoop->getLoopPreheader();
    if (!CurPreheader)
      continue;

    // CSEMap is initialized for loop header when the first instruction is
    // being hoisted.
    FirstInLoop = true;
    HoistRegion(DT->getNode(CurLoop->getHeader()));
    CSEMap.clear();
  }

  return Changed;
}

/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
  assert(N != 0 && "Null dominator tree node?");
  MachineBasicBlock *BB = N->getBlock();

  // If this subregion is not in the top level loop at all, exit.
  if (!CurLoop->contains(BB)) return;

  for (MachineBasicBlock::iterator
         MII = BB->begin(), E = BB->end(); MII != E; ) {
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
    Hoist(&*MII);
    MII = NextMII;
  }

  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();

  for (unsigned I = 0, E = Children.size(); I != E; ++I)
    HoistRegion(Children[I]);
}

/// IsLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of the
/// loop, physical registers aren't accessed explicitly, and there are no side
/// effects that aren't captured by the operands or other flags.
/// 
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
  const TargetInstrDesc &TID = I.getDesc();
  
  // Ignore stuff that we obviously can't hoist.
  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
      TID.hasUnmodeledSideEffects())
    return false;

  if (TID.mayLoad()) {
    // Okay, this instruction does a load. As a refinement, we allow the target
    // to decide whether the loaded value is actually a constant. If so, we can
    // actually use it as a load.
    if (!I.isInvariantLoad(AA))
      // FIXME: we should be able to hoist loads with no other side effects if
      // there are no other instructions which can change memory in this loop.
      // This is a trivial form of alias analysis.
      return false;
  }

  // The instruction is loop invariant if all of its operands are.
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = I.getOperand(i);

    if (!MO.isReg())
      continue;

    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    // Don't hoist an instruction that uses or defines a physical register.
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!RegInfo->def_empty(Reg))
          return false;
        if (AllocatableSet.test(Reg))
          return false;
        // Check for a def among the register's aliases too.
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          unsigned AliasReg = *Alias;
          if (!RegInfo->def_empty(AliasReg))
            return false;
          if (AllocatableSet.test(AliasReg))
            return false;
        }
        // Otherwise it's safe to move.
        continue;
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return false;
      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
        // If the reg is live into the loop, we can't hoist an instruction
        // which would clobber it.
        return false;
      }
    }

    if (!MO.isUse())
      continue;

    assert(RegInfo->getVRegDef(Reg) &&
           "Machine instr not mapped for this vreg?!");

    // If the loop contains the definition of an operand, then the instruction
    // isn't loop invariant.
    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
      return false;
  }

  // If we got this far, the instruction is loop invariant!
  return true;
}


/// HasPHIUses - Return true if the specified register has any PHI use.
static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
         UE = RegInfo->use_end(); UI != UE; ++UI) {
    MachineInstr *UseMI = &*UI;
    if (UseMI->isPHI())
      return true;
  }
  return false;
}

/// isLoadFromConstantMemory - Return true if the given instruction is a
/// load from constant memory. Machine LICM will hoist these even if they are
/// not re-materializable.
bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
  if (!MI->getDesc().mayLoad()) return false;
  if (!MI->hasOneMemOperand()) return false;
  MachineMemOperand *MMO = *MI->memoperands_begin();
  if (MMO->isVolatile()) return false;
  if (!MMO->getValue()) return false;
  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
  if (PSV) {
    MachineFunction &MF = *MI->getParent()->getParent();
    return PSV->isConstant(MF.getFrameInfo());
  } else {
    return AA->pointsToConstantMemory(MMO->getValue());
  }
}

/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
/// the given loop invariant.
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
  if (MI.isImplicitDef())
    return false;

  // FIXME: For now, only hoist re-materilizable instructions. LICM will
  // increase register pressure. We want to make sure it doesn't increase
  // spilling.
  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
  // these tend to help performance in low register pressure situation. The
  // trade off is it may cause spill in high pressure situation. It will end up
  // adding a store in the loop preheader. But the reload is no more expensive.
  // The side benefit is these loads are frequently CSE'ed.
  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
    if (!isLoadFromConstantMemory(&MI))
      return false;
  }

  // If result(s) of this instruction is used by PHIs, then don't hoist it.
  // The presence of joins makes it difficult for current register allocator
  // implementation to perform remat.
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    if (HasPHIUses(MO.getReg(), RegInfo))
      return false;
  }

  return true;
}

MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
  // If not, we may be able to unfold a load and hoist that.
  // First test whether the instruction is loading from an amenable
  // memory location.
  if (!isLoadFromConstantMemory(MI))
    return 0;

  // Next determine the register class for a temporary register.
  unsigned LoadRegIndex;
  unsigned NewOpc =
    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
                                    /*UnfoldLoad=*/true,
                                    /*UnfoldStore=*/false,
                                    &LoadRegIndex);
  if (NewOpc == 0) return 0;
  const TargetInstrDesc &TID = TII->get(NewOpc);
  if (TID.getNumDefs() != 1) return 0;
  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
  // Ok, we're unfolding. Create a temporary register and do the unfold.
  unsigned Reg = RegInfo->createVirtualRegister(RC);

  MachineFunction &MF = *MI->getParent()->getParent();
  SmallVector<MachineInstr *, 2> NewMIs;
  bool Success =
    TII->unfoldMemoryOperand(MF, MI, Reg,
                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
                             NewMIs);
  (void)Success;
  assert(Success &&
         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
         "succeeded!");
  assert(NewMIs.size() == 2 &&
         "Unfolded a load into multiple instructions!");
  MachineBasicBlock *MBB = MI->getParent();
  MBB->insert(MI, NewMIs[0]);
  MBB->insert(MI, NewMIs[1]);
  // If unfolding produced a load that wasn't loop-invariant or profitable to
  // hoist, discard the new instructions and bail.
  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
    NewMIs[0]->eraseFromParent();
    NewMIs[1]->eraseFromParent();
    return 0;
  }
  // Otherwise we successfully unfolded a load that we can hoist.
  MI->eraseFromParent();
  return NewMIs[0];
}

void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
    const MachineInstr *MI = &*I;
    // FIXME: For now, only hoist re-materilizable instructions. LICM will
    // increase register pressure. We want to make sure it doesn't increase
    // spilling.
    if (TII->isTriviallyReMaterializable(MI, AA)) {
      unsigned Opcode = MI->getOpcode();
      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
        CI = CSEMap.find(Opcode);
      if (CI != CSEMap.end())
        CI->second.push_back(MI);
      else {
        std::vector<const MachineInstr*> CSEMIs;
        CSEMIs.push_back(MI);
        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
      }
    }
  }
}

const MachineInstr*
MachineLICM::LookForDuplicate(const MachineInstr *MI,
                              std::vector<const MachineInstr*> &PrevMIs) {
  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
    const MachineInstr *PrevMI = PrevMIs[i];
    if (TII->produceSameValue(MI, PrevMI))
      return PrevMI;
  }
  return 0;
}

bool MachineLICM::EliminateCSE(MachineInstr *MI,
          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
  if (CI == CSEMap.end())
    return false;

  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);

    // Replace virtual registers defined by MI by their counterparts defined
    // by Dup.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);

      // Physical registers may not differ here.
      assert((!MO.isReg() || MO.getReg() == 0 ||
              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
              MO.getReg() == Dup->getOperand(i).getReg()) &&
             "Instructions with different phys regs are not identical!");

      if (MO.isReg() && MO.isDef() &&
          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
    }
    MI->eraseFromParent();
    ++NumCSEed;
    return true;
  }
  return false;
}

/// Hoist - When an instruction is found to use only loop invariant operands
/// that are safe to hoist, this instruction is called to do the dirty work.
///
void MachineLICM::Hoist(MachineInstr *MI) {
  // First check whether we should hoist this instruction.
  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
    // If not, try unfolding a hoistable load.
    MI = ExtractHoistableLoad(MI);
    if (!MI) return;
  }

  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG({
      dbgs() << "Hoisting " << *MI;
      if (CurPreheader->getBasicBlock())
        dbgs() << " to MachineBasicBlock "
               << CurPreheader->getName();
      if (MI->getParent()->getBasicBlock())
        dbgs() << " from MachineBasicBlock "
               << MI->getParent()->getName();
      dbgs() << "\n";
    });

  // If this is the first instruction being hoisted to the preheader,
  // initialize the CSE map with potential common expressions.
  InitCSEMap(CurPreheader);

  // Look for opportunity to CSE the hoisted instruction.
  unsigned Opcode = MI->getOpcode();
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
    CI = CSEMap.find(Opcode);
  if (!EliminateCSE(MI, CI)) {
    // Otherwise, splice the instruction to the preheader.
    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);

    // Add to the CSE map.
    if (CI != CSEMap.end())
      CI->second.push_back(MI);
    else {
      std::vector<const MachineInstr*> CSEMIs;
      CSEMIs.push_back(MI);
      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
    }
  }

  ++NumHoisted;
  Changed = true;
}