llvm.org GIT mirror llvm / release_26 include / llvm / Target / TargetInstrDesc.h
release_26

Tree @release_26 (Download .tar.gz)

TargetInstrDesc.h @release_26raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//===-- llvm/Target/TargetInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TargetOperandInfo and TargetInstrDesc classes, which
// are used to describe target instructions and their operands. 
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETINSTRDESC_H
#define LLVM_TARGET_TARGETINSTRDESC_H

namespace llvm {

class TargetRegisterClass;
class TargetRegisterInfo;
  
//===----------------------------------------------------------------------===//
// Machine Operand Flags and Description
//===----------------------------------------------------------------------===//
  
namespace TOI {
  // Operand constraints: only "tied_to" for now.
  enum OperandConstraint {
    TIED_TO = 0  // Must be allocated the same register as.
  };
  
  /// OperandFlags - These are flags set on operands, but should be considered
  /// private, all access should go through the TargetOperandInfo accessors.
  /// See the accessors for a description of what these are.
  enum OperandFlags {
    LookupPtrRegClass = 0,
    Predicate,
    OptionalDef
  };
}

/// TargetOperandInfo - This holds information about one operand of a machine
/// instruction, indicating the register class for register operands, etc.
///
class TargetOperandInfo {
public:
  /// RegClass - This specifies the register class enumeration of the operand 
  /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
  /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
  /// get a dynamic register class.
  ///
  /// NOTE: This member should be considered to be private, all access should go
  /// through "getRegClass(TRI)" below.
  unsigned short RegClass;
  
  /// Flags - These are flags from the TOI::OperandFlags enum.
  unsigned short Flags;
  
  /// Lower 16 bits are used to specify which constraints are set. The higher 16
  /// bits are used to specify the value of constraints (4 bits each).
  unsigned Constraints;
  /// Currently no other information.
  
  /// getRegClass - Get the register class for the operand, handling resolution
  /// of "symbolic" pointer register classes etc.  If this is not a register
  /// operand, this returns null.
  const TargetRegisterClass *getRegClass(const TargetRegisterInfo *TRI) const;
  
  
  /// isLookupPtrRegClass - Set if this operand is a pointer value and it
  /// requires a callback to look up its register class.
  bool isLookupPtrRegClass() const { return Flags&(1 <<TOI::LookupPtrRegClass);}
  
  /// isPredicate - Set if this is one of the operands that made up of
  /// the predicate operand that controls an isPredicable() instruction.
  bool isPredicate() const { return Flags & (1 << TOI::Predicate); }
  
  /// isOptionalDef - Set if this operand is a optional def.
  ///
  bool isOptionalDef() const { return Flags & (1 << TOI::OptionalDef); }
};

  
//===----------------------------------------------------------------------===//
// Machine Instruction Flags and Description
//===----------------------------------------------------------------------===//

/// TargetInstrDesc flags - These should be considered private to the
/// implementation of the TargetInstrDesc class.  Clients should use the
/// predicate methods on TargetInstrDesc, not use these directly.  These
/// all correspond to bitfields in the TargetInstrDesc::Flags field.
namespace TID {
  enum {
    Variadic = 0,
    HasOptionalDef,
    Return,
    Call,
    Barrier,
    Terminator,
    Branch,
    IndirectBranch,
    Predicable,
    NotDuplicable,
    DelaySlot,
    FoldableAsLoad,
    MayLoad,
    MayStore,
    UnmodeledSideEffects,
    Commutable,
    ConvertibleTo3Addr,
    UsesCustomDAGSchedInserter,
    Rematerializable,
    CheapAsAMove
  };
}

/// TargetInstrDesc - Describe properties that are true of each
/// instruction in the target description file.  This captures information about
/// side effects, register use and many other things.  There is one instance of
/// this struct for each target instruction class, and the MachineInstr class
/// points to this struct directly to describe itself.
class TargetInstrDesc {
public:
  unsigned short  Opcode;        // The opcode number
  unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
  unsigned short  NumDefs;       // Num of args that are definitions
  unsigned short  SchedClass;    // enum identifying instr sched class
  const char *    Name;          // Name of the instruction record in td file
  unsigned        Flags;         // Flags identifying machine instr class
  unsigned        TSFlags;       // Target Specific Flag values
  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
  const TargetRegisterClass **RCBarriers; // Reg classes completely "clobbered"
  const TargetOperandInfo *OpInfo; // 'NumOperands' entries about operands

  /// getOperandConstraint - Returns the value of the specific constraint if
  /// it is set. Returns -1 if it is not set.
  int getOperandConstraint(unsigned OpNum,
                           TOI::OperandConstraint Constraint) const {
    if (OpNum < NumOperands &&
        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
      unsigned Pos = 16 + Constraint * 4;
      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    }
    return -1;
  }

  /// getOpcode - Return the opcode number for this descriptor.
  unsigned getOpcode() const {
    return Opcode;
  }
  
  /// getName - Return the name of the record in the .td file for this
  /// instruction, for example "ADD8ri".
  const char *getName() const {
    return Name;
  }
  
  /// getNumOperands - Return the number of declared MachineOperands for this
  /// MachineInstruction.  Note that variadic (isVariadic() returns true)
  /// instructions may have additional operands at the end of the list, and note
  /// that the machine instruction may include implicit register def/uses as
  /// well.
  unsigned getNumOperands() const {
    return NumOperands;
  }
  
  /// getNumDefs - Return the number of MachineOperands that are register
  /// definitions.  Register definitions always occur at the start of the 
  /// machine operand list.  This is the number of "outs" in the .td file,
  /// and does not include implicit defs.
  unsigned getNumDefs() const {
    return NumDefs;
  }
  
  /// isVariadic - Return true if this instruction can have a variable number of
  /// operands.  In this case, the variable operands will be after the normal
  /// operands but before the implicit definitions and uses (if any are
  /// present).
  bool isVariadic() const {
    return Flags & (1 << TID::Variadic);
  }
  
  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
  /// ARM instructions which can set condition code if 's' bit is set.
  bool hasOptionalDef() const {
    return Flags & (1 << TID::HasOptionalDef);
  }
  
  /// getImplicitUses - Return a list of registers that are potentially
  /// read by any instance of this machine instruction.  For example, on X86,
  /// the "adc" instruction adds two register operands and adds the carry bit in
  /// from the flags register.  In this case, the instruction is marked as
  /// implicitly reading the flags.  Likewise, the variable shift instruction on
  /// X86 is marked as implicitly reading the 'CL' register, which it always
  /// does.
  ///
  /// This method returns null if the instruction has no implicit uses.
  const unsigned *getImplicitUses() const {
    return ImplicitUses;
  }
  
  /// getImplicitDefs - Return a list of registers that are potentially
  /// written by any instance of this machine instruction.  For example, on X86,
  /// many instructions implicitly set the flags register.  In this case, they
  /// are marked as setting the FLAGS.  Likewise, many instructions always
  /// deposit their result in a physical register.  For example, the X86 divide
  /// instruction always deposits the quotient and remainder in the EAX/EDX
  /// registers.  For that instruction, this will return a list containing the
  /// EAX/EDX/EFLAGS registers.
  ///
  /// This method returns null if the instruction has no implicit defs.
  const unsigned *getImplicitDefs() const {
    return ImplicitDefs;
  }
  
  /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
  /// uses the specified physical register.
  bool hasImplicitUseOfPhysReg(unsigned Reg) const {
    if (const unsigned *ImpUses = ImplicitUses)
      for (; *ImpUses; ++ImpUses)
        if (*ImpUses == Reg) return true;
    return false;
  }
  
  /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
  /// defines the specified physical register.
  bool hasImplicitDefOfPhysReg(unsigned Reg) const {
    if (const unsigned *ImpDefs = ImplicitDefs)
      for (; *ImpDefs; ++ImpDefs)
        if (*ImpDefs == Reg) return true;
    return false;
  }

  /// getRegClassBarriers - Return a list of register classes that are
  /// completely clobbered by this machine instruction. For example, on X86
  /// the call instructions will completely clobber all the registers in the
  /// fp stack and XMM classes.
  ///
  /// This method returns null if the instruction doesn't completely clobber
  /// any register class.
  const TargetRegisterClass **getRegClassBarriers() const {
    return RCBarriers;
  }

  /// getSchedClass - Return the scheduling class for this instruction.  The
  /// scheduling class is an index into the InstrItineraryData table.  This
  /// returns zero if there is no known scheduling information for the
  /// instruction.
  ///
  unsigned getSchedClass() const {
    return SchedClass;
  }
  
  bool isReturn() const {
    return Flags & (1 << TID::Return);
  }
  
  bool isCall() const {
    return Flags & (1 << TID::Call);
  }
  
  /// isBarrier - Returns true if the specified instruction stops control flow
  /// from executing the instruction immediately following it.  Examples include
  /// unconditional branches and return instructions.
  bool isBarrier() const {
    return Flags & (1 << TID::Barrier);
  }
  
  /// isTerminator - Returns true if this instruction part of the terminator for
  /// a basic block.  Typically this is things like return and branch
  /// instructions.
  ///
  /// Various passes use this to insert code into the bottom of a basic block,
  /// but before control flow occurs.
  bool isTerminator() const {
    return Flags & (1 << TID::Terminator);
  }
  
  /// isBranch - Returns true if this is a conditional, unconditional, or
  /// indirect branch.  Predicates below can be used to discriminate between
  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
  /// get more information.
  bool isBranch() const {
    return Flags & (1 << TID::Branch);
  }

  /// isIndirectBranch - Return true if this is an indirect branch, such as a
  /// branch through a register.
  bool isIndirectBranch() const {
    return Flags & (1 << TID::IndirectBranch);
  }
  
  /// isConditionalBranch - Return true if this is a branch which may fall
  /// through to the next instruction or may transfer control flow to some other
  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
  /// information about this branch.
  bool isConditionalBranch() const {
    return isBranch() & !isBarrier() & !isIndirectBranch();
  }
  
  /// isUnconditionalBranch - Return true if this is a branch which always
  /// transfers control flow to some other block.  The
  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
  /// about this branch.
  bool isUnconditionalBranch() const {
    return isBranch() & isBarrier() & !isIndirectBranch();
  }
  
  // isPredicable - Return true if this instruction has a predicate operand that
  // controls execution.  It may be set to 'always', or may be set to other
  /// values.   There are various methods in TargetInstrInfo that can be used to
  /// control and modify the predicate in this instruction.
  bool isPredicable() const {
    return Flags & (1 << TID::Predicable);
  }
  
  /// isNotDuplicable - Return true if this instruction cannot be safely
  /// duplicated.  For example, if the instruction has a unique labels attached
  /// to it, duplicating it would cause multiple definition errors.
  bool isNotDuplicable() const {
    return Flags & (1 << TID::NotDuplicable);
  }
  
  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
  /// which must be filled by the code generator.
  bool hasDelaySlot() const {
    return Flags & (1 << TID::DelaySlot);
  }
  
  /// canFoldAsLoad - Return true for instructions that can be folded as
  /// memory operands in other instructions. The most common use for this
  /// is instructions that are simple loads from memory that don't modify
  /// the loaded value in any way, but it can also be used for instructions
  /// that can be expressed as constant-pool loads, such as V_SETALLONES
  /// on x86, to allow them to be folded when it is beneficial.
  /// This should only be set on instructions that return a value in their
  /// only virtual register definition.
  bool canFoldAsLoad() const {
    return Flags & (1 << TID::FoldableAsLoad);
  }
  
  //===--------------------------------------------------------------------===//
  // Side Effect Analysis
  //===--------------------------------------------------------------------===//

  /// mayLoad - Return true if this instruction could possibly read memory.
  /// Instructions with this flag set are not necessarily simple load
  /// instructions, they may load a value and modify it, for example.
  bool mayLoad() const {
    return Flags & (1 << TID::MayLoad);
  }
  
  
  /// mayStore - Return true if this instruction could possibly modify memory.
  /// Instructions with this flag set are not necessarily simple store
  /// instructions, they may store a modified value based on their operands, or
  /// may not actually modify anything, for example.
  bool mayStore() const {
    return Flags & (1 << TID::MayStore);
  }
  
  /// hasUnmodeledSideEffects - Return true if this instruction has side
  /// effects that are not modeled by other flags.  This does not return true
  /// for instructions whose effects are captured by:
  ///
  ///  1. Their operand list and implicit definition/use list.  Register use/def
  ///     info is explicit for instructions.
  ///  2. Memory accesses.  Use mayLoad/mayStore.
  ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
  ///
  /// Examples of side effects would be modifying 'invisible' machine state like
  /// a control register, flushing a cache, modifying a register invisible to
  /// LLVM, etc.
  ///
  bool hasUnmodeledSideEffects() const {
    return Flags & (1 << TID::UnmodeledSideEffects);
  }
  
  //===--------------------------------------------------------------------===//
  // Flags that indicate whether an instruction can be modified by a method.
  //===--------------------------------------------------------------------===//
  
  /// isCommutable - Return true if this may be a 2- or 3-address
  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
  /// result if Y and Z are exchanged.  If this flag is set, then the 
  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
  /// instruction.
  ///
  /// Note that this flag may be set on instructions that are only commutable
  /// sometimes.  In these cases, the call to commuteInstruction will fail.
  /// Also note that some instructions require non-trivial modification to
  /// commute them.
  bool isCommutable() const {
    return Flags & (1 << TID::Commutable);
  }
  
  /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
  /// which can be changed into a 3-address instruction if needed.  Doing this
  /// transformation can be profitable in the register allocator, because it
  /// means that the instruction can use a 2-address form if possible, but
  /// degrade into a less efficient form if the source and dest register cannot
  /// be assigned to the same register.  For example, this allows the x86
  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
  /// is the same speed as the shift but has bigger code size.
  ///
  /// If this returns true, then the target must implement the
  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
  /// is allowed to fail if the transformation isn't valid for this specific
  /// instruction (e.g. shl reg, 4 on x86).
  ///
  bool isConvertibleTo3Addr() const {
    return Flags & (1 << TID::ConvertibleTo3Addr);
  }
  
  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
  /// custom insertion support when the DAG scheduler is inserting it into a
  /// machine basic block.  If this is true for the instruction, it basically
  /// means that it is a pseudo instruction used at SelectionDAG time that is 
  /// expanded out into magic code by the target when MachineInstrs are formed.
  ///
  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
  /// is used to insert this into the MachineBasicBlock.
  bool usesCustomDAGSchedInsertionHook() const {
    return Flags & (1 << TID::UsesCustomDAGSchedInserter);
  }
  
  /// isRematerializable - Returns true if this instruction is a candidate for
  /// remat.  This flag is deprecated, please don't use it anymore.  If this
  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
  /// verify the instruction is really rematable.
  bool isRematerializable() const {
    return Flags & (1 << TID::Rematerializable);
  }

  /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
  /// less) than a move instruction. This is useful during certain types of
  /// optimizations (e.g., remat during two-address conversion or machine licm)
  /// where we would like to remat or hoist the instruction, but not if it costs
  /// more than moving the instruction into the appropriate register. Note, we
  /// are not marking copies from and to the same register class with this flag.
  bool isAsCheapAsAMove() const {
    return Flags & (1 << TID::CheapAsAMove);
  }
};

} // end namespace llvm

#endif