llvm.org GIT mirror llvm / release_26 docs / BitCodeFormat.html
release_26

Tree @release_26 (Download .tar.gz)

BitCodeFormat.html @release_26raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  <title>LLVM Bitcode File Format</title>
  <link rel="stylesheet" href="llvm.css" type="text/css">
</head>
<body>
<div class="doc_title"> LLVM Bitcode File Format </div>
<ol>
  <li><a href="#abstract">Abstract</a></li>
  <li><a href="#overview">Overview</a></li>
  <li><a href="#bitstream">Bitstream Format</a>
    <ol>
    <li><a href="#magic">Magic Numbers</a></li>
    <li><a href="#primitives">Primitives</a></li>
    <li><a href="#abbrevid">Abbreviation IDs</a></li>
    <li><a href="#blocks">Blocks</a></li>
    <li><a href="#datarecord">Data Records</a></li>
    <li><a href="#abbreviations">Abbreviations</a></li>
    <li><a href="#stdblocks">Standard Blocks</a></li>
    </ol>
  </li>
  <li><a href="#wrapper">Bitcode Wrapper Format</a>
  </li>
  <li><a href="#llvmir">LLVM IR Encoding</a>
    <ol>
    <li><a href="#basics">Basics</a></li>
    </ol>
  </li>
</ol>
<div class="doc_author">
  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
  and <a href="http://www.reverberate.org">Joshua Haberman</a>.
</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section"> <a name="abstract">Abstract</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>This document describes the LLVM bitstream file format and the encoding of
the LLVM IR into it.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"> <a name="overview">Overview</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
What is commonly known as the LLVM bitcode file format (also, sometimes
anachronistically known as bytecode) is actually two things: a <a 
href="#bitstream">bitstream container format</a>
and an <a href="#llvmir">encoding of LLVM IR</a> into the container format.</p>

<p>
The bitstream format is an abstract encoding of structured data, very
similar to XML in some ways.  Like XML, bitstream files contain tags, and nested
structures, and you can parse the file without having to understand the tags.
Unlike XML, the bitstream format is a binary encoding, and unlike XML it
provides a mechanism for the file to self-describe "abbreviations", which are
effectively size optimizations for the content.</p>

<p>LLVM IR files may be optionally embedded into a <a 
href="#wrapper">wrapper</a> structure that makes it easy to embed extra data
along with LLVM IR files.</p>

<p>This document first describes the LLVM bitstream format, describes the
wrapper format, then describes the record structure used by LLVM IR files.
</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"> <a name="bitstream">Bitstream Format</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
The bitstream format is literally a stream of bits, with a very simple
structure.  This structure consists of the following concepts:
</p>

<ul>
<li>A "<a href="#magic">magic number</a>" that identifies the contents of
    the stream.</li>
<li>Encoding <a href="#primitives">primitives</a> like variable bit-rate
    integers.</li> 
<li><a href="#blocks">Blocks</a>, which define nested content.</li> 
<li><a href="#datarecord">Data Records</a>, which describe entities within the
    file.</li> 
<li>Abbreviations, which specify compression optimizations for the file.</li> 
</ul>

<p>Note that the <a 
href="CommandGuide/html/llvm-bcanalyzer.html">llvm-bcanalyzer</a> tool can be
used to dump and inspect arbitrary bitstreams, which is very useful for
understanding the encoding.</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="magic">Magic Numbers</a>
</div>

<div class="doc_text">

<p>The first two bytes of a bitcode file are 'BC' (0x42, 0x43).
The second two bytes are an application-specific magic number.  Generic
bitcode tools can look at only the first two bytes to verify the file is
bitcode, while application-specific programs will want to look at all four.</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="primitives">Primitives</a>
</div>

<div class="doc_text">

<p>
A bitstream literally consists of a stream of bits, which are read in order
starting with the least significant bit of each byte.  The stream is made up of a
number of primitive values that encode a stream of unsigned integer values.
These
integers are are encoded in two ways: either as <a href="#fixedwidth">Fixed
Width Integers</a> or as <a href="#variablewidth">Variable Width
Integers</a>.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="fixedwidth">Fixed Width Integers</a>
</div>

<div class="doc_text">

<p>Fixed-width integer values have their low bits emitted directly to the file.
   For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers
   are used when there are a well-known number of options for a field.  For
   example, boolean values are usually encoded with a 1-bit wide integer. 
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="variablewidth">Variable Width
Integers</a></div>

<div class="doc_text">

<p>Variable-width integer (VBR) values encode values of arbitrary size,
optimizing for the case where the values are small.  Given a 4-bit VBR field,
any 3-bit value (0 through 7) is encoded directly, with the high bit set to
zero.  Values larger than N-1 bits emit their bits in a series of N-1 bit
chunks, where all but the last set the high bit.</p>

<p>For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a
vbr4 value.  The first set of four bits indicates the value 3 (011) with a
continuation piece (indicated by a high bit of 1).  The next word indicates a
value of 24 (011 << 3) with no continuation.  The sum (3+24) yields the value
27.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="char6">6-bit characters</a></div>

<div class="doc_text">

<p>6-bit characters encode common characters into a fixed 6-bit field.  They
represent the following characters with the following 6-bit values:</p>

<div class="doc_code">
<pre>
'a' .. 'z' &mdash;  0 .. 25
'A' .. 'Z' &mdash; 26 .. 51
'0' .. '9' &mdash; 52 .. 61
       '.' &mdash; 62
       '_' &mdash; 63
</pre>
</div>

<p>This encoding is only suitable for encoding characters and strings that
consist only of the above characters.  It is completely incapable of encoding
characters not in the set.</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="wordalign">Word Alignment</a></div>

<div class="doc_text">

<p>Occasionally, it is useful to emit zero bits until the bitstream is a
multiple of 32 bits.  This ensures that the bit position in the stream can be
represented as a multiple of 32-bit words.</p>

</div>


<!-- ======================================================================= -->
<div class="doc_subsection"><a name="abbrevid">Abbreviation IDs</a>
</div>

<div class="doc_text">

<p>
A bitstream is a sequential series of <a href="#blocks">Blocks</a> and
<a href="#datarecord">Data Records</a>.  Both of these start with an
abbreviation ID encoded as a fixed-bitwidth field.  The width is specified by
the current block, as described below.  The value of the abbreviation ID
specifies either a builtin ID (which have special meanings, defined below) or
one of the abbreviation IDs defined by the stream itself.
</p>

<p>
The set of builtin abbrev IDs is:
</p>

<ul>
<li><tt>0 - <a href="#END_BLOCK">END_BLOCK</a></tt> &mdash; This abbrev ID marks
    the end of the current block.</li>
<li><tt>1 - <a href="#ENTER_SUBBLOCK">ENTER_SUBBLOCK</a></tt> &mdash; This
    abbrev ID marks the beginning of a new block.</li>
<li><tt>2 - <a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt> &mdash; This defines
    a new abbreviation.</li>
<li><tt>3 - <a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> &mdash; This ID
    specifies the definition of an unabbreviated record.</li>
</ul>

<p>Abbreviation IDs 4 and above are defined by the stream itself, and specify
an <a href="#abbrev_records">abbreviated record encoding</a>.</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="blocks">Blocks</a>
</div>

<div class="doc_text">

<p>
Blocks in a bitstream denote nested regions of the stream, and are identified by
a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
function bodies).  Block IDs 0-7 are reserved for <a href="#stdblocks">standard blocks</a>
whose meaning is defined by Bitcode; block IDs 8 and greater are
application specific. Nested blocks capture the hierachical structure of the data
encoded in it, and various properties are associated with blocks as the file is
parsed.  Block definitions allow the reader to efficiently skip blocks
in constant time if the reader wants a summary of blocks, or if it wants to
efficiently skip data they do not understand.  The LLVM IR reader uses this
mechanism to skip function bodies, lazily reading them on demand.
</p>

<p>
When reading and encoding the stream, several properties are maintained for the
block.  In particular, each block maintains:
</p>

<ol>
<li>A current abbrev id width.  This value starts at 2, and is set every time a
    block record is entered.  The block entry specifies the abbrev id width for
    the body of the block.</li>

<li>A set of abbreviations.  Abbreviations may be defined within a block, in
    which case they are only defined in that block (neither subblocks nor
    enclosing blocks see the abbreviation).  Abbreviations can also be defined
    inside a <tt><a href="#BLOCKINFO">BLOCKINFO</a></tt> block, in which case
    they are defined in all blocks that match the ID that the BLOCKINFO block is
    describing.
</li>
</ol>

<p>
As sub blocks are entered, these properties are saved and the new sub-block has
its own set of abbreviations, and its own abbrev id width.  When a sub-block is
popped, the saved values are restored.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="ENTER_SUBBLOCK">ENTER_SUBBLOCK
Encoding</a></div>

<div class="doc_text">

<p><tt>[ENTER_SUBBLOCK, blockid<sub>vbr8</sub>, newabbrevlen<sub>vbr4</sub>,
     &lt;align32bits&gt;, blocklen<sub>32</sub>]</tt></p>

<p>
The <tt>ENTER_SUBBLOCK</tt> abbreviation ID specifies the start of a new block
record.  The <tt>blockid</tt> value is encoded as an 8-bit VBR identifier, and
indicates the type of block being entered, which can be
a <a href="#stdblocks">standard block</a> or an application-specific block.
The <tt>newabbrevlen</tt> value is a 4-bit VBR, which specifies the abbrev id
width for the sub-block.  The <tt>blocklen</tt> value is a 32-bit aligned value
that specifies the size of the subblock in 32-bit words. This value allows the
reader to skip over the entire block in one jump.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="END_BLOCK">END_BLOCK
Encoding</a></div>

<div class="doc_text">

<p><tt>[END_BLOCK, &lt;align32bits&gt;]</tt></p>

<p>
The <tt>END_BLOCK</tt> abbreviation ID specifies the end of the current block
record.  Its end is aligned to 32-bits to ensure that the size of the block is
an even multiple of 32-bits.
</p>

</div>



<!-- ======================================================================= -->
<div class="doc_subsection"><a name="datarecord">Data Records</a>
</div>

<div class="doc_text">
<p>
Data records consist of a record code and a number of (up to) 64-bit integer
values.  The interpretation of the code and values is application specific and
there are multiple different ways to encode a record (with an unabbrev record or
with an abbreviation).  In the LLVM IR format, for example, there is a record
which encodes the target triple of a module.  The code is
<tt>MODULE_CODE_TRIPLE</tt>, and the values of the record are the ASCII codes
for the characters in the string.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="UNABBREV_RECORD">UNABBREV_RECORD
Encoding</a></div>

<div class="doc_text">

<p><tt>[UNABBREV_RECORD, code<sub>vbr6</sub>, numops<sub>vbr6</sub>,
       op0<sub>vbr6</sub>, op1<sub>vbr6</sub>, ...]</tt></p>

<p>
An <tt>UNABBREV_RECORD</tt> provides a default fallback encoding, which is both
completely general and extremely inefficient.  It can describe an arbitrary
record by emitting the code and operands as vbrs.
</p>

<p>
For example, emitting an LLVM IR target triple as an unabbreviated record
requires emitting the <tt>UNABBREV_RECORD</tt> abbrevid, a vbr6 for the
<tt>MODULE_CODE_TRIPLE</tt> code, a vbr6 for the length of the string, which is
equal to the number of operands, and a vbr6 for each character.  Because there
are no letters with values less than 32, each letter would need to be emitted as
at least a two-part VBR, which means that each letter would require at least 12
bits.  This is not an efficient encoding, but it is fully general.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="abbrev_records">Abbreviated Record
Encoding</a></div>

<div class="doc_text">

<p><tt>[&lt;abbrevid&gt;, fields...]</tt></p>

<p>
An abbreviated record is a abbreviation id followed by a set of fields that are
encoded according to the <a href="#abbreviations">abbreviation definition</a>.
This allows records to be encoded significantly more densely than records
encoded with the <tt><a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> type,
and allows the abbreviation types to be specified in the stream itself, which
allows the files to be completely self describing.  The actual encoding of
abbreviations is defined below.
</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="abbreviations">Abbreviations</a>
</div>

<div class="doc_text">
<p>
Abbreviations are an important form of compression for bitstreams.  The idea is
to specify a dense encoding for a class of records once, then use that encoding
to emit many records.  It takes space to emit the encoding into the file, but
the space is recouped (hopefully plus some) when the records that use it are
emitted.
</p>

<p>
Abbreviations can be determined dynamically per client, per file. Because the
abbreviations are stored in the bitstream itself, different streams of the same
format can contain different sets of abbreviations if the specific stream does
not need it.  As a concrete example, LLVM IR files usually emit an abbreviation
for binary operators.  If a specific LLVM module contained no or few binary
operators, the abbreviation does not need to be emitted.
</p>
</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="DEFINE_ABBREV">DEFINE_ABBREV
 Encoding</a></div>

<div class="doc_text">

<p><tt>[DEFINE_ABBREV, numabbrevops<sub>vbr5</sub>, abbrevop0, abbrevop1,
 ...]</tt></p>

<p>
A <tt>DEFINE_ABBREV</tt> record adds an abbreviation to the list of currently
defined abbreviations in the scope of this block.  This definition only exists
inside this immediate block &mdash; it is not visible in subblocks or enclosing
blocks.  Abbreviations are implicitly assigned IDs sequentially starting from 4
(the first application-defined abbreviation ID).  Any abbreviations defined in a
<tt>BLOCKINFO</tt> record receive IDs first, in order, followed by any
abbreviations defined within the block itself.  Abbreviated data records
reference this ID to indicate what abbreviation they are invoking.
</p>

<p>
An abbreviation definition consists of the <tt>DEFINE_ABBREV</tt> abbrevid
followed by a VBR that specifies the number of abbrev operands, then the abbrev
operands themselves.  Abbreviation operands come in three forms.  They all start
with a single bit that indicates whether the abbrev operand is a literal operand
(when the bit is 1) or an encoding operand (when the bit is 0).
</p>

<ol>
<li>Literal operands &mdash; <tt>[1<sub>1</sub>, litvalue<sub>vbr8</sub>]</tt>
&mdash; Literal operands specify that the value in the result is always a single
specific value.  This specific value is emitted as a vbr8 after the bit
indicating that it is a literal operand.</li>
<li>Encoding info without data &mdash; <tt>[0<sub>1</sub>,
 encoding<sub>3</sub>]</tt> &mdash; Operand encodings that do not have extra
 data are just emitted as their code.
</li>
<li>Encoding info with data &mdash; <tt>[0<sub>1</sub>, encoding<sub>3</sub>,
value<sub>vbr5</sub>]</tt> &mdash; Operand encodings that do have extra data are
emitted as their code, followed by the extra data.
</li>
</ol>

<p>The possible operand encodings are:</p>

<ol>
<li>Fixed: The field should be emitted as
    a <a href="#fixedwidth">fixed-width value</a>, whose width is specified by
    the operand's extra data.</li>
<li>VBR: The field should be emitted as
    a <a href="#variablewidth">variable-width value</a>, whose width is
    specified by the operand's extra data.</li>
<li>Array: This field is an array of values.  The array operand
    has no extra data, but expects another operand to follow it which indicates
    the element type of the array.  When reading an array in an abbreviated
    record, the first integer is a vbr6 that indicates the array length,
    followed by the encoded elements of the array.  An array may only occur as
    the last operand of an abbreviation (except for the one final operand that
    gives the array's type).</li>
<li>Char6: This field should be emitted as
    a <a href="#char6">char6-encoded value</a>.  This operand type takes no
    extra data.</li>
<li>Blob: This field is emitted as a vbr6, followed by padding to a
    32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
    bytes is further followed by tail padding to ensure that its total length is
    a multiple of 4 bytes.  This makes it very efficient for the reader to
    decode the data without having to make a copy of it: it can use a pointer to
    the data in the mapped in file and poke directly at it.  A blob may only
    occur as the last operand of an abbreviation.</li>
</ol>

<p>
For example, target triples in LLVM modules are encoded as a record of the
form <tt>[TRIPLE, 'a', 'b', 'c', 'd']</tt>.  Consider if the bitstream emitted
the following abbrev entry:
</p>

<div class="doc_code">
<pre>
[0, Fixed, 4]
[0, Array]
[0, Char6]
</pre>
</div>

<p>
When emitting a record with this abbreviation, the above entry would be emitted
as:
</p>

<div class="doc_code">
<p>
<tt>[4<sub>abbrevwidth</sub>, 2<sub>4</sub>, 4<sub>vbr6</sub>, 0<sub>6</sub>,
1<sub>6</sub>, 2<sub>6</sub>, 3<sub>6</sub>]</tt>
</p>
</div>

<p>These values are:</p>

<ol>
<li>The first value, 4, is the abbreviation ID for this abbreviation.</li>
<li>The second value, 2, is the code for <tt>TRIPLE</tt> in LLVM IR files.</li>
<li>The third value, 4, is the length of the array.</li>
<li>The rest of the values are the char6 encoded values
    for <tt>"abcd"</tt>.</li>
</ol>

<p>
With this abbreviation, the triple is emitted with only 37 bits (assuming a
abbrev id width of 3).  Without the abbreviation, significantly more space would
be required to emit the target triple.  Also, because the <tt>TRIPLE</tt> value
is not emitted as a literal in the abbreviation, the abbreviation can also be
used for any other string value.
</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="stdblocks">Standard Blocks</a>
</div>

<div class="doc_text">

<p>
In addition to the basic block structure and record encodings, the bitstream
also defines specific builtin block types.  These block types specify how the
stream is to be decoded or other metadata.  In the future, new standard blocks
may be added.  Block IDs 0-7 are reserved for standard blocks.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="BLOCKINFO">#0 - BLOCKINFO
Block</a></div>

<div class="doc_text">

<p>
The <tt>BLOCKINFO</tt> block allows the description of metadata for other
blocks.  The currently specified records are:
</p>

<div class="doc_code">
<pre>
[SETBID (#1), blockid]
[DEFINE_ABBREV, ...]
[BLOCKNAME, ...name...]
[SETRECORDNAME, RecordID, ...name...]
</pre>
</div>

<p>
The <tt>SETBID</tt> record indicates which block ID is being
described.  <tt>SETBID</tt> records can occur multiple times throughout the
block to change which block ID is being described.  There must be
a <tt>SETBID</tt> record prior to any other records.
</p>

<p>
Standard <tt>DEFINE_ABBREV</tt> records can occur inside <tt>BLOCKINFO</tt>
blocks, but unlike their occurrence in normal blocks, the abbreviation is
defined for blocks matching the block ID we are describing, <i>not</i> the
<tt>BLOCKINFO</tt> block itself.  The abbreviations defined
in <tt>BLOCKINFO</tt> blocks receive abbreviation IDs as described
in <tt><a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt>.
</p>

<p>The <tt>BLOCKNAME</tt> can optionally occur in this block.  The elements of
the record are the bytes for the string name of the block.  llvm-bcanalyzer uses
this to dump out bitcode files symbolically.</p>

<p>The <tt>SETRECORDNAME</tt> record can optionally occur in this block.  The
first entry is a record ID number and the rest of the elements of the record are
the bytes for the string name of the record.  llvm-bcanalyzer uses
this to dump out bitcode files symbolically.</p>

<p>
Note that although the data in <tt>BLOCKINFO</tt> blocks is described as
"metadata," the abbreviations they contain are essential for parsing records
from the corresponding blocks.  It is not safe to skip them.
</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"> <a name="wrapper">Bitcode Wrapper Format</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
structure.  This structure contains a simple header that indicates the offset
and size of the embedded BC file.  This allows additional information to be
stored alongside the BC file.  The structure of this file header is:
</p>

<div class="doc_code">
<p>
<tt>[Magic<sub>32</sub>, Version<sub>32</sub>, Offset<sub>32</sub>,
Size<sub>32</sub>, CPUType<sub>32</sub>]</tt>
</p>
</div>

<p>
Each of the fields are 32-bit fields stored in little endian form (as with
the rest of the bitcode file fields).  The Magic number is always
<tt>0x0B17C0DE</tt> and the version is currently always <tt>0</tt>.  The Offset
field is the offset in bytes to the start of the bitcode stream in the file, and
the Size field is a size in bytes of the stream. CPUType is a target-specific
value that can be used to encode the CPU of the target.
</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"> <a name="llvmir">LLVM IR Encoding</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
blocks for things like constant pools, functions, symbol tables, etc.  It uses
records for things like instructions, global variable descriptors, type
descriptions, etc.  This document does not describe the set of abbreviations
that the writer uses, as these are fully self-described in the file, and the
reader is not allowed to build in any knowledge of this.
</p>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="basics">Basics</a>
</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="ir_magic">LLVM IR Magic Number</a></div>

<div class="doc_text">

<p>
The magic number for LLVM IR files is:
</p>

<div class="doc_code">
<p>
<tt>[0x0<sub>4</sub>, 0xC<sub>4</sub>, 0xE<sub>4</sub>, 0xD<sub>4</sub>]</tt>
</p>
</div>

<p>
When combined with the bitcode magic number and viewed as bytes, this is
<tt>"BC&nbsp;0xC0DE"</tt>.
</p>

</div>

<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="ir_signed_vbr">Signed VBRs</a></div>

<div class="doc_text">

<p>
<a href="#variablewidth">Variable Width Integers</a> are an efficient way to
encode arbitrary sized unsigned values, but is an extremely inefficient way to
encode signed values (as signed values are otherwise treated as maximally large
unsigned values).
</p>

<p>
As such, signed vbr values of a specific width are emitted as follows:
</p>

<ul>
<li>Positive values are emitted as vbrs of the specified width, but with their
    value shifted left by one.</li>
<li>Negative values are emitted as vbrs of the specified width, but the negated
    value is shifted left by one, and the low bit is set.</li>
</ul>

<p>
With this encoding, small positive and small negative values can both be emitted
efficiently.
</p>

</div>


<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="ir_blocks">LLVM IR Blocks</a></div>

<div class="doc_text">

<p>
LLVM IR is defined with the following blocks:
</p>

<ul>
<li>8  &mdash; <tt>MODULE_BLOCK</tt> &mdash; This is the top-level block that
    contains the entire module, and describes a variety of per-module
    information.</li>
<li>9  &mdash; <tt>PARAMATTR_BLOCK</tt> &mdash; This enumerates the parameter
    attributes.</li>
<li>10 &mdash; <tt>TYPE_BLOCK</tt> &mdash; This describes all of the types in
    the module.</li>
<li>11 &mdash; <tt>CONSTANTS_BLOCK</tt> &mdash; This describes constants for a
    module or function.</li>
<li>12 &mdash; <tt>FUNCTION_BLOCK</tt> &mdash; This describes a function
    body.</li>
<li>13 &mdash; <tt>TYPE_SYMTAB_BLOCK</tt> &mdash; This describes the type symbol
    table.</li>
<li>14 &mdash; <tt>VALUE_SYMTAB_BLOCK</tt> &mdash; This describes a value symbol
    table.</li>
</ul>

</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="MODULE_BLOCK">MODULE_BLOCK Contents</a>
</div>

<div class="doc_text">

<p>
</p>

</div>


<!-- *********************************************************************** -->
<hr>
<address> <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
<a href="http://validator.w3.org/check/referer"><img
 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date$
</address>
</body>
</html>