llvm.org GIT mirror llvm / release_25 lib / CodeGen / SelectionDAG / ScheduleDAGSDNodesEmit.cpp
release_25

Tree @release_25 (Download .tar.gz)

ScheduleDAGSDNodesEmit.cpp @release_25raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
//===---- ScheduleDAGEmit.cpp - Emit routines for the ScheduleDAG class ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the Emit routines for the ScheduleDAG class, which creates
// MachineInstrs according to the computed schedule.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;

/// getInstrOperandRegClass - Return register class of the operand of an
/// instruction of the specified TargetInstrDesc.
static const TargetRegisterClass*
getInstrOperandRegClass(const TargetRegisterInfo *TRI, 
                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
                        unsigned Op) {
  if (Op >= II.getNumOperands()) {
    assert(II.isVariadic() && "Invalid operand # of instruction");
    return NULL;
  }
  if (II.OpInfo[Op].isLookupPtrRegClass())
    return TII->getPointerRegClass();
  return TRI->getRegClass(II.OpInfo[Op].RegClass);
}

/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
/// implicit physical register output.
void ScheduleDAGSDNodes::EmitCopyFromReg(SDNode *Node, unsigned ResNo,
                                         bool IsClone, bool IsCloned,
                                         unsigned SrcReg,
                                         DenseMap<SDValue, unsigned> &VRBaseMap) {
  unsigned VRBase = 0;
  if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    // Just use the input register directly!
    SDValue Op(Node, ResNo);
    if (IsClone)
      VRBaseMap.erase(Op);
    bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
    isNew = isNew; // Silence compiler warning.
    assert(isNew && "Node emitted out of order - early");
    return;
  }

  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
  // the CopyToReg'd destination register instead of creating a new vreg.
  bool MatchReg = true;
  const TargetRegisterClass *UseRC = NULL;
  if (!IsClone && !IsCloned)
    for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
         UI != E; ++UI) {
      SDNode *User = *UI;
      bool Match = true;
      if (User->getOpcode() == ISD::CopyToReg && 
          User->getOperand(2).getNode() == Node &&
          User->getOperand(2).getResNo() == ResNo) {
        unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
        if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
          VRBase = DestReg;
          Match = false;
        } else if (DestReg != SrcReg)
          Match = false;
      } else {
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
          SDValue Op = User->getOperand(i);
          if (Op.getNode() != Node || Op.getResNo() != ResNo)
            continue;
          MVT VT = Node->getValueType(Op.getResNo());
          if (VT == MVT::Other || VT == MVT::Flag)
            continue;
          Match = false;
          if (User->isMachineOpcode()) {
            const TargetInstrDesc &II = TII->get(User->getMachineOpcode());
            const TargetRegisterClass *RC =
              getInstrOperandRegClass(TRI,TII,II,i+II.getNumDefs());
            if (!UseRC)
              UseRC = RC;
            else if (RC)
              assert(UseRC == RC &&
                     "Multiple uses expecting different register classes!");
          }
        }
      }
      MatchReg &= Match;
      if (VRBase)
        break;
    }

  MVT VT = Node->getValueType(ResNo);
  const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
  SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, VT);
  
  // Figure out the register class to create for the destreg.
  if (VRBase) {
    DstRC = MRI.getRegClass(VRBase);
  } else if (UseRC) {
    assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
    DstRC = UseRC;
  } else {
    DstRC = TLI->getRegClassFor(VT);
  }
    
  // If all uses are reading from the src physical register and copying the
  // register is either impossible or very expensive, then don't create a copy.
  if (MatchReg && SrcRC->getCopyCost() < 0) {
    VRBase = SrcReg;
  } else {
    // Create the reg, emit the copy.
    VRBase = MRI.createVirtualRegister(DstRC);
    bool Emitted =
      TII->copyRegToReg(*BB, End, VRBase, SrcReg, DstRC, SrcRC);
    Emitted = Emitted; // Silence compiler warning.
    assert(Emitted && "Unable to issue a copy instruction!");
  }

  SDValue Op(Node, ResNo);
  if (IsClone)
    VRBaseMap.erase(Op);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
  isNew = isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}

/// getDstOfCopyToRegUse - If the only use of the specified result number of
/// node is a CopyToReg, return its destination register. Return 0 otherwise.
unsigned ScheduleDAGSDNodes::getDstOfOnlyCopyToRegUse(SDNode *Node,
                                                      unsigned ResNo) const {
  if (!Node->hasOneUse())
    return 0;

  SDNode *User = *Node->use_begin();
  if (User->getOpcode() == ISD::CopyToReg && 
      User->getOperand(2).getNode() == Node &&
      User->getOperand(2).getResNo() == ResNo) {
    unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
    if (TargetRegisterInfo::isVirtualRegister(Reg))
      return Reg;
  }
  return 0;
}

void ScheduleDAGSDNodes::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
                                       const TargetInstrDesc &II,
                                       bool IsClone, bool IsCloned,
                                       DenseMap<SDValue, unsigned> &VRBaseMap) {
  assert(Node->getMachineOpcode() != TargetInstrInfo::IMPLICIT_DEF &&
         "IMPLICIT_DEF should have been handled as a special case elsewhere!");

  for (unsigned i = 0; i < II.getNumDefs(); ++i) {
    // If the specific node value is only used by a CopyToReg and the dest reg
    // is a vreg, use the CopyToReg'd destination register instead of creating
    // a new vreg.
    unsigned VRBase = 0;

    if (!IsClone && !IsCloned)
      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
           UI != E; ++UI) {
        SDNode *User = *UI;
        if (User->getOpcode() == ISD::CopyToReg && 
            User->getOperand(2).getNode() == Node &&
            User->getOperand(2).getResNo() == i) {
          unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
          if (TargetRegisterInfo::isVirtualRegister(Reg)) {
            VRBase = Reg;
            MI->addOperand(MachineOperand::CreateReg(Reg, true));
            break;
          }
        }
      }

    // Create the result registers for this node and add the result regs to
    // the machine instruction.
    if (VRBase == 0) {
      const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TII, II, i);
      assert(RC && "Isn't a register operand!");
      VRBase = MRI.createVirtualRegister(RC);
      MI->addOperand(MachineOperand::CreateReg(VRBase, true));
    }

    SDValue Op(Node, i);
    if (IsClone)
      VRBaseMap.erase(Op);
    bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
    isNew = isNew; // Silence compiler warning.
    assert(isNew && "Node emitted out of order - early");
  }
}

/// getVR - Return the virtual register corresponding to the specified result
/// of the specified node.
unsigned ScheduleDAGSDNodes::getVR(SDValue Op,
                                   DenseMap<SDValue, unsigned> &VRBaseMap) {
  if (Op.isMachineOpcode() &&
      Op.getMachineOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
    // Add an IMPLICIT_DEF instruction before every use.
    unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
    // IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
    // does not include operand register class info.
    if (!VReg) {
      const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
      VReg = MRI.createVirtualRegister(RC);
    }
    BuildMI(BB, Op.getDebugLoc(), TII->get(TargetInstrInfo::IMPLICIT_DEF),VReg);
    return VReg;
  }

  DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
  assert(I != VRBaseMap.end() && "Node emitted out of order - late");
  return I->second;
}


/// AddOperand - Add the specified operand to the specified machine instr.  II
/// specifies the instruction information for the node, and IIOpNum is the
/// operand number (in the II) that we are adding. IIOpNum and II are used for 
/// assertions only.
void ScheduleDAGSDNodes::AddOperand(MachineInstr *MI, SDValue Op,
                                    unsigned IIOpNum,
                                    const TargetInstrDesc *II,
                                    DenseMap<SDValue, unsigned> &VRBaseMap) {
  if (Op.isMachineOpcode()) {
    // Note that this case is redundant with the final else block, but we
    // include it because it is the most common and it makes the logic
    // simpler here.
    assert(Op.getValueType() != MVT::Other &&
           Op.getValueType() != MVT::Flag &&
           "Chain and flag operands should occur at end of operand list!");
    // Get/emit the operand.
    unsigned VReg = getVR(Op, VRBaseMap);
    const TargetInstrDesc &TID = MI->getDesc();
    bool isOptDef = IIOpNum < TID.getNumOperands() &&
      TID.OpInfo[IIOpNum].isOptionalDef();
    MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef));
    
    // Verify that it is right.
    assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
#ifndef NDEBUG
    if (II) {
      // There may be no register class for this operand if it is a variadic
      // argument (RC will be NULL in this case).  In this case, we just assume
      // the regclass is ok.
      const TargetRegisterClass *RC =
                          getInstrOperandRegClass(TRI, TII, *II, IIOpNum);
      assert((RC || II->isVariadic()) && "Expected reg class info!");
      const TargetRegisterClass *VRC = MRI.getRegClass(VReg);
      if (RC && VRC != RC) {
        cerr << "Register class of operand and regclass of use don't agree!\n";
        cerr << "Operand = " << IIOpNum << "\n";
        cerr << "Op->Val = "; Op.getNode()->dump(DAG); cerr << "\n";
        cerr << "MI = "; MI->print(cerr);
        cerr << "VReg = " << VReg << "\n";
        cerr << "VReg RegClass     size = " << VRC->getSize()
             << ", align = " << VRC->getAlignment() << "\n";
        cerr << "Expected RegClass size = " << RC->getSize()
             << ", align = " << RC->getAlignment() << "\n";
        cerr << "Fatal error, aborting.\n";
        abort();
      }
    }
#endif
  } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateImm(C->getZExtValue()));
  } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
    const ConstantFP *CFP = F->getConstantFPValue();
    MI->addOperand(MachineOperand::CreateFPImm(CFP));
  } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
  } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(),TGA->getOffset()));
  } else if (BasicBlockSDNode *BB = dyn_cast<BasicBlockSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock()));
  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateFI(FI->getIndex()));
  } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateJTI(JT->getIndex()));
  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
    int Offset = CP->getOffset();
    unsigned Align = CP->getAlignment();
    const Type *Type = CP->getType();
    // MachineConstantPool wants an explicit alignment.
    if (Align == 0) {
      Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
      if (Align == 0) {
        // Alignment of vector types.  FIXME!
        Align = TM.getTargetData()->getTypePaddedSize(Type);
        Align = Log2_64(Align);
      }
    }
    
    unsigned Idx;
    if (CP->isMachineConstantPoolEntry())
      Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
    else
      Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
    MI->addOperand(MachineOperand::CreateCPI(Idx, Offset));
  } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
    MI->addOperand(MachineOperand::CreateES(ES->getSymbol()));
  } else {
    assert(Op.getValueType() != MVT::Other &&
           Op.getValueType() != MVT::Flag &&
           "Chain and flag operands should occur at end of operand list!");
    unsigned VReg = getVR(Op, VRBaseMap);
    MI->addOperand(MachineOperand::CreateReg(VReg, false));
    
    // Verify that it is right.  Note that the reg class of the physreg and the
    // vreg don't necessarily need to match, but the target copy insertion has
    // to be able to handle it.  This handles things like copies from ST(0) to
    // an FP vreg on x86.
    assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
    if (II && !II->isVariadic()) {
      assert(getInstrOperandRegClass(TRI, TII, *II, IIOpNum) &&
             "Don't have operand info for this instruction!");
    }
  }  
}

/// EmitSubregNode - Generate machine code for subreg nodes.
///
void ScheduleDAGSDNodes::EmitSubregNode(SDNode *Node, 
                                        DenseMap<SDValue, unsigned> &VRBaseMap) {
  unsigned VRBase = 0;
  unsigned Opc = Node->getMachineOpcode();
  
  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
  // the CopyToReg'd destination register instead of creating a new vreg.
  for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
       UI != E; ++UI) {
    SDNode *User = *UI;
    if (User->getOpcode() == ISD::CopyToReg && 
        User->getOperand(2).getNode() == Node) {
      unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
      if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
        VRBase = DestReg;
        break;
      }
    }
  }
  
  if (Opc == TargetInstrInfo::EXTRACT_SUBREG) {
    unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();

    // Create the extract_subreg machine instruction.
    MachineInstr *MI = BuildMI(MF, Node->getDebugLoc(),
                               TII->get(TargetInstrInfo::EXTRACT_SUBREG));

    // Figure out the register class to create for the destreg.
    const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getValueType(0));

    if (VRBase) {
      // Grab the destination register
#ifndef NDEBUG
      const TargetRegisterClass *DRC = MRI.getRegClass(VRBase);
      assert(SRC && DRC && SRC == DRC && 
             "Source subregister and destination must have the same class");
#endif
    } else {
      // Create the reg
      assert(SRC && "Couldn't find source register class");
      VRBase = MRI.createVirtualRegister(SRC);
    }
    
    // Add def, source, and subreg index
    MI->addOperand(MachineOperand::CreateReg(VRBase, true));
    AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
    MI->addOperand(MachineOperand::CreateImm(SubIdx));
    BB->insert(End, MI);
  } else if (Opc == TargetInstrInfo::INSERT_SUBREG ||
             Opc == TargetInstrInfo::SUBREG_TO_REG) {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);
    SDValue N2 = Node->getOperand(2);
    unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
    
      
    // Figure out the register class to create for the destreg.
    const TargetRegisterClass *TRC = 0;
    if (VRBase) {
      TRC = MRI.getRegClass(VRBase);
    } else {
      TRC = TLI->getRegClassFor(Node->getValueType(0));
      assert(TRC && "Couldn't determine register class for insert_subreg");
      VRBase = MRI.createVirtualRegister(TRC); // Create the reg
    }
    
    // Create the insert_subreg or subreg_to_reg machine instruction.
    MachineInstr *MI = BuildMI(MF, Node->getDebugLoc(), TII->get(Opc));
    MI->addOperand(MachineOperand::CreateReg(VRBase, true));
    
    // If creating a subreg_to_reg, then the first input operand
    // is an implicit value immediate, otherwise it's a register
    if (Opc == TargetInstrInfo::SUBREG_TO_REG) {
      const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
      MI->addOperand(MachineOperand::CreateImm(SD->getZExtValue()));
    } else
      AddOperand(MI, N0, 0, 0, VRBaseMap);
    // Add the subregster being inserted
    AddOperand(MI, N1, 0, 0, VRBaseMap);
    MI->addOperand(MachineOperand::CreateImm(SubIdx));
    BB->insert(End, MI);
  } else
    assert(0 && "Node is not insert_subreg, extract_subreg, or subreg_to_reg");
     
  SDValue Op(Node, 0);
  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
  isNew = isNew; // Silence compiler warning.
  assert(isNew && "Node emitted out of order - early");
}

/// EmitNode - Generate machine code for an node and needed dependencies.
///
void ScheduleDAGSDNodes::EmitNode(SDNode *Node, bool IsClone, bool IsCloned,
                                  DenseMap<SDValue, unsigned> &VRBaseMap) {
  // If machine instruction
  if (Node->isMachineOpcode()) {
    unsigned Opc = Node->getMachineOpcode();
    
    // Handle subreg insert/extract specially
    if (Opc == TargetInstrInfo::EXTRACT_SUBREG || 
        Opc == TargetInstrInfo::INSERT_SUBREG ||
        Opc == TargetInstrInfo::SUBREG_TO_REG) {
      EmitSubregNode(Node, VRBaseMap);
      return;
    }

    if (Opc == TargetInstrInfo::IMPLICIT_DEF)
      // We want a unique VR for each IMPLICIT_DEF use.
      return;
    
    const TargetInstrDesc &II = TII->get(Opc);
    unsigned NumResults = CountResults(Node);
    unsigned NodeOperands = CountOperands(Node);
    unsigned MemOperandsEnd = ComputeMemOperandsEnd(Node);
    bool HasPhysRegOuts = (NumResults > II.getNumDefs()) &&
                          II.getImplicitDefs() != 0;
#ifndef NDEBUG
    unsigned NumMIOperands = NodeOperands + NumResults;
    assert((II.getNumOperands() == NumMIOperands ||
            HasPhysRegOuts || II.isVariadic()) &&
           "#operands for dag node doesn't match .td file!"); 
#endif

    // Create the new machine instruction.
    MachineInstr *MI = BuildMI(MF, Node->getDebugLoc(), II);
    
    // Add result register values for things that are defined by this
    // instruction.
    if (NumResults)
      CreateVirtualRegisters(Node, MI, II, IsClone, IsCloned, VRBaseMap);
    
    // Emit all of the actual operands of this instruction, adding them to the
    // instruction as appropriate.
    for (unsigned i = 0; i != NodeOperands; ++i)
      AddOperand(MI, Node->getOperand(i), i+II.getNumDefs(), &II, VRBaseMap);

    // Emit all of the memory operands of this instruction
    for (unsigned i = NodeOperands; i != MemOperandsEnd; ++i)
      AddMemOperand(MI, cast<MemOperandSDNode>(Node->getOperand(i))->MO);

    if (II.usesCustomDAGSchedInsertionHook()) {
      // Insert this instruction into the basic block using a target
      // specific inserter which may returns a new basic block.
      BB = TLI->EmitInstrWithCustomInserter(MI, BB);
      Begin = End = BB->end();
    } else {
      BB->insert(End, MI);
    }

    // Additional results must be an physical register def.
    if (HasPhysRegOuts) {
      for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
        unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
        if (Node->hasAnyUseOfValue(i))
          EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
      }
    }
    return;
  }

  switch (Node->getOpcode()) {
  default:
#ifndef NDEBUG
    Node->dump(DAG);
#endif
    assert(0 && "This target-independent node should have been selected!");
    break;
  case ISD::EntryToken:
    assert(0 && "EntryToken should have been excluded from the schedule!");
    break;
  case ISD::TokenFactor: // fall thru
    break;
  case ISD::CopyToReg: {
    unsigned SrcReg;
    SDValue SrcVal = Node->getOperand(2);
    if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
      SrcReg = R->getReg();
    else
      SrcReg = getVR(SrcVal, VRBaseMap);
      
    unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
      break;
      
    const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0;
    // Get the register classes of the src/dst.
    if (TargetRegisterInfo::isVirtualRegister(SrcReg))
      SrcTRC = MRI.getRegClass(SrcReg);
    else
      SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType());

    if (TargetRegisterInfo::isVirtualRegister(DestReg))
      DstTRC = MRI.getRegClass(DestReg);
    else
      DstTRC = TRI->getPhysicalRegisterRegClass(DestReg,
                                            Node->getOperand(1).getValueType());
    TII->copyRegToReg(*BB, End, DestReg, SrcReg, DstTRC, SrcTRC);
    break;
  }
  case ISD::CopyFromReg: {
    unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
    break;
  }
  case ISD::INLINEASM: {
    unsigned NumOps = Node->getNumOperands();
    if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
      --NumOps;  // Ignore the flag operand.
      
    // Create the inline asm machine instruction.
    MachineInstr *MI = BuildMI(MF, Node->getDebugLoc(),
                               TII->get(TargetInstrInfo::INLINEASM));

    // Add the asm string as an external symbol operand.
    const char *AsmStr =
      cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
    MI->addOperand(MachineOperand::CreateES(AsmStr));
      
    // Add all of the operand registers to the instruction.
    for (unsigned i = 2; i != NumOps;) {
      unsigned Flags =
        cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
      unsigned NumVals = Flags >> 3;
        
      MI->addOperand(MachineOperand::CreateImm(Flags));
      ++i;  // Skip the ID value.
        
      switch (Flags & 7) {
      default: assert(0 && "Bad flags!");
      case 2:   // Def of register.
        for (; NumVals; --NumVals, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
          MI->addOperand(MachineOperand::CreateReg(Reg, true));
        }
        break;
      case 6:   // Def of earlyclobber register.
        for (; NumVals; --NumVals, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
          MI->addOperand(MachineOperand::CreateReg(Reg, true, false, false, 
                                                   false, 0, true));
        }
        break;
      case 1:  // Use of register.
      case 3:  // Immediate.
      case 4:  // Addressing mode.
        // The addressing mode has been selected, just add all of the
        // operands to the machine instruction.
        for (; NumVals; --NumVals, ++i)
          AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
        break;
      }
    }
    BB->insert(End, MI);
    break;
  }
  }
}

/// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
  DenseMap<SDValue, unsigned> VRBaseMap;
  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    SUnit *SU = Sequence[i];
    if (!SU) {
      // Null SUnit* is a noop.
      EmitNoop();
      continue;
    }

    // For pre-regalloc scheduling, create instructions corresponding to the
    // SDNode and any flagged SDNodes and append them to the block.
    if (!SU->getNode()) {
      // Emit a copy.
      EmitPhysRegCopy(SU, CopyVRBaseMap);
      continue;
    }

    SmallVector<SDNode *, 4> FlaggedNodes;
    for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
         N = N->getFlaggedNode())
      FlaggedNodes.push_back(N);
    while (!FlaggedNodes.empty()) {
      EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,VRBaseMap);
      FlaggedNodes.pop_back();
    }
    EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
  }

  return BB;
}