llvm.org GIT mirror llvm / release_25 lib / CodeGen / SelectionDAG / LegalizeVectorTypes.cpp
release_25

Tree @release_25 (Download .tar.gz)

LegalizeVectorTypes.cpp @release_25raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file performs vector type splitting and scalarization for LegalizeTypes.
// Scalarization is the act of changing a computation in an illegal one-element
// vector type to be a computation in its scalar element type.  For example,
// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
// as a base case when scalarizing vector arithmetic like <4 x f32>, which
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
// be a computation in multiple vectors of a smaller type.  For example,
// implementing <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//

#include "LegalizeTypes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
//  Result Vector Scalarization: <1 x ty> -> ty.
//===----------------------------------------------------------------------===//

void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
        cerr << "\n");
  SDValue R = SDValue();

  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "ScalarizeVectorResult #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to scalarize the result of this operator!");
    abort();

  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
  case ISD::VSETCC:            R = ScalarizeVecRes_VSETCC(N); break;

  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::CTTZ:
  case ISD::FABS:
  case ISD::FCOS:
  case ISD::FNEG:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::FSIN:
  case ISD::FSQRT:
  case ISD::FTRUNC:
  case ISD::FFLOOR:
  case ISD::FCEIL:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::SINT_TO_FP:
  case ISD::TRUNCATE:
  case ISD::UINT_TO_FP: R = ScalarizeVecRes_UnaryOp(N); break;

  case ISD::ADD:
  case ISD::AND:
  case ISD::FADD:
  case ISD::FDIV:
  case ISD::FMUL:
  case ISD::FPOW:
  case ISD::FREM:
  case ISD::FSUB:
  case ISD::MUL:
  case ISD::OR:
  case ISD::SDIV:
  case ISD::SREM:
  case ISD::SUB:
  case ISD::UDIV:
  case ISD::UREM:
  case ISD::XOR:  R = ScalarizeVecRes_BinOp(N); break;

  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL: R = ScalarizeVecRes_ShiftOp(N); break;
  }

  // If R is null, the sub-method took care of registering the result.
  if (R.getNode())
    SetScalarizedVector(SDValue(N, ResNo), R);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(0));
  SDValue RHS = GetScalarizedVector(N->getOperand(1));
  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
                     LHS.getValueType(), LHS, RHS);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_ShiftOp(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(0));
  SDValue ShiftAmt = GetScalarizedVector(N->getOperand(1));
  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
                     LHS.getValueType(), LHS, ShiftAmt);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
  MVT NewVT = N->getValueType(0).getVectorElementType();
  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
                     NewVT, N->getOperand(0));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
  MVT NewVT = N->getValueType(0).getVectorElementType();
  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
  return DAG.getConvertRndSat(NewVT, Op0, DAG.getValueType(NewVT),
                              DAG.getValueType(Op0.getValueType()),
                              N->getOperand(3),
                              N->getOperand(4),
                              cast<CvtRndSatSDNode>(N)->getCvtCode());
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
                     N->getValueType(0).getVectorElementType(),
                     N->getOperand(0), N->getOperand(1));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
  SDValue Op = GetScalarizedVector(N->getOperand(0));
  return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
                     Op.getValueType(), Op, N->getOperand(1));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
  // The value to insert may have a wider type than the vector element type,
  // so be sure to truncate it to the element type if necessary.
  SDValue Op = N->getOperand(1);
  MVT EltVT = N->getValueType(0).getVectorElementType();
  if (Op.getValueType() != EltVT)
    // FIXME: Can this happen for floating point types?
    Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
  return Op;
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
  assert(N->isUnindexed() && "Indexed vector load?");

  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getDebugLoc(),
                               N->getExtensionType(),
                               N->getValueType(0).getVectorElementType(),
                               N->getChain(), N->getBasePtr(),
                               DAG.getNode(ISD::UNDEF, N->getDebugLoc(),
                                           N->getBasePtr().getValueType()),
                               N->getSrcValue(), N->getSrcValueOffset(),
                               N->getMemoryVT().getVectorElementType(),
                               N->isVolatile(), N->getAlignment());

  // Legalized the chain result - switch anything that used the old chain to
  // use the new one.
  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
  return Result;
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
  MVT DestVT = N->getValueType(0).getVectorElementType();
  SDValue Op = GetScalarizedVector(N->getOperand(0));
  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
  return N->getOperand(0);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(1));
  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
                     LHS.getValueType(), N->getOperand(0), LHS,
                     GetScalarizedVector(N->getOperand(2)));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(2));
  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
                     N->getOperand(0), N->getOperand(1),
                     LHS, GetScalarizedVector(N->getOperand(3)),
                     N->getOperand(4));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
  return DAG.getNode(ISD::UNDEF, N->getDebugLoc(),
                     N->getValueType(0).getVectorElementType());
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
  // Figure out if the scalar is the LHS or RHS and return it.
  SDValue Arg = N->getOperand(2).getOperand(0);
  if (Arg.getOpcode() == ISD::UNDEF)
    return DAG.getNode(ISD::UNDEF, N->getDebugLoc(),
                       N->getValueType(0).getVectorElementType());
  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
  return GetScalarizedVector(N->getOperand(Op));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(0));
  SDValue RHS = GetScalarizedVector(N->getOperand(1));
  MVT NVT = N->getValueType(0).getVectorElementType();
  MVT SVT = TLI.getSetCCResultType(LHS.getValueType());
  DebugLoc dl = N->getDebugLoc();

  // Turn it into a scalar SETCC.
  SDValue Res = DAG.getNode(ISD::SETCC, dl, SVT, LHS, RHS, N->getOperand(2));

  // VSETCC always returns a sign-extended value, while SETCC may not.  The
  // SETCC result type may not match the vector element type.  Correct these.
  if (NVT.bitsLE(SVT)) {
    // The SETCC result type is bigger than the vector element type.
    // Ensure the SETCC result is sign-extended.
    if (TLI.getBooleanContents() !=
        TargetLowering::ZeroOrNegativeOneBooleanContent)
      Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, SVT, Res,
                        DAG.getValueType(MVT::i1));
    // Truncate to the final type.
    return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
  } else {
    // The SETCC result type is smaller than the vector element type.
    // If the SetCC result is not sign-extended, chop it down to MVT::i1.
    if (TLI.getBooleanContents() !=
        TargetLowering::ZeroOrNegativeOneBooleanContent)
      Res = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Res);
    // Sign extend to the final type.
    return DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Res);
  }
}


//===----------------------------------------------------------------------===//
//  Operand Vector Scalarization <1 x ty> -> ty.
//===----------------------------------------------------------------------===//

bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
        cerr << "\n");
  SDValue Res = SDValue();

  if (Res.getNode() == 0) {
    switch (N->getOpcode()) {
    default:
#ifndef NDEBUG
      cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
      N->dump(&DAG); cerr << "\n";
#endif
      assert(0 && "Do not know how to scalarize this operator's operand!");
      abort();

    case ISD::BIT_CONVERT:
      Res = ScalarizeVecOp_BIT_CONVERT(N); break;

    case ISD::CONCAT_VECTORS:
      Res = ScalarizeVecOp_CONCAT_VECTORS(N); break;

    case ISD::EXTRACT_VECTOR_ELT:
      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;

    case ISD::STORE:
      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
    }
  }

  // If the result is null, the sub-method took care of registering results etc.
  if (!Res.getNode()) return false;

  // If the result is N, the sub-method updated N in place.  Tell the legalizer
  // core about this.
  if (Res.getNode() == N)
    return true;

  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
         "Invalid operand expansion");

  ReplaceValueWith(SDValue(N, 0), Res);
  return false;
}

/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
  SDValue Elt = GetScalarizedVector(N->getOperand(0));
  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
                     N->getValueType(0), Elt);
}

/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
/// use a BUILD_VECTOR instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
  SmallVector<SDValue, 8> Ops(N->getNumOperands());
  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
    Ops[i] = GetScalarizedVector(N->getOperand(i));
  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
                     &Ops[0], Ops.size());
}

/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
/// index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
  return GetScalarizedVector(N->getOperand(0));
}

/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
/// scalarized, it must be <1 x ty>.  Just store the element.
SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
  assert(N->isUnindexed() && "Indexed store of one-element vector?");
  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
  DebugLoc dl = N->getDebugLoc();

  if (N->isTruncatingStore())
    return DAG.getTruncStore(N->getChain(), dl,
                             GetScalarizedVector(N->getOperand(1)),
                             N->getBasePtr(),
                             N->getSrcValue(), N->getSrcValueOffset(),
                             N->getMemoryVT().getVectorElementType(),
                             N->isVolatile(), N->getAlignment());

  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
                      N->isVolatile(), N->getAlignment());
}


//===----------------------------------------------------------------------===//
//  Result Vector Splitting
//===----------------------------------------------------------------------===//

/// SplitVectorResult - This method is called when the specified result of the
/// specified node is found to need vector splitting.  At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
  SDValue Lo, Hi;

  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "SplitVectorResult #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to split the result of this operator!");
    abort();

  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;

  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
  case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
  case ISD::LOAD:              SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
  case ISD::VECTOR_SHUFFLE:    SplitVecRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
  case ISD::VSETCC:            SplitVecRes_VSETCC(N, Lo, Hi); break;

  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FTRUNC:
  case ISD::FFLOOR:
  case ISD::FCEIL:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::SINT_TO_FP:
  case ISD::TRUNCATE:
  case ISD::UINT_TO_FP: SplitVecRes_UnaryOp(N, Lo, Hi); break;

  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::FDIV:
  case ISD::FPOW:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::UREM:
  case ISD::SREM:
  case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break;
  }

  // If Lo/Hi is null, the sub-method took care of registering results etc.
  if (Lo.getNode())
    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
}

void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
                                         SDValue &Hi) {
  SDValue LHSLo, LHSHi;
  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
  SDValue RHSLo, RHSHi;
  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
  DebugLoc dl = N->getDebugLoc();

  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
}

void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
                                               SDValue &Hi) {
  // We know the result is a vector.  The input may be either a vector or a
  // scalar value.
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  DebugLoc dl = N->getDebugLoc();

  SDValue InOp = N->getOperand(0);
  MVT InVT = InOp.getValueType();

  // Handle some special cases efficiently.
  switch (getTypeAction(InVT)) {
  default:
    assert(false && "Unknown type action!");
  case Legal:
  case PromoteInteger:
  case SoftenFloat:
  case ScalarizeVector:
    break;
  case ExpandInteger:
  case ExpandFloat:
    // A scalar to vector conversion, where the scalar needs expansion.
    // If the vector is being split in two then we can just convert the
    // expanded pieces.
    if (LoVT == HiVT) {
      GetExpandedOp(InOp, Lo, Hi);
      if (TLI.isBigEndian())
        std::swap(Lo, Hi);
      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
      return;
    }
    break;
  case SplitVector:
    // If the input is a vector that needs to be split, convert each split
    // piece of the input now.
    GetSplitVector(InOp, Lo, Hi);
    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
    return;
  }

  // In the general case, convert the input to an integer and split it by hand.
  MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
  MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
  if (TLI.isBigEndian())
    std::swap(LoIntVT, HiIntVT);

  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);

  if (TLI.isBigEndian())
    std::swap(Lo, Hi);
  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
}

void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
                                                SDValue &Hi) {
  MVT LoVT, HiVT;
  DebugLoc dl = N->getDebugLoc();
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  unsigned LoNumElts = LoVT.getVectorNumElements();
  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());

  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
}

void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
                                                  SDValue &Hi) {
  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
  DebugLoc dl = N->getDebugLoc();
  unsigned NumSubvectors = N->getNumOperands() / 2;
  if (NumSubvectors == 1) {
    Lo = N->getOperand(0);
    Hi = N->getOperand(1);
    return;
  }

  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());

  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
}

void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
                                                  SDValue &Hi) {
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  SDValue VLo, VHi;
  GetSplitVector(N->getOperand(0), VLo, VHi);
  SDValue DTyOpLo =  DAG.getValueType(LoVT);
  SDValue DTyOpHi =  DAG.getValueType(HiVT);
  SDValue STyOpLo =  DAG.getValueType(VLo.getValueType());
  SDValue STyOpHi =  DAG.getValueType(VHi.getValueType());

  SDValue RndOp = N->getOperand(3);
  SDValue SatOp = N->getOperand(4);
  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();

  Lo = DAG.getConvertRndSat(LoVT, VLo, DTyOpLo, STyOpLo, RndOp, SatOp, CvtCode);
  Hi = DAG.getConvertRndSat(HiVT, VHi, DTyOpHi, STyOpHi, RndOp, SatOp, CvtCode);
}

void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
                                                     SDValue &Hi) {
  SDValue Vec = N->getOperand(0);
  SDValue Idx = N->getOperand(1);
  MVT IdxVT = Idx.getValueType();
  DebugLoc dl = N->getDebugLoc();

  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  // The indices are not guaranteed to be a multiple of the new vector
  // size unless the original vector type was split in two.
  assert(LoVT == HiVT && "Non power-of-two vectors not supported!");

  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
  Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
                    DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, Idx);
}

void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
                                         SDValue &Hi) {
  DebugLoc dl = N->getDebugLoc();
  GetSplitVector(N->getOperand(0), Lo, Hi);
  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
}

void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
                                                     SDValue &Hi) {
  SDValue Vec = N->getOperand(0);
  SDValue Elt = N->getOperand(1);
  SDValue Idx = N->getOperand(2);
  DebugLoc dl = N->getDebugLoc();
  GetSplitVector(Vec, Lo, Hi);

  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
    unsigned IdxVal = CIdx->getZExtValue();
    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
    if (IdxVal < LoNumElts)
      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
                       Lo.getValueType(), Lo, Elt, Idx);
    else
      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
    return;
  }

  // Spill the vector to the stack.
  MVT VecVT = Vec.getValueType();
  MVT EltVT = VecVT.getVectorElementType();
  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);

  // Store the new element.  This may be larger than the vector element type,
  // so use a truncating store.
  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
  unsigned Alignment =
    TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForMVT());
  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);

  // Load the Lo part from the stack slot.
  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, NULL, 0);

  // Increment the pointer to the other part.
  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
                         DAG.getIntPtrConstant(IncrementSize));

  // Load the Hi part from the stack slot.
  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, NULL, 0, false,
                   MinAlign(Alignment, IncrementSize));
}

void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
                                                    SDValue &Hi) {
  MVT LoVT, HiVT;
  DebugLoc dl = N->getDebugLoc();
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
  Hi = DAG.getNode(ISD::UNDEF, dl, HiVT);
}

void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
                                        SDValue &Hi) {
  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
  MVT LoVT, HiVT;
  DebugLoc dl = LD->getDebugLoc();
  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);

  ISD::LoadExtType ExtType = LD->getExtensionType();
  SDValue Ch = LD->getChain();
  SDValue Ptr = LD->getBasePtr();
  SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType());
  const Value *SV = LD->getSrcValue();
  int SVOffset = LD->getSrcValueOffset();
  MVT MemoryVT = LD->getMemoryVT();
  unsigned Alignment = LD->getAlignment();
  bool isVolatile = LD->isVolatile();

  MVT LoMemVT, HiMemVT;
  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);

  Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
                   SV, SVOffset, LoMemVT, isVolatile, Alignment);

  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
                    DAG.getIntPtrConstant(IncrementSize));
  SVOffset += IncrementSize;
  Alignment = MinAlign(Alignment, IncrementSize);
  Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
                   SV, SVOffset, HiMemVT, isVolatile, Alignment);

  // Build a factor node to remember that this load is independent of the
  // other one.
  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
                   Hi.getValue(1));

  // Legalized the chain result - switch anything that used the old chain to
  // use the new one.
  ReplaceValueWith(SDValue(LD, 1), Ch);
}

void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
                                           SDValue &Hi) {
  // Get the dest types - they may not match the input types, e.g. int_to_fp.
  MVT LoVT, HiVT;
  DebugLoc dl = N->getDebugLoc();
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  // Split the input.
  MVT InVT = N->getOperand(0).getValueType();
  switch (getTypeAction(InVT)) {
  default: assert(0 && "Unexpected type action!");
  case Legal: {
    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
                                 LoVT.getVectorNumElements());
    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
                     DAG.getIntPtrConstant(0));
    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
    break;
  }
  case SplitVector:
    GetSplitVector(N->getOperand(0), Lo, Hi);
    break;
  }

  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
}

void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo,
                                                  SDValue &Hi) {
  // The low and high parts of the original input give four input vectors.
  SDValue Inputs[4];
  DebugLoc dl = N->getDebugLoc();
  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
  MVT NewVT = Inputs[0].getValueType();
  unsigned NewElts = NewVT.getVectorNumElements();
  assert(NewVT == Inputs[1].getValueType() &&
         "Non power-of-two vectors not supported!");

  // If Lo or Hi uses elements from at most two of the four input vectors, then
  // express it as a vector shuffle of those two inputs.  Otherwise extract the
  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
  SDValue Mask = N->getOperand(2);
  MVT IdxVT = Mask.getValueType().getVectorElementType();
  SmallVector<SDValue, 16> Ops;
  Ops.reserve(NewElts);
  for (unsigned High = 0; High < 2; ++High) {
    SDValue &Output = High ? Hi : Lo;

    // Build a shuffle mask for the output, discovering on the fly which
    // input vectors to use as shuffle operands (recorded in InputUsed).
    // If building a suitable shuffle vector proves too hard, then bail
    // out with useBuildVector set.
    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
    unsigned FirstMaskIdx = High * NewElts;
    bool useBuildVector = false;
    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
      SDValue Arg = Mask.getOperand(FirstMaskIdx + MaskOffset);

      // The mask element.  This indexes into the input.
      unsigned Idx = Arg.getOpcode() == ISD::UNDEF ?
        -1U : cast<ConstantSDNode>(Arg)->getZExtValue();

      // The input vector this mask element indexes into.
      unsigned Input = Idx / NewElts;

      if (Input >= array_lengthof(Inputs)) {
        // The mask element does not index into any input vector.
        Ops.push_back(DAG.getNode(ISD::UNDEF, dl, IdxVT));
        continue;
      }

      // Turn the index into an offset from the start of the input vector.
      Idx -= Input * NewElts;

      // Find or create a shuffle vector operand to hold this input.
      unsigned OpNo;
      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
        if (InputUsed[OpNo] == Input) {
          // This input vector is already an operand.
          break;
        } else if (InputUsed[OpNo] == -1U) {
          // Create a new operand for this input vector.
          InputUsed[OpNo] = Input;
          break;
        }
      }

      if (OpNo >= array_lengthof(InputUsed)) {
        // More than two input vectors used!  Give up on trying to create a
        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
        useBuildVector = true;
        break;
      }

      // Add the mask index for the new shuffle vector.
      Ops.push_back(DAG.getConstant(Idx + OpNo * NewElts, IdxVT));
    }

    if (useBuildVector) {
      MVT EltVT = NewVT.getVectorElementType();
      Ops.clear();

      // Extract the input elements by hand.
      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
        SDValue Arg = Mask.getOperand(FirstMaskIdx + MaskOffset);

        // The mask element.  This indexes into the input.
        unsigned Idx = Arg.getOpcode() == ISD::UNDEF ?
          -1U : cast<ConstantSDNode>(Arg)->getZExtValue();

        // The input vector this mask element indexes into.
        unsigned Input = Idx / NewElts;

        if (Input >= array_lengthof(Inputs)) {
          // The mask element is "undef" or indexes off the end of the input.
          Ops.push_back(DAG.getNode(ISD::UNDEF, dl, EltVT));
          continue;
        }

        // Turn the index into an offset from the start of the input vector.
        Idx -= Input * NewElts;

        // Extract the vector element by hand.
        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
                                  Inputs[Input], DAG.getIntPtrConstant(Idx)));
      }

      // Construct the Lo/Hi output using a BUILD_VECTOR.
      Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, &Ops[0], Ops.size());
    } else if (InputUsed[0] == -1U) {
      // No input vectors were used!  The result is undefined.
      Output = DAG.getNode(ISD::UNDEF, dl, NewVT);
    } else {
      // At least one input vector was used.  Create a new shuffle vector.
      SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, dl,
                                    MVT::getVectorVT(IdxVT, Ops.size()),
                                    &Ops[0], Ops.size());
      SDValue Op0 = Inputs[InputUsed[0]];
      // If only one input was used, use an undefined vector for the other.
      SDValue Op1 = InputUsed[1] == -1U ?
        DAG.getNode(ISD::UNDEF, dl, NewVT) : Inputs[InputUsed[1]];
      Output = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NewVT, Op0, Op1, NewMask);
    }

    Ops.clear();
  }
}

void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
                                          SDValue &Hi) {
  MVT LoVT, HiVT;
  DebugLoc dl = N->getDebugLoc();
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SDValue LL, LH, RL, RH;
  GetSplitVector(N->getOperand(0), LL, LH);
  GetSplitVector(N->getOperand(1), RL, RH);

  Lo = DAG.getNode(ISD::VSETCC, dl, LoVT, LL, RL, N->getOperand(2));
  Hi = DAG.getNode(ISD::VSETCC, dl, HiVT, LH, RH, N->getOperand(2));
}


//===----------------------------------------------------------------------===//
//  Operand Vector Splitting
//===----------------------------------------------------------------------===//

/// SplitVectorOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting.  At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
  SDValue Res = SDValue();

  if (Res.getNode() == 0) {
    switch (N->getOpcode()) {
    default:
#ifndef NDEBUG
      cerr << "SplitVectorOperand Op #" << OpNo << ": ";
      N->dump(&DAG); cerr << "\n";
#endif
      assert(0 && "Do not know how to split this operator's operand!");
      abort();

    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
    case ISD::STORE:             Res = SplitVecOp_STORE(cast<StoreSDNode>(N),
                                                        OpNo); break;
    case ISD::VECTOR_SHUFFLE:    Res = SplitVecOp_VECTOR_SHUFFLE(N, OpNo);break;

    case ISD::CTTZ:
    case ISD::CTLZ:
    case ISD::CTPOP:
    case ISD::FP_TO_SINT:
    case ISD::FP_TO_UINT:
    case ISD::SINT_TO_FP:
    case ISD::TRUNCATE:
    case ISD::UINT_TO_FP: Res = SplitVecOp_UnaryOp(N); break;
    }
  }

  // If the result is null, the sub-method took care of registering results etc.
  if (!Res.getNode()) return false;

  // If the result is N, the sub-method updated N in place.  Tell the legalizer
  // core about this.
  if (Res.getNode() == N)
    return true;

  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
         "Invalid operand expansion");

  ReplaceValueWith(SDValue(N, 0), Res);
  return false;
}

SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
  // The result has a legal vector type, but the input needs splitting.
  MVT ResVT = N->getValueType(0);
  SDValue Lo, Hi;
  DebugLoc dl = N->getDebugLoc();
  GetSplitVector(N->getOperand(0), Lo, Hi);
  assert(Lo.getValueType() == Hi.getValueType() &&
         "Returns legal non-power-of-two vector type?");
  MVT InVT = Lo.getValueType();

  MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
                               InVT.getVectorNumElements());

  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);

  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}

SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
  // end up being split all the way down to individual components.  Convert the
  // split pieces into integers and reassemble.
  SDValue Lo, Hi;
  GetSplitVector(N->getOperand(0), Lo, Hi);
  Lo = BitConvertToInteger(Lo);
  Hi = BitConvertToInteger(Hi);

  if (TLI.isBigEndian())
    std::swap(Lo, Hi);

  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
                     JoinIntegers(Lo, Hi));
}

SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
  // We know that the extracted result type is legal.  For now, assume the index
  // is a constant.
  MVT SubVT = N->getValueType(0);
  SDValue Idx = N->getOperand(1);
  DebugLoc dl = N->getDebugLoc();
  SDValue Lo, Hi;
  GetSplitVector(N->getOperand(0), Lo, Hi);

  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();

  if (IdxVal < LoElts) {
    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
           "Extracted subvector crosses vector split!");
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
  } else {
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
  }
}

SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
  SDValue Vec = N->getOperand(0);
  SDValue Idx = N->getOperand(1);
  MVT VecVT = Vec.getValueType();

  if (isa<ConstantSDNode>(Idx)) {
    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");

    SDValue Lo, Hi;
    GetSplitVector(Vec, Lo, Hi);

    uint64_t LoElts = Lo.getValueType().getVectorNumElements();

    if (IdxVal < LoElts)
      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
    else
      return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
                                    DAG.getConstant(IdxVal - LoElts,
                                                    Idx.getValueType()));
  }

  // Store the vector to the stack.
  MVT EltVT = VecVT.getVectorElementType();
  DebugLoc dl = N->getDebugLoc();
  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, SV, 0);

  // Load back the required element.
  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
  return DAG.getLoad(EltVT, dl, Store, StackPtr, SV, 0);
}

SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
  assert(N->isUnindexed() && "Indexed store of vector?");
  assert(OpNo == 1 && "Can only split the stored value");
  DebugLoc dl = N->getDebugLoc();

  bool isTruncating = N->isTruncatingStore();
  SDValue Ch  = N->getChain();
  SDValue Ptr = N->getBasePtr();
  int SVOffset = N->getSrcValueOffset();
  MVT MemoryVT = N->getMemoryVT();
  unsigned Alignment = N->getAlignment();
  bool isVol = N->isVolatile();
  SDValue Lo, Hi;
  GetSplitVector(N->getOperand(1), Lo, Hi);

  MVT LoMemVT, HiMemVT;
  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);

  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;

  if (isTruncating)
    Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
                           LoMemVT, isVol, Alignment);
  else
    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
                      isVol, Alignment);

  // Increment the pointer to the other half.
  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
                    DAG.getIntPtrConstant(IncrementSize));

  if (isTruncating)
    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
                           N->getSrcValue(), SVOffset+IncrementSize,
                           HiMemVT,
                           isVol, MinAlign(Alignment, IncrementSize));
  else
    Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
                      isVol, MinAlign(Alignment, IncrementSize));

  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}

SDValue DAGTypeLegalizer::SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo) {
  assert(OpNo == 2 && "Shuffle source type differs from result type?");
  SDValue Mask = N->getOperand(2);
  DebugLoc dl = N->getDebugLoc();
  unsigned MaskLength = Mask.getValueType().getVectorNumElements();
  unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
  unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);

  // Look for a legal vector type to place the mask values in.
  // Note that there may not be *any* legal vector-of-integer
  // type for which the element type is legal!
  for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
       EltVT <= MVT::LAST_INTEGER_VALUETYPE;
       // Integer values types are consecutively numbered.  Exploit this.
       EltVT = MVT::SimpleValueType(EltVT + 1)) {

    // Is the element type big enough to hold the values?
    if (MVT(EltVT).getSizeInBits() < MinimumBitWidth)
      // Nope.
      continue;

    // Is the vector type legal?
    MVT VecVT = MVT::getVectorVT(EltVT, MaskLength);
    if (!isTypeLegal(VecVT))
      // Nope.
      continue;

    // If the element type is not legal, find a larger legal type to use for
    // the BUILD_VECTOR operands.  This is an ugly hack, but seems to work!
    // FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
    // node where the shuffle mask is a list of integer operands, #2 .. #2+n.
    for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
         // Integer values types are consecutively numbered.  Exploit this.
         OpVT = MVT::SimpleValueType(OpVT + 1)) {
      if (!isTypeLegal(OpVT))
        continue;

      // Success!  Rebuild the vector using the legal types.
      SmallVector<SDValue, 16> Ops(MaskLength);
      for (unsigned i = 0; i < MaskLength; ++i) {
        SDValue Arg = Mask.getOperand(i);
        if (Arg.getOpcode() == ISD::UNDEF) {
          Ops[i] = DAG.getNode(ISD::UNDEF, dl, OpVT);
        } else {
          uint64_t Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
          Ops[i] = DAG.getConstant(Idx, OpVT);
        }
      }
      return DAG.UpdateNodeOperands(SDValue(N,0),
                                    N->getOperand(0), N->getOperand(1),
                                    DAG.getNode(ISD::BUILD_VECTOR, dl,
                                                VecVT, &Ops[0], Ops.size()));
    }

    // Continuing is pointless - failure is certain.
    break;
  }
  assert(false && "Failed to find an appropriate mask type!");
  return SDValue(N, 0);
}


//===----------------------------------------------------------------------===//
//  Result Vector Widening
//===----------------------------------------------------------------------===//

void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Widen node result " << ResNo << ": "; N->dump(&DAG);
        cerr << "\n");
  SDValue Res = SDValue();

  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "WidenVectorResult #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to widen the result of this operator!");
    abort();

  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
  case ISD::VECTOR_SHUFFLE:    Res = WidenVecRes_VECTOR_SHUFFLE(N); break;
  case ISD::VSETCC:            Res = WidenVecRes_VSETCC(N); break;

  case ISD::ADD:
  case ISD::AND:
  case ISD::BSWAP:
  case ISD::FADD:
  case ISD::FCOPYSIGN:
  case ISD::FDIV:
  case ISD::FMUL:
  case ISD::FPOW:
  case ISD::FPOWI:
  case ISD::FREM:
  case ISD::FSUB:
  case ISD::MUL:
  case ISD::MULHS:
  case ISD::MULHU:
  case ISD::OR:
  case ISD::SDIV:
  case ISD::SREM:
  case ISD::UDIV:
  case ISD::UREM:
  case ISD::SUB:
  case ISD::XOR:               Res = WidenVecRes_Binary(N); break;

  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:               Res = WidenVecRes_Shift(N); break;

  case ISD::ANY_EXTEND:
  case ISD::FP_ROUND:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::SIGN_EXTEND:
  case ISD::SINT_TO_FP:
  case ISD::TRUNCATE:
  case ISD::ZERO_EXTEND:
  case ISD::UINT_TO_FP:        Res = WidenVecRes_Convert(N); break;

  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::CTTZ:
  case ISD::FABS:
  case ISD::FCOS:
  case ISD::FNEG:
  case ISD::FSIN:
  case ISD::FSQRT:             Res = WidenVecRes_Unary(N); break;
  }

  // If Res is null, the sub-method took care of registering the result.
  if (Res.getNode())
    SetWidenedVector(SDValue(N, ResNo), Res);
}

SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
  // Binary op widening.
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
}

SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
  SDValue InOp = N->getOperand(0);
  DebugLoc dl = N->getDebugLoc();

  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  unsigned WidenNumElts = WidenVT.getVectorNumElements();

  MVT InVT = InOp.getValueType();
  MVT InEltVT = InVT.getVectorElementType();
  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);

  unsigned Opcode = N->getOpcode();
  unsigned InVTNumElts = InVT.getVectorNumElements();

  if (getTypeAction(InVT) == WidenVector) {
    InOp = GetWidenedVector(N->getOperand(0));
    InVT = InOp.getValueType();
    InVTNumElts = InVT.getVectorNumElements();
    if (InVTNumElts == WidenNumElts)
      return DAG.getNode(Opcode, dl, WidenVT, InOp);
  }

  if (TLI.isTypeLegal(InWidenVT)) {
    // Because the result and the input are different vector types, widening
    // the result could create a legal type but widening the input might make
    // it an illegal type that might lead to repeatedly splitting the input
    // and then widening it. To avoid this, we widen the input only if
    // it results in a legal type.
    if (WidenNumElts % InVTNumElts == 0) {
      // Widen the input and call convert on the widened input vector.
      unsigned NumConcat = WidenNumElts/InVTNumElts;
      SmallVector<SDValue, 16> Ops(NumConcat);
      Ops[0] = InOp;
      SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, InVT);
      for (unsigned i = 1; i != NumConcat; ++i)
        Ops[i] = UndefVal;
      return DAG.getNode(Opcode, dl, WidenVT,
                         DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT,
                         &Ops[0], NumConcat));
    }

    if (InVTNumElts % WidenNumElts == 0) {
      // Extract the input and convert the shorten input vector.
      return DAG.getNode(Opcode, dl, WidenVT,
                         DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, 
                                     InOp, DAG.getIntPtrConstant(0)));
    }
  }

  // Otherwise unroll into some nasty scalar code and rebuild the vector.
  SmallVector<SDValue, 16> Ops(WidenNumElts);
  MVT EltVT = WidenVT.getVectorElementType();
  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
  unsigned i;
  for (i=0; i < MinElts; ++i)
    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
                                     DAG.getIntPtrConstant(i)));

  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
  for (; i < WidenNumElts; ++i)
    Ops[i] = UndefVal;

  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
}

SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  SDValue InOp = GetWidenedVector(N->getOperand(0));
  SDValue ShOp = N->getOperand(1);

  MVT ShVT = ShOp.getValueType();
  if (getTypeAction(ShVT) == WidenVector) {
    ShOp = GetWidenedVector(ShOp);
    ShVT = ShOp.getValueType();
  }
  MVT ShWidenVT = MVT::getVectorVT(ShVT.getVectorElementType(),
                                   WidenVT.getVectorNumElements());
  if (ShVT != ShWidenVT)
    ShOp = ModifyToType(ShOp, ShWidenVT);

  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
}

SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
  // Unary op widening.
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  SDValue InOp = GetWidenedVector(N->getOperand(0));
  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
}

SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
  SDValue InOp = N->getOperand(0);
  MVT InVT = InOp.getValueType();
  MVT VT = N->getValueType(0);
  MVT WidenVT = TLI.getTypeToTransformTo(VT);
  DebugLoc dl = N->getDebugLoc();

  switch (getTypeAction(InVT)) {
  default:
    assert(false && "Unknown type action!");
    break;
  case Legal:
    break;
  case PromoteInteger:
    // If the InOp is promoted to the same size, convert it.  Otherwise,
    // fall out of the switch and widen the promoted input.
    InOp = GetPromotedInteger(InOp);
    InVT = InOp.getValueType();
    if (WidenVT.bitsEq(InVT))
      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
    break;
  case SoftenFloat:
  case ExpandInteger:
  case ExpandFloat:
  case ScalarizeVector:
  case SplitVector:
    break;
  case WidenVector:
    // If the InOp is widened to the same size, convert it.  Otherwise, fall
    // out of the switch and widen the widened input.
    InOp = GetWidenedVector(InOp);
    InVT = InOp.getValueType();
    if (WidenVT.bitsEq(InVT))
      // The input widens to the same size. Convert to the widen value.
      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
    break;
  }

  unsigned WidenSize = WidenVT.getSizeInBits();
  unsigned InSize = InVT.getSizeInBits();
  if (WidenSize % InSize == 0) {
    // Determine new input vector type.  The new input vector type will use
    // the same element type (if its a vector) or use the input type as a
    // vector.  It is the same size as the type to widen to.
    MVT NewInVT;
    unsigned NewNumElts = WidenSize / InSize;
    if (InVT.isVector()) {
      MVT InEltVT = InVT.getVectorElementType();
      NewInVT= MVT::getVectorVT(InEltVT, WidenSize / InEltVT.getSizeInBits());
    } else {
      NewInVT = MVT::getVectorVT(InVT, NewNumElts);
    }

    if (TLI.isTypeLegal(NewInVT)) {
      // Because the result and the input are different vector types, widening
      // the result could create a legal type but widening the input might make
      // it an illegal type that might lead to repeatedly splitting the input
      // and then widening it. To avoid this, we widen the input only if
      // it results in a legal type.
      SmallVector<SDValue, 16> Ops(NewNumElts);
      SDValue UndefVal = DAG.getNode(ISD::UNDEF, InVT);
      Ops[0] = InOp;
      for (unsigned i = 1; i < NewNumElts; ++i)
        Ops[i] = UndefVal;

      SDValue NewVec;
      if (InVT.isVector())
        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
                             NewInVT, &Ops[0], NewNumElts);
      else
        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
                             NewInVT, &Ops[0], NewNumElts);
      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
    }
  }

  // This should occur rarely. Lower the bit-convert to a store/load
  // from the stack. Create the stack frame object.  Make sure it is aligned
  // for both the source and destination types.
  SDValue FIPtr = DAG.CreateStackTemporary(InVT, WidenVT);
  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
  const Value *SV = PseudoSourceValue::getFixedStack(FI);

  // Emit a store to the stack slot.
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);

  // Result is a load from the stack slot.
  return DAG.getLoad(WidenVT, dl, Store, FIPtr, SV, 0);
}

SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
  DebugLoc dl = N->getDebugLoc();
  // Build a vector with undefined for the new nodes.
  MVT VT = N->getValueType(0);
  MVT EltVT = VT.getVectorElementType();
  unsigned NumElts = VT.getVectorNumElements();

  MVT WidenVT = TLI.getTypeToTransformTo(VT);
  unsigned WidenNumElts = WidenVT.getVectorNumElements();

  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
  NewOps.reserve(WidenNumElts);
  for (unsigned i = NumElts; i < WidenNumElts; ++i)
    NewOps.push_back(DAG.getNode(ISD::UNDEF, dl, EltVT));

  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
}

SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
  MVT InVT = N->getOperand(0).getValueType();
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  DebugLoc dl = N->getDebugLoc();
  unsigned WidenNumElts = WidenVT.getVectorNumElements();
  unsigned NumOperands = N->getNumOperands();

  bool InputWidened = false; // Indicates we need to widen the input.
  if (getTypeAction(InVT) != WidenVector) {
    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
      // Add undef vectors to widen to correct length.
      unsigned NumConcat = WidenVT.getVectorNumElements() /
                           InVT.getVectorNumElements();
      SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, InVT);
      SmallVector<SDValue, 16> Ops(NumConcat);
      for (unsigned i=0; i < NumOperands; ++i)
        Ops[i] = N->getOperand(i);
      for (unsigned i = NumOperands; i != NumConcat; ++i)
        Ops[i] = UndefVal;
      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
    }
  } else {
    InputWidened = true;
    if (WidenVT == TLI.getTypeToTransformTo(InVT)) {
      // The inputs and the result are widen to the same value.
      unsigned i;
      for (i=1; i < NumOperands; ++i)
        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
          break;

      if (i > NumOperands)
        // Everything but the first operand is an UNDEF so just return the
        // widened first operand.
        return GetWidenedVector(N->getOperand(0));

      if (NumOperands == 2) {
        // Replace concat of two operands with a shuffle.
        MVT PtrVT = TLI.getPointerTy();
        SmallVector<SDValue, 16> MaskOps(WidenNumElts);
        for (unsigned i=0; i < WidenNumElts/2; ++i) {
          MaskOps[i] = DAG.getConstant(i, PtrVT);
          MaskOps[i+WidenNumElts/2] = DAG.getConstant(i+WidenNumElts, PtrVT);
        }
        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl,
                                   MVT::getVectorVT(PtrVT, WidenNumElts),
                                   &MaskOps[0], WidenNumElts);
        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, WidenVT,
                           GetWidenedVector(N->getOperand(0)),
                           GetWidenedVector(N->getOperand(1)), Mask);
      }
    }
  }

  // Fall back to use extracts and build vector.
  MVT EltVT = WidenVT.getVectorElementType();
  unsigned NumInElts = InVT.getVectorNumElements();
  SmallVector<SDValue, 16> Ops(WidenNumElts);
  unsigned Idx = 0;
  for (unsigned i=0; i < NumOperands; ++i) {
    SDValue InOp = N->getOperand(i);
    if (InputWidened)
      InOp = GetWidenedVector(InOp);
    for (unsigned j=0; j < NumInElts; ++j)
        Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
                                 DAG.getIntPtrConstant(j));
  }
  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
  for (; Idx < WidenNumElts; ++Idx)
    Ops[Idx] = UndefVal;
  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
}

SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
  SDValue InOp  = N->getOperand(0);
  SDValue RndOp = N->getOperand(3);
  SDValue SatOp = N->getOperand(4);

  MVT      WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  unsigned WidenNumElts = WidenVT.getVectorNumElements();

  MVT InVT = InOp.getValueType();
  MVT InEltVT = InVT.getVectorElementType();
  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);

  SDValue DTyOp = DAG.getValueType(WidenVT);
  SDValue STyOp = DAG.getValueType(InWidenVT);
  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();

  unsigned InVTNumElts = InVT.getVectorNumElements();
  if (getTypeAction(InVT) == WidenVector) {
    InOp = GetWidenedVector(InOp);
    InVT = InOp.getValueType();
    InVTNumElts = InVT.getVectorNumElements();
    if (InVTNumElts == WidenNumElts)
      return DAG.getConvertRndSat(WidenVT, InOp, DTyOp, STyOp, RndOp,
                                  SatOp, CvtCode);
  }

  if (TLI.isTypeLegal(InWidenVT)) {
    // Because the result and the input are different vector types, widening
    // the result could create a legal type but widening the input might make
    // it an illegal type that might lead to repeatedly splitting the input
    // and then widening it. To avoid this, we widen the input only if
    // it results in a legal type.
    if (WidenNumElts % InVTNumElts == 0) {
      // Widen the input and call convert on the widened input vector.
      unsigned NumConcat = WidenNumElts/InVTNumElts;
      SmallVector<SDValue, 16> Ops(NumConcat);
      Ops[0] = InOp;
      SDValue UndefVal = DAG.getNode(ISD::UNDEF, InVT);
      for (unsigned i = 1; i != NumConcat; ++i) {
        Ops[i] = UndefVal;
      }
      InOp = DAG.getNode(ISD::CONCAT_VECTORS, InWidenVT, &Ops[0], NumConcat);
      return DAG.getConvertRndSat(WidenVT, InOp, DTyOp, STyOp, RndOp,
                                  SatOp, CvtCode);
    }

    if (InVTNumElts % WidenNumElts == 0) {
      // Extract the input and convert the shorten input vector.
      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, InWidenVT, InOp,
                         DAG.getIntPtrConstant(0));
      return DAG.getConvertRndSat(WidenVT, InOp, DTyOp, STyOp, RndOp,
                                SatOp, CvtCode);
    }
  }

  // Otherwise unroll into some nasty scalar code and rebuild the vector.
  SmallVector<SDValue, 16> Ops(WidenNumElts);
  MVT EltVT = WidenVT.getVectorElementType();
  DTyOp = DAG.getValueType(EltVT);
  STyOp = DAG.getValueType(InEltVT);

  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
  unsigned i;
  for (i=0; i < MinElts; ++i) {
    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, InEltVT, InOp,
                                 DAG.getIntPtrConstant(i));
    Ops[i] = DAG.getConvertRndSat(WidenVT, ExtVal, DTyOp, STyOp, RndOp,
                                        SatOp, CvtCode);
  }

  SDValue UndefVal = DAG.getNode(ISD::UNDEF, EltVT);
  for (; i < WidenNumElts; ++i)
    Ops[i] = UndefVal;

  return DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &Ops[0], WidenNumElts);
}

SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
  MVT      VT = N->getValueType(0);
  MVT      WidenVT = TLI.getTypeToTransformTo(VT);
  unsigned WidenNumElts = WidenVT.getVectorNumElements();
  SDValue  InOp = N->getOperand(0);
  SDValue  Idx  = N->getOperand(1);
  DebugLoc dl = N->getDebugLoc();

  if (getTypeAction(InOp.getValueType()) == WidenVector)
    InOp = GetWidenedVector(InOp);

  MVT InVT = InOp.getValueType();

  ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
  if (CIdx) {
    unsigned IdxVal = CIdx->getZExtValue();
    // Check if we can just return the input vector after widening.
    if (IdxVal == 0 && InVT == WidenVT)
      return InOp;

    // Check if we can extract from the vector.
    unsigned InNumElts = InVT.getVectorNumElements();
    if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
  }

  // We could try widening the input to the right length but for now, extract
  // the original elements, fill the rest with undefs and build a vector.
  SmallVector<SDValue, 16> Ops(WidenNumElts);
  MVT EltVT = VT.getVectorElementType();
  MVT IdxVT = Idx.getValueType();
  unsigned NumElts = VT.getVectorNumElements();
  unsigned i;
  if (CIdx) {
    unsigned IdxVal = CIdx->getZExtValue();
    for (i=0; i < NumElts; ++i)
      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
                           DAG.getConstant(IdxVal+i, IdxVT));
  } else {
    Ops[0] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, Idx);
    for (i=1; i < NumElts; ++i) {
      SDValue NewIdx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
                                   DAG.getConstant(i, IdxVT));
      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, NewIdx);
    }
  }

  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
  for (; i < WidenNumElts; ++i)
    Ops[i] = UndefVal;
  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
}

SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
  SDValue InOp = GetWidenedVector(N->getOperand(0));
  return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
                     InOp.getValueType(), InOp,
                     N->getOperand(1), N->getOperand(2));
}

SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
  LoadSDNode *LD = cast<LoadSDNode>(N);
  MVT WidenVT = TLI.getTypeToTransformTo(LD->getValueType(0));
  MVT LdVT    = LD->getMemoryVT();
  DebugLoc dl = N->getDebugLoc();
  assert(LdVT.isVector() && WidenVT.isVector());

  // Load information
  SDValue   Chain = LD->getChain();
  SDValue   BasePtr = LD->getBasePtr();
  int       SVOffset = LD->getSrcValueOffset();
  unsigned  Align    = LD->getAlignment();
  bool      isVolatile = LD->isVolatile();
  const Value *SV = LD->getSrcValue();
  ISD::LoadExtType ExtType = LD->getExtensionType();

  SDValue Result;
  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
  if (ExtType != ISD::NON_EXTLOAD) {
    // For extension loads, we can not play the tricks of chopping legal
    // vector types and bit cast it to the right type.  Instead, we unroll
    // the load and build a vector.
    MVT EltVT = WidenVT.getVectorElementType();
    MVT LdEltVT = LdVT.getVectorElementType();
    unsigned NumElts = LdVT.getVectorNumElements();

    // Load each element and widen
    unsigned WidenNumElts = WidenVT.getVectorNumElements();
    SmallVector<SDValue, 16> Ops(WidenNumElts);
    unsigned Increment = LdEltVT.getSizeInBits() / 8;
    Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, SV, SVOffset,
                            LdEltVT, isVolatile, Align);
    LdChain.push_back(Ops[0].getValue(1));
    unsigned i = 0, Offset = Increment;
    for (i=1; i < NumElts; ++i, Offset += Increment) {
      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
                                       BasePtr, DAG.getIntPtrConstant(Offset));
      Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, SV,
                              SVOffset + Offset, LdEltVT, isVolatile, Align);
      LdChain.push_back(Ops[i].getValue(1));
    }

    // Fill the rest with undefs
    SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
    for (; i != WidenNumElts; ++i)
      Ops[i] = UndefVal;

    Result =  DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
  } else {
    assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
    unsigned int LdWidth = LdVT.getSizeInBits();
    Result = GenWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
                                 Align, isVolatile, LdWidth, WidenVT, dl);
  }

 // If we generate a single load, we can use that for the chain.  Otherwise,
 // build a factor node to remember the multiple loads are independent and
 // chain to that.
 SDValue NewChain;
 if (LdChain.size() == 1)
   NewChain = LdChain[0];
 else
   NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LdChain[0],
                          LdChain.size());

  // Modified the chain - switch anything that used the old chain to use
  // the new one.
  ReplaceValueWith(SDValue(N, 1), Chain);

  return Result;
}

SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
                     WidenVT, N->getOperand(0));
}

SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  unsigned WidenNumElts = WidenVT.getVectorNumElements();

  SDValue Cond1 = N->getOperand(0);
  MVT CondVT = Cond1.getValueType();
  if (CondVT.isVector()) {
    MVT CondEltVT = CondVT.getVectorElementType();
    MVT CondWidenVT =  MVT::getVectorVT(CondEltVT, WidenNumElts);
    if (getTypeAction(CondVT) == WidenVector)
      Cond1 = GetWidenedVector(Cond1);

    if (Cond1.getValueType() != CondWidenVT)
       Cond1 = ModifyToType(Cond1, CondWidenVT);
  }

  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
                     WidenVT, Cond1, InOp1, InOp2);
}

SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
                     InOp1.getValueType(), N->getOperand(0),
                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
}

SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
 MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
 return DAG.getNode(ISD::UNDEF, N->getDebugLoc(), WidenVT);
}

SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(SDNode *N) {
  MVT VT = N->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();
  DebugLoc dl = N->getDebugLoc();

  MVT WidenVT = TLI.getTypeToTransformTo(VT);
  unsigned WidenNumElts = WidenVT.getVectorNumElements();

  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
  SDValue InOp2 = GetWidenedVector(N->getOperand(1));

  // Adjust mask based on new input vector length.
  SDValue Mask = N->getOperand(2);
  SmallVector<SDValue, 16> MaskOps(WidenNumElts);
  MVT IdxVT = Mask.getValueType().getVectorElementType();
  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue Arg = Mask.getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF)
      MaskOps[i] = Arg;
    else {
      unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
      if (Idx < NumElts)
        MaskOps[i] = Arg;
      else
        MaskOps[i] = DAG.getConstant(Idx - NumElts + WidenNumElts, IdxVT);
    }
  }
  for (unsigned i = NumElts; i < WidenNumElts; ++i)
    MaskOps[i] = DAG.getNode(ISD::UNDEF, dl, IdxVT);
  SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, dl,
                                MVT::getVectorVT(IdxVT, WidenNumElts),
                                &MaskOps[0], WidenNumElts);

  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, WidenVT, InOp1, InOp2, NewMask);
}

SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
  unsigned WidenNumElts = WidenVT.getVectorNumElements();

  SDValue InOp1 = N->getOperand(0);
  MVT InVT = InOp1.getValueType();
  assert(InVT.isVector() && "can not widen non vector type");
  MVT WidenInVT = MVT::getVectorVT(InVT.getVectorElementType(), WidenNumElts);
  InOp1 = GetWidenedVector(InOp1);
  SDValue InOp2 = GetWidenedVector(N->getOperand(1));

  // Assume that the input and output will be widen appropriately.  If not,
  // we will have to unroll it at some point.
  assert(InOp1.getValueType() == WidenInVT &&
         InOp2.getValueType() == WidenInVT &&
         "Input not widened to expected type!");
  return DAG.getNode(ISD::VSETCC, N->getDebugLoc(),
                     WidenVT, InOp1, InOp2, N->getOperand(2));
}


//===----------------------------------------------------------------------===//
// Widen Vector Operand
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Widen node operand " << ResNo << ": "; N->dump(&DAG);
        cerr << "\n");
  SDValue Res = SDValue();

  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "WidenVectorOperand op #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to widen this operator's operand!");
    abort();

  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;

  case ISD::FP_ROUND:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::SINT_TO_FP:
  case ISD::TRUNCATE:
  case ISD::UINT_TO_FP:         Res = WidenVecOp_Convert(N); break;
  }

  // If Res is null, the sub-method took care of registering the result.
  if (!Res.getNode()) return false;

  // If the result is N, the sub-method updated N in place.  Tell the legalizer
  // core about this.
  if (Res.getNode() == N)
    return true;


  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
         "Invalid operand expansion");

  ReplaceValueWith(SDValue(N, 0), Res);
  return false;
}

SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
  // Since the result is legal and the input is illegal, it is unlikely
  // that we can fix the input to a legal type so unroll the convert
  // into some scalar code and create a nasty build vector.
  MVT VT = N->getValueType(0);
  MVT EltVT = VT.getVectorElementType();
  DebugLoc dl = N->getDebugLoc();
  unsigned NumElts = VT.getVectorNumElements();
  SDValue InOp = N->getOperand(0);
  if (getTypeAction(InOp.getValueType()) == WidenVector)
    InOp = GetWidenedVector(InOp);
  MVT InVT = InOp.getValueType();
  MVT InEltVT = InVT.getVectorElementType();

  unsigned Opcode = N->getOpcode();
  SmallVector<SDValue, 16> Ops(NumElts);
  for (unsigned i=0; i < NumElts; ++i)
    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
                                     DAG.getIntPtrConstant(i)));

  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
}

SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
  MVT VT = N->getValueType(0);
  SDValue InOp = GetWidenedVector(N->getOperand(0));
  MVT InWidenVT = InOp.getValueType();
  DebugLoc dl = N->getDebugLoc();

  // Check if we can convert between two legal vector types and extract.
  unsigned InWidenSize = InWidenVT.getSizeInBits();
  unsigned Size = VT.getSizeInBits();
  if (InWidenSize % Size == 0 && !VT.isVector()) {
    unsigned NewNumElts = InWidenSize / Size;
    MVT NewVT = MVT::getVectorVT(VT, NewNumElts);
    if (TLI.isTypeLegal(NewVT)) {
      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
                         DAG.getIntPtrConstant(0));
    }
  }

  // Lower the bit-convert to a store/load from the stack. Create the stack
  // frame object.  Make sure it is aligned for both the source and destination
  // types.
  SDValue FIPtr = DAG.CreateStackTemporary(InWidenVT, VT);
  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
  const Value *SV = PseudoSourceValue::getFixedStack(FI);

  // Emit a store to the stack slot.
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);

  // Result is a load from the stack slot.
  return DAG.getLoad(VT, dl, Store, FIPtr, SV, 0);
}

SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
  // If the input vector is not legal, it is likely that we will not find a
  // legal vector of the same size. Replace the concatenate vector with a
  // nasty build vector.
  MVT VT = N->getValueType(0);
  MVT EltVT = VT.getVectorElementType();
  DebugLoc dl = N->getDebugLoc();
  unsigned NumElts = VT.getVectorNumElements();
  SmallVector<SDValue, 16> Ops(NumElts);

  MVT InVT = N->getOperand(0).getValueType();
  unsigned NumInElts = InVT.getVectorNumElements();

  unsigned Idx = 0;
  unsigned NumOperands = N->getNumOperands();
  for (unsigned i=0; i < NumOperands; ++i) {
    SDValue InOp = N->getOperand(i);
    if (getTypeAction(InOp.getValueType()) == WidenVector)
      InOp = GetWidenedVector(InOp);
    for (unsigned j=0; j < NumInElts; ++j)
      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
                               DAG.getIntPtrConstant(j));
  }
  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
}

SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
  SDValue InOp = GetWidenedVector(N->getOperand(0));
  MVT EltVT = InOp.getValueType().getVectorElementType();
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
                     EltVT, InOp, N->getOperand(1));
}

SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
  // We have to widen the value but we want only to store the original
  // vector type.
  StoreSDNode *ST = cast<StoreSDNode>(N);
  SDValue  Chain = ST->getChain();
  SDValue  BasePtr = ST->getBasePtr();
  const    Value *SV = ST->getSrcValue();
  int      SVOffset = ST->getSrcValueOffset();
  unsigned Align = ST->getAlignment();
  bool     isVolatile = ST->isVolatile();
  SDValue  ValOp = GetWidenedVector(ST->getValue());
  DebugLoc dl = N->getDebugLoc();

  MVT StVT = ST->getMemoryVT();
  MVT ValVT = ValOp.getValueType();
  // It must be true that we the widen vector type is bigger than where
  // we need to store.
  assert(StVT.isVector() && ValOp.getValueType().isVector());
  assert(StVT.bitsLT(ValOp.getValueType()));

  SmallVector<SDValue, 16> StChain;
  if (ST->isTruncatingStore()) {
    // For truncating stores, we can not play the tricks of chopping legal
    // vector types and bit cast it to the right type.  Instead, we unroll
    // the store.
    MVT StEltVT  = StVT.getVectorElementType();
    MVT ValEltVT = ValVT.getVectorElementType();
    unsigned Increment = ValEltVT.getSizeInBits() / 8;
    unsigned NumElts = StVT.getVectorNumElements();
    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
                              DAG.getIntPtrConstant(0));
    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, SV,
                                        SVOffset, StEltVT,
                                        isVolatile, Align));
    unsigned Offset = Increment;
    for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
                                       BasePtr, DAG.getIntPtrConstant(Offset));
      SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
                              DAG.getIntPtrConstant(0));
      StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, SV,
                                          SVOffset + Offset, StEltVT,
                                          isVolatile, MinAlign(Align, Offset)));
    }
  }
  else {
    assert(StVT.getVectorElementType() == ValVT.getVectorElementType());
    // Store value
    GenWidenVectorStores(StChain, Chain, BasePtr, SV, SVOffset,
                         Align, isVolatile, ValOp, StVT.getSizeInBits(), dl);
  }
  if (StChain.size() == 1)
    return StChain[0];
  else
    return DAG.getNode(ISD::TokenFactor, dl, 
                       MVT::Other,&StChain[0],StChain.size());
}

//===----------------------------------------------------------------------===//
// Vector Widening Utilities
//===----------------------------------------------------------------------===//


// Utility function to find a vector type and its associated element
// type from a preferred width and whose vector type must be the same size
// as the VecVT.
//  TLI:   Target lowering used to determine legal types.
//  Width: Preferred width to store.
//  VecVT: Vector value type whose size we must match.
// Returns NewVecVT and NewEltVT - the vector type and its associated
// element type.
static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
                                  MVT VecVT,
                                  MVT& NewEltVT, MVT& NewVecVT) {
  unsigned EltWidth = Width + 1;
  if (TLI.isTypeLegal(VecVT)) {
    // We start with the preferred with, making it a power of 2 and find a
    // legal vector type of that width.  If not, we reduce it by another of 2.
    // For incoming type is legal, this process will end as a vector of the
    // smallest loadable type should always be legal.
    do {
      assert(EltWidth > 0);
      EltWidth = 1 << Log2_32(EltWidth - 1);
      NewEltVT = MVT::getIntegerVT(EltWidth);
      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
    } while (!TLI.isTypeLegal(NewVecVT) ||
             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
  } else {
    // The incoming vector type is illegal and is the result of widening
    // a vector to a power of 2. In this case, we will use the preferred
    // with as long as it is a multiple of the incoming vector length.
    // The legalization process will eventually make this into a legal type
    // and remove the illegal bit converts (which would turn to stack converts
    // if they are allow to exist).
     do {
      assert(EltWidth > 0);
      EltWidth = 1 << Log2_32(EltWidth - 1);
      NewEltVT = MVT::getIntegerVT(EltWidth);
      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
    } while (!TLI.isTypeLegal(NewEltVT) ||
             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
  }
}

SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
                                              SDValue      Chain,
                                              SDValue      BasePtr,
                                              const Value *SV,
                                              int          SVOffset,
                                              unsigned     Alignment,
                                              bool         isVolatile,
                                              unsigned     LdWidth,
                                              MVT          ResType,
                                              DebugLoc     dl) {
  // The strategy assumes that we can efficiently load powers of two widths.
  // The routines chops the vector into the largest power of 2 load and
  // can be inserted into a legal vector and then cast the result into the
  // vector type we want.  This avoids unnecessary stack converts.

  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
  //       the load is nonvolatile, we an use a wider load for the value.

  // Find the vector type that can load from.
  MVT NewEltVT, NewVecVT;
  unsigned NewEltVTWidth;
  FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
  NewEltVTWidth = NewEltVT.getSizeInBits();

  SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
                             isVolatile, Alignment);
  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
  LdChain.push_back(LdOp.getValue(1));

  // Check if we can load the element with one instruction
  if (LdWidth == NewEltVTWidth) {
    return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
  }

  unsigned Idx = 1;
  LdWidth -= NewEltVTWidth;
  unsigned Offset = 0;

  while (LdWidth > 0) {
    unsigned Increment = NewEltVTWidth / 8;
    Offset += Increment;
    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
                          DAG.getIntPtrConstant(Increment));

    if (LdWidth < NewEltVTWidth) {
      // Our current type we are using is too large, use a smaller size by
      // using a smaller power of 2
      unsigned oNewEltVTWidth = NewEltVTWidth;
      FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
      NewEltVTWidth = NewEltVT.getSizeInBits();
      // Readjust position and vector position based on new load type
      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
    }

    SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV,
                                 SVOffset+Offset, isVolatile,
                                 MinAlign(Alignment, Offset));
    LdChain.push_back(LdOp.getValue(1));
    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOp,
                        DAG.getIntPtrConstant(Idx++));

    LdWidth -= NewEltVTWidth;
  }

  return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
}

void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
                                            SDValue   Chain,
                                            SDValue   BasePtr,
                                            const Value *SV,
                                            int         SVOffset,
                                            unsigned    Alignment,
                                            bool        isVolatile,
                                            SDValue     ValOp,
                                            unsigned    StWidth,
                                            DebugLoc    dl) {
  // Breaks the stores into a series of power of 2 width stores.  For any
  // width, we convert the vector to the vector of element size that we
  // want to store.  This avoids requiring a stack convert.

  // Find a width of the element type we can store with
  MVT WidenVT = ValOp.getValueType();
  MVT NewEltVT, NewVecVT;

  FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
  unsigned NewEltVTWidth = NewEltVT.getSizeInBits();

  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
                            DAG.getIntPtrConstant(0));
  SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
                               isVolatile, Alignment);
  StChain.push_back(StOp);

  // Check if we are done
  if (StWidth == NewEltVTWidth) {
    return;
  }

  unsigned Idx = 1;
  StWidth -= NewEltVTWidth;
  unsigned Offset = 0;

  while (StWidth > 0) {
    unsigned Increment = NewEltVTWidth / 8;
    Offset += Increment;
    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
                          DAG.getIntPtrConstant(Increment));

    if (StWidth < NewEltVTWidth) {
      // Our current type we are using is too large, use a smaller size by
      // using a smaller power of 2
      unsigned oNewEltVTWidth = NewEltVTWidth;
      FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
      NewEltVTWidth = NewEltVT.getSizeInBits();
      // Readjust position and vector position based on new load type
      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
    }

    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
                      DAG.getIntPtrConstant(Idx++));
    StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
                                   SVOffset + Offset, isVolatile,
                                   MinAlign(Alignment, Offset)));
    StWidth -= NewEltVTWidth;
  }
}

/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
/// input vector must have the same element type as NVT.
SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
  // Note that InOp might have been widened so it might already have
  // the right width or it might need be narrowed.
  MVT InVT = InOp.getValueType();
  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
         "input and widen element type must match");
  DebugLoc dl = InOp.getNode()->getDebugLoc();

  // Check if InOp already has the right width.
  if (InVT == NVT)
    return InOp;

  unsigned InNumElts = InVT.getVectorNumElements();
  unsigned WidenNumElts = NVT.getVectorNumElements();
  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
    unsigned NumConcat = WidenNumElts / InNumElts;
    SmallVector<SDValue, 16> Ops(NumConcat);
    SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, InVT);
    Ops[0] = InOp;
    for (unsigned i = 1; i != NumConcat; ++i)
      Ops[i] = UndefVal;

    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
  }

  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
                       DAG.getIntPtrConstant(0));

  // Fall back to extract and build.
  SmallVector<SDValue, 16> Ops(WidenNumElts);
  MVT EltVT = NVT.getVectorElementType();
  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
  unsigned Idx;
  for (Idx = 0; Idx < MinNumElts; ++Idx)
    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
                           DAG.getIntPtrConstant(Idx));

  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
  for ( ; Idx < WidenNumElts; ++Idx)
    Ops[Idx] = UndefVal;
  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
}