llvm.org GIT mirror llvm / release_24 lib / Target / ARM / ARMConstantIslandPass.cpp
release_24

Tree @release_24 (Download .tar.gz)

ARMConstantIslandPass.cpp @release_24raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that splits the constant pool up into 'islands'
// which are scattered through-out the function.  This is required due to the
// limited pc-relative displacements that ARM has.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "arm-cp-islands"
#include "ARM.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMInstrInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumCPEs,     "Number of constpool entries");
STATISTIC(NumSplit,    "Number of uncond branches inserted");
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
STATISTIC(NumUBrFixed, "Number of uncond branches fixed");

namespace {
  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
  /// requires constant pool entries to be scattered among the instructions
  /// inside a function.  To do this, it completely ignores the normal LLVM
  /// constant pool; instead, it places constants wherever it feels like with
  /// special instructions.
  ///
  /// The terminology used in this pass includes:
  ///   Islands - Clumps of constants placed in the function.
  ///   Water   - Potential places where an island could be formed.
  ///   CPE     - A constant pool entry that has been placed somewhere, which
  ///             tracks a list of users.
  class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
    /// NextUID - Assign unique ID's to CPE's.
    unsigned NextUID;

    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
    /// by MBB Number.  The two-byte pads required for Thumb alignment are
    /// counted as part of the following block (i.e., the offset and size for
    /// a padded block will both be ==2 mod 4).
    std::vector<unsigned> BBSizes;
    
    /// BBOffsets - the offset of each MBB in bytes, starting from 0.
    /// The two-byte pads required for Thumb alignment are counted as part of
    /// the following block.
    std::vector<unsigned> BBOffsets;

    /// WaterList - A sorted list of basic blocks where islands could be placed
    /// (i.e. blocks that don't fall through to the following block, due
    /// to a return, unreachable, or unconditional branch).
    std::vector<MachineBasicBlock*> WaterList;

    /// CPUser - One user of a constant pool, keeping the machine instruction
    /// pointer, the constant pool being referenced, and the max displacement
    /// allowed from the instruction to the CP.
    struct CPUser {
      MachineInstr *MI;
      MachineInstr *CPEMI;
      unsigned MaxDisp;
      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
    };
    
    /// CPUsers - Keep track of all of the machine instructions that use various
    /// constant pools and their max displacement.
    std::vector<CPUser> CPUsers;
    
    /// CPEntry - One per constant pool entry, keeping the machine instruction
    /// pointer, the constpool index, and the number of CPUser's which
    /// reference this entry.
    struct CPEntry {
      MachineInstr *CPEMI;
      unsigned CPI;
      unsigned RefCount;
      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    };

    /// CPEntries - Keep track of all of the constant pool entry machine
    /// instructions. For each original constpool index (i.e. those that
    /// existed upon entry to this pass), it keeps a vector of entries.
    /// Original elements are cloned as we go along; the clones are
    /// put in the vector of the original element, but have distinct CPIs.
    std::vector<std::vector<CPEntry> > CPEntries;
    
    /// ImmBranch - One per immediate branch, keeping the machine instruction
    /// pointer, conditional or unconditional, the max displacement,
    /// and (if isCond is true) the corresponding unconditional branch
    /// opcode.
    struct ImmBranch {
      MachineInstr *MI;
      unsigned MaxDisp : 31;
      bool isCond : 1;
      int UncondBr;
      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    };

    /// ImmBranches - Keep track of all the immediate branch instructions.
    ///
    std::vector<ImmBranch> ImmBranches;

    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
    ///
    SmallVector<MachineInstr*, 4> PushPopMIs;

    /// HasFarJump - True if any far jump instruction has been emitted during
    /// the branch fix up pass.
    bool HasFarJump;

    const TargetInstrInfo *TII;
    ARMFunctionInfo *AFI;
    bool isThumb;
  public:
    static char ID;
    ARMConstantIslands() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &Fn);

    virtual const char *getPassName() const {
      return "ARM constant island placement and branch shortening pass";
    }
    
  private:
    void DoInitialPlacement(MachineFunction &Fn,
                            std::vector<MachineInstr*> &CPEMIs);
    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    void InitialFunctionScan(MachineFunction &Fn,
                             const std::vector<MachineInstr*> &CPEMIs);
    MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
    bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
    int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
    bool LookForWater(CPUser&U, unsigned UserOffset, 
                      MachineBasicBlock** NewMBB);
    MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB, 
                        std::vector<MachineBasicBlock*>::iterator IP);
    void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
                      MachineBasicBlock** NewMBB);
    bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex);
    void RemoveDeadCPEMI(MachineInstr *CPEMI);
    bool RemoveUnusedCPEntries();
    bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 
                      MachineInstr *CPEMI, unsigned Disp,
                      bool DoDump);
    bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
                        CPUser &U);
    bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
                        unsigned Disp, bool NegativeOK);
    bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br);
    bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br);
    bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br);
    bool UndoLRSpillRestore();

    unsigned GetOffsetOf(MachineInstr *MI) const;
    void dumpBBs();
    void verify(MachineFunction &Fn);
  };
  char ARMConstantIslands::ID = 0;
}

/// verify - check BBOffsets, BBSizes, alignment of islands
void ARMConstantIslands::verify(MachineFunction &Fn) {
  assert(BBOffsets.size() == BBSizes.size());
  for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
    assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
  if (isThumb) {
    for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
         MBBI != E; ++MBBI) {
      MachineBasicBlock *MBB = MBBI;
      if (!MBB->empty() &&
          MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY)
        assert((BBOffsets[MBB->getNumber()]%4 == 0 &&
                BBSizes[MBB->getNumber()]%4 == 0) ||
               (BBOffsets[MBB->getNumber()]%4 != 0 &&
                BBSizes[MBB->getNumber()]%4 != 0));
    }
  }
}

/// print block size and offset information - debugging
void ARMConstantIslands::dumpBBs() {
  for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
    DOUT << "block " << J << " offset " << BBOffsets[J] << 
                            " size " << BBSizes[J] << "\n";
  }
}

/// createARMConstantIslandPass - returns an instance of the constpool
/// island pass.
FunctionPass *llvm::createARMConstantIslandPass() {
  return new ARMConstantIslands();
}

bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
  MachineConstantPool &MCP = *Fn.getConstantPool();
  
  TII = Fn.getTarget().getInstrInfo();
  AFI = Fn.getInfo<ARMFunctionInfo>();
  isThumb = AFI->isThumbFunction();

  HasFarJump = false;

  // Renumber all of the machine basic blocks in the function, guaranteeing that
  // the numbers agree with the position of the block in the function.
  Fn.RenumberBlocks();

  /// Thumb functions containing constant pools get 2-byte alignment.  This is so
  /// we can keep exact track of where the alignment padding goes.  Set default.
  AFI->setAlign(isThumb ? 1U : 2U);

  // Perform the initial placement of the constant pool entries.  To start with,
  // we put them all at the end of the function.
  std::vector<MachineInstr*> CPEMIs;
  if (!MCP.isEmpty()) {
    DoInitialPlacement(Fn, CPEMIs);
    if (isThumb)
      AFI->setAlign(2U);
  }
  
  /// The next UID to take is the first unused one.
  NextUID = CPEMIs.size();
  
  // Do the initial scan of the function, building up information about the
  // sizes of each block, the location of all the water, and finding all of the
  // constant pool users.
  InitialFunctionScan(Fn, CPEMIs);
  CPEMIs.clear();
  
  /// Remove dead constant pool entries.
  RemoveUnusedCPEntries();

  // Iteratively place constant pool entries and fix up branches until there
  // is no change.
  bool MadeChange = false;
  while (true) {
    bool Change = false;
    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
      Change |= HandleConstantPoolUser(Fn, i);
    DEBUG(dumpBBs());
    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
      Change |= FixUpImmediateBr(Fn, ImmBranches[i]);
    DEBUG(dumpBBs());
    if (!Change)
      break;
    MadeChange = true;
  }

  // After a while, this might be made debug-only, but it is not expensive.
  verify(Fn);

  // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
  // Undo the spill / restore of LR if possible.
  if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb)
    MadeChange |= UndoLRSpillRestore();

  BBSizes.clear();
  BBOffsets.clear();
  WaterList.clear();
  CPUsers.clear();
  CPEntries.clear();
  ImmBranches.clear();
  PushPopMIs.clear();

  return MadeChange;
}

/// DoInitialPlacement - Perform the initial placement of the constant pool
/// entries.  To start with, we put them all at the end of the function.
void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
                                        std::vector<MachineInstr*> &CPEMIs){
  // Create the basic block to hold the CPE's.
  MachineBasicBlock *BB = Fn.CreateMachineBasicBlock();
  Fn.push_back(BB);
  
  // Add all of the constants from the constant pool to the end block, use an
  // identity mapping of CPI's to CPE's.
  const std::vector<MachineConstantPoolEntry> &CPs =
    Fn.getConstantPool()->getConstants();
  
  const TargetData &TD = *Fn.getTarget().getTargetData();
  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    unsigned Size = TD.getABITypeSize(CPs[i].getType());
    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
    // we would have to pad them out or something so that instructions stay
    // aligned.
    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
    MachineInstr *CPEMI =
      BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
                           .addImm(i).addConstantPoolIndex(i).addImm(Size);
    CPEMIs.push_back(CPEMI);

    // Add a new CPEntry, but no corresponding CPUser yet.
    std::vector<CPEntry> CPEs;
    CPEs.push_back(CPEntry(CPEMI, i));
    CPEntries.push_back(CPEs);
    NumCPEs++;
    DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n";
  }
}

/// BBHasFallthrough - Return true if the specified basic block can fallthrough
/// into the block immediately after it.
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
  // Get the next machine basic block in the function.
  MachineFunction::iterator MBBI = MBB;
  if (next(MBBI) == MBB->getParent()->end())  // Can't fall off end of function.
    return false;
  
  MachineBasicBlock *NextBB = next(MBBI);
  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
       E = MBB->succ_end(); I != E; ++I)
    if (*I == NextBB)
      return true;
  
  return false;
}

/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
/// look up the corresponding CPEntry.
ARMConstantIslands::CPEntry
*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
                                        const MachineInstr *CPEMI) {
  std::vector<CPEntry> &CPEs = CPEntries[CPI];
  // Number of entries per constpool index should be small, just do a
  // linear search.
  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    if (CPEs[i].CPEMI == CPEMI)
      return &CPEs[i];
  }
  return NULL;
}

/// InitialFunctionScan - Do the initial scan of the function, building up
/// information about the sizes of each block, the location of all the water,
/// and finding all of the constant pool users.
void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
                                 const std::vector<MachineInstr*> &CPEMIs) {
  unsigned Offset = 0;
  for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock &MBB = *MBBI;
    
    // If this block doesn't fall through into the next MBB, then this is
    // 'water' that a constant pool island could be placed.
    if (!BBHasFallthrough(&MBB))
      WaterList.push_back(&MBB);
    
    unsigned MBBSize = 0;
    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
         I != E; ++I) {
      // Add instruction size to MBBSize.
      MBBSize += TII->GetInstSizeInBytes(I);

      int Opc = I->getOpcode();
      if (I->getDesc().isBranch()) {
        bool isCond = false;
        unsigned Bits = 0;
        unsigned Scale = 1;
        int UOpc = Opc;
        switch (Opc) {
        case ARM::tBR_JTr:
          // A Thumb table jump may involve padding; for the offsets to
          // be right, functions containing these must be 4-byte aligned.
          AFI->setAlign(2U);
          if ((Offset+MBBSize)%4 != 0)
            MBBSize += 2;           // padding
          continue;   // Does not get an entry in ImmBranches
        default:
          continue;  // Ignore other JT branches
        case ARM::Bcc:
          isCond = true;
          UOpc = ARM::B;
          // Fallthrough
        case ARM::B:
          Bits = 24;
          Scale = 4;
          break;
        case ARM::tBcc:
          isCond = true;
          UOpc = ARM::tB;
          Bits = 8;
          Scale = 2;
          break;
        case ARM::tB:
          Bits = 11;
          Scale = 2;
          break;
        }

        // Record this immediate branch.
        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
      }

      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
        PushPopMIs.push_back(I);

      // Scan the instructions for constant pool operands.
      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
        if (I->getOperand(op).isCPI()) {
          // We found one.  The addressing mode tells us the max displacement
          // from the PC that this instruction permits.
          
          // Basic size info comes from the TSFlags field.
          unsigned Bits = 0;
          unsigned Scale = 1;
          unsigned TSFlags = I->getDesc().TSFlags;
          switch (TSFlags & ARMII::AddrModeMask) {
          default: 
            // Constant pool entries can reach anything.
            if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
              continue;
            if (I->getOpcode() == ARM::tLEApcrel) {
              Bits = 8;  // Taking the address of a CP entry.
              break;
            }
            assert(0 && "Unknown addressing mode for CP reference!");
          case ARMII::AddrMode1: // AM1: 8 bits << 2
            Bits = 8;
            Scale = 4;  // Taking the address of a CP entry.
            break;
          case ARMII::AddrMode2:
            Bits = 12;  // +-offset_12
            break;
          case ARMII::AddrMode3:
            Bits = 8;   // +-offset_8
            break;
            // addrmode4 has no immediate offset.
          case ARMII::AddrMode5:
            Bits = 8;
            Scale = 4;  // +-(offset_8*4)
            break;
          case ARMII::AddrModeT1:
            Bits = 5;  // +offset_5
            break;
          case ARMII::AddrModeT2:
            Bits = 5;
            Scale = 2;  // +(offset_5*2)
            break;
          case ARMII::AddrModeT4:
            Bits = 5;
            Scale = 4;  // +(offset_5*4)
            break;
          case ARMII::AddrModeTs:
            Bits = 8;
            Scale = 4;  // +(offset_8*4)
            break;
          }

          // Remember that this is a user of a CP entry.
          unsigned CPI = I->getOperand(op).getIndex();
          MachineInstr *CPEMI = CPEMIs[CPI];
          unsigned MaxOffs = ((1 << Bits)-1) * Scale;          
          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));

          // Increment corresponding CPEntry reference count.
          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
          assert(CPE && "Cannot find a corresponding CPEntry!");
          CPE->RefCount++;
          
          // Instructions can only use one CP entry, don't bother scanning the
          // rest of the operands.
          break;
        }
    }

    // In thumb mode, if this block is a constpool island, we may need padding
    // so it's aligned on 4 byte boundary.
    if (isThumb &&
        !MBB.empty() &&
        MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
        (Offset%4) != 0)
      MBBSize += 2;

    BBSizes.push_back(MBBSize);
    BBOffsets.push_back(Offset);
    Offset += MBBSize;
  }
}

/// GetOffsetOf - Return the current offset of the specified machine instruction
/// from the start of the function.  This offset changes as stuff is moved
/// around inside the function.
unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
  MachineBasicBlock *MBB = MI->getParent();
  
  // The offset is composed of two things: the sum of the sizes of all MBB's
  // before this instruction's block, and the offset from the start of the block
  // it is in.
  unsigned Offset = BBOffsets[MBB->getNumber()];

  // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
  // alignment padding, and compensate if so.
  if (isThumb && 
      MI->getOpcode() == ARM::CONSTPOOL_ENTRY && 
      Offset%4 != 0)
    Offset += 2;

  // Sum instructions before MI in MBB.
  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    if (&*I == MI) return Offset;
    Offset += TII->GetInstSizeInBytes(I);
  }
}

/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
/// ID.
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
                              const MachineBasicBlock *RHS) {
  return LHS->getNumber() < RHS->getNumber();
}

/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
/// machine function, it upsets all of the block numbers.  Renumber the blocks
/// and update the arrays that parallel this numbering.
void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
  // Renumber the MBB's to keep them consequtive.
  NewBB->getParent()->RenumberBlocks(NewBB);
  
  // Insert a size into BBSizes to align it properly with the (newly
  // renumbered) block numbers.
  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);

  // Likewise for BBOffsets.
  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
  
  // Next, update WaterList.  Specifically, we need to add NewMBB as having 
  // available water after it.
  std::vector<MachineBasicBlock*>::iterator IP =
    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
                     CompareMBBNumbers);
  WaterList.insert(IP, NewBB);
}


/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch.  Update datastructures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
  MachineBasicBlock *OrigBB = MI->getParent();
  MachineFunction &MF = *OrigBB->getParent();

  // Create a new MBB for the code after the OrigBB.
  MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
  MF.insert(MBBI, NewBB);
  
  // Splice the instructions starting with MI over to NewBB.
  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
  
  // Add an unconditional branch from OrigBB to NewBB.
  // Note the new unconditional branch is not being recorded.
  BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
  NumSplit++;
  
  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
  while (!OrigBB->succ_empty()) {
    MachineBasicBlock *Succ = *OrigBB->succ_begin();
    OrigBB->removeSuccessor(Succ);
    NewBB->addSuccessor(Succ);
    
    // This pass should be run after register allocation, so there should be no
    // PHI nodes to update.
    assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
           && "PHI nodes should be eliminated by now!");
  }
  
  // OrigBB branches to NewBB.
  OrigBB->addSuccessor(NewBB);
  
  // Update internal data structures to account for the newly inserted MBB.
  // This is almost the same as UpdateForInsertedWaterBlock, except that
  // the Water goes after OrigBB, not NewBB.
  MF.RenumberBlocks(NewBB);
  
  // Insert a size into BBSizes to align it properly with the (newly
  // renumbered) block numbers.
  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
  
  // Likewise for BBOffsets.
  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);

  // Next, update WaterList.  Specifically, we need to add OrigMBB as having 
  // available water after it (but not if it's already there, which happens
  // when splitting before a conditional branch that is followed by an
  // unconditional branch - in that case we want to insert NewBB).
  std::vector<MachineBasicBlock*>::iterator IP =
    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
                     CompareMBBNumbers);
  MachineBasicBlock* WaterBB = *IP;
  if (WaterBB == OrigBB)
    WaterList.insert(next(IP), NewBB);
  else
    WaterList.insert(IP, OrigBB);

  // Figure out how large the first NewMBB is.  (It cannot
  // contain a constpool_entry or tablejump.)
  unsigned NewBBSize = 0;
  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
       I != E; ++I)
    NewBBSize += TII->GetInstSizeInBytes(I);
  
  unsigned OrigBBI = OrigBB->getNumber();
  unsigned NewBBI = NewBB->getNumber();
  // Set the size of NewBB in BBSizes.
  BBSizes[NewBBI] = NewBBSize;
  
  // We removed instructions from UserMBB, subtract that off from its size.
  // Add 2 or 4 to the block to count the unconditional branch we added to it.
  unsigned delta = isThumb ? 2 : 4;
  BBSizes[OrigBBI] -= NewBBSize - delta;

  // ...and adjust BBOffsets for NewBB accordingly.
  BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];

  // All BBOffsets following these blocks must be modified.
  AdjustBBOffsetsAfter(NewBB, delta);

  return NewBB;
}

/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
/// reference) is within MaxDisp of TrialOffset (a proposed location of a 
/// constant pool entry).
bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 
                      unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) {
  // On Thumb offsets==2 mod 4 are rounded down by the hardware for 
  // purposes of the displacement computation; compensate for that here.  
  // Effectively, the valid range of displacements is 2 bytes smaller for such
  // references.
  if (isThumb && UserOffset%4 !=0)
    UserOffset -= 2;
  // CPEs will be rounded up to a multiple of 4.
  if (isThumb && TrialOffset%4 != 0)
    TrialOffset += 2;

  if (UserOffset <= TrialOffset) {
    // User before the Trial.
    if (TrialOffset-UserOffset <= MaxDisp)
      return true;
  } else if (NegativeOK) {
    if (UserOffset-TrialOffset <= MaxDisp)
      return true;
  }
  return false;
}

/// WaterIsInRange - Returns true if a CPE placed after the specified
/// Water (a basic block) will be in range for the specific MI.

bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
                         MachineBasicBlock* Water, CPUser &U)
{
  unsigned MaxDisp = U.MaxDisp;
  MachineFunction::iterator I = next(MachineFunction::iterator(Water));
  unsigned CPEOffset = BBOffsets[Water->getNumber()] + 
                       BBSizes[Water->getNumber()];

  // If the CPE is to be inserted before the instruction, that will raise
  // the offset of the instruction.  (Currently applies only to ARM, so
  // no alignment compensation attempted here.)
  if (CPEOffset < UserOffset)
    UserOffset += U.CPEMI->getOperand(2).getImm();

  return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb);
}

/// CPEIsInRange - Returns true if the distance between specific MI and
/// specific ConstPool entry instruction can fit in MI's displacement field.
bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
                                      MachineInstr *CPEMI,
                                      unsigned MaxDisp, bool DoDump) {
  unsigned CPEOffset  = GetOffsetOf(CPEMI);
  assert(CPEOffset%4 == 0 && "Misaligned CPE");

  if (DoDump) {
    DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm()
         << " max delta=" << MaxDisp
         << " insn address=" << UserOffset
         << " CPE address=" << CPEOffset
         << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI;
  }

  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb);
}

/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
/// unconditionally branches to its only successor.
static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    return false;

  MachineBasicBlock *Succ = *MBB->succ_begin();
  MachineBasicBlock *Pred = *MBB->pred_begin();
  MachineInstr *PredMI = &Pred->back();
  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB)
    return PredMI->getOperand(0).getMBB() == Succ;
  return false;
}

void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, 
                                              int delta) {
  MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
  for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) {
    BBOffsets[i] += delta;
    // If some existing blocks have padding, adjust the padding as needed, a
    // bit tricky.  delta can be negative so don't use % on that.
    if (isThumb) {
      MachineBasicBlock *MBB = MBBI;
      if (!MBB->empty()) {
        // Constant pool entries require padding.
        if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
          unsigned oldOffset = BBOffsets[i] - delta;
          if (oldOffset%4==0 && BBOffsets[i]%4!=0) {
            // add new padding
            BBSizes[i] += 2;
            delta += 2;
          } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) {
            // remove existing padding
            BBSizes[i] -=2;
            delta -= 2;
          }
        }
        // Thumb jump tables require padding.  They should be at the end;
        // following unconditional branches are removed by AnalyzeBranch.
        MachineInstr *ThumbJTMI = NULL;
        if (prior(MBB->end())->getOpcode() == ARM::tBR_JTr)
          ThumbJTMI = prior(MBB->end());
        if (ThumbJTMI) {
          unsigned newMIOffset = GetOffsetOf(ThumbJTMI);
          unsigned oldMIOffset = newMIOffset - delta;
          if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) {
            // remove existing padding
            BBSizes[i] -= 2;
            delta -= 2;
          } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) {
            // add new padding
            BBSizes[i] += 2;
            delta += 2;
          }
        }
        if (delta==0)
          return;
      }
      MBBI = next(MBBI);
    }
  }
}

/// DecrementOldEntry - find the constant pool entry with index CPI
/// and instruction CPEMI, and decrement its refcount.  If the refcount
/// becomes 0 remove the entry and instruction.  Returns true if we removed 
/// the entry, false if we didn't.

bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
  // Find the old entry. Eliminate it if it is no longer used.
  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
  assert(CPE && "Unexpected!");
  if (--CPE->RefCount == 0) {
    RemoveDeadCPEMI(CPEMI);
    CPE->CPEMI = NULL;
    NumCPEs--;
    return true;
  }
  return false;
}

/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
/// if not, see if an in-range clone of the CPE is in range, and if so,
/// change the data structures so the user references the clone.  Returns:
/// 0 = no existing entry found
/// 1 = entry found, and there were no code insertions or deletions
/// 2 = entry found, and there were code insertions or deletions
int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
{
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;

  // Check to see if the CPE is already in-range.
  if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) {
    DOUT << "In range\n";
    return 1;
  }

  // No.  Look for previously created clones of the CPE that are in range.
  unsigned CPI = CPEMI->getOperand(1).getIndex();
  std::vector<CPEntry> &CPEs = CPEntries[CPI];
  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    // We already tried this one
    if (CPEs[i].CPEMI == CPEMI)
      continue;
    // Removing CPEs can leave empty entries, skip
    if (CPEs[i].CPEMI == NULL)
      continue;
    if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) {
      DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n";
      // Point the CPUser node to the replacement
      U.CPEMI = CPEs[i].CPEMI;
      // Change the CPI in the instruction operand to refer to the clone.
      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
        if (UserMI->getOperand(j).isCPI()) {
          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
          break;
        }
      // Adjust the refcount of the clone...
      CPEs[i].RefCount++;
      // ...and the original.  If we didn't remove the old entry, none of the
      // addresses changed, so we don't need another pass.
      return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
    }
  }
  return 0;
}

/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
/// the specific unconditional branch instruction.
static inline unsigned getUnconditionalBrDisp(int Opc) {
  return (Opc == ARM::tB) ? ((1<<10)-1)*2 : ((1<<23)-1)*4;
}

/// AcceptWater - Small amount of common code factored out of the following.

MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB, 
                          std::vector<MachineBasicBlock*>::iterator IP) {
  DOUT << "found water in range\n";
  // Remove the original WaterList entry; we want subsequent
  // insertions in this vicinity to go after the one we're
  // about to insert.  This considerably reduces the number
  // of times we have to move the same CPE more than once.
  WaterList.erase(IP);
  // CPE goes before following block (NewMBB).
  return next(MachineFunction::iterator(WaterBB));
}

/// LookForWater - look for an existing entry in the WaterList in which
/// we can place the CPE referenced from U so it's within range of U's MI.
/// Returns true if found, false if not.  If it returns true, *NewMBB
/// is set to the WaterList entry.
/// For ARM, we prefer the water that's farthest away.  For Thumb, prefer
/// water that will not introduce padding to water that will; within each
/// group, prefer the water that's farthest away.

bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
                                      MachineBasicBlock** NewMBB) {
  std::vector<MachineBasicBlock*>::iterator IPThatWouldPad;
  MachineBasicBlock* WaterBBThatWouldPad = NULL;
  if (!WaterList.empty()) {
    for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()),
        B = WaterList.begin();; --IP) {
      MachineBasicBlock* WaterBB = *IP;
      if (WaterIsInRange(UserOffset, WaterBB, U)) {
        if (isThumb &&
            (BBOffsets[WaterBB->getNumber()] + 
             BBSizes[WaterBB->getNumber()])%4 != 0) {
          // This is valid Water, but would introduce padding.  Remember
          // it in case we don't find any Water that doesn't do this.
          if (!WaterBBThatWouldPad) {
            WaterBBThatWouldPad = WaterBB;
            IPThatWouldPad = IP;
          }
        } else {
          *NewMBB = AcceptWater(WaterBB, IP);
          return true;
        }
    }
      if (IP == B)
        break;
    }
  }
  if (isThumb && WaterBBThatWouldPad) {
    *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad);
    return true;
  }
  return false;
}

/// CreateNewWater - No existing WaterList entry will work for 
/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
/// block is used if in range, and the conditional branch munged so control
/// flow is correct.  Otherwise the block is split to create a hole with an
/// unconditional branch around it.  In either case *NewMBB is set to a
/// block following which the new island can be inserted (the WaterList
/// is not adjusted).

void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 
                        unsigned UserOffset, MachineBasicBlock** NewMBB) {
  CPUser &U = CPUsers[CPUserIndex];
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;
  MachineBasicBlock *UserMBB = UserMI->getParent();
  unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + 
                               BBSizes[UserMBB->getNumber()];
  assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);

  // If the use is at the end of the block, or the end of the block
  // is within range, make new water there.  (The addition below is
  // for the unconditional branch we will be adding:  4 bytes on ARM,
  // 2 on Thumb.  Possible Thumb alignment padding is allowed for
  // inside OffsetIsInRange.
  // If the block ends in an unconditional branch already, it is water, 
  // and is known to be out of range, so we'll always be adding a branch.)
  if (&UserMBB->back() == UserMI ||
      OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4),
           U.MaxDisp, !isThumb)) {
    DOUT << "Split at end of block\n";
    if (&UserMBB->back() == UserMI)
      assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
    *NewMBB = next(MachineFunction::iterator(UserMBB));
    // Add an unconditional branch from UserMBB to fallthrough block.
    // Record it for branch lengthening; this new branch will not get out of
    // range, but if the preceding conditional branch is out of range, the
    // targets will be exchanged, and the altered branch may be out of
    // range, so the machinery has to know about it.
    int UncondBr = isThumb ? ARM::tB : ARM::B;
    BuildMI(UserMBB, TII->get(UncondBr)).addMBB(*NewMBB);
    unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
    ImmBranches.push_back(ImmBranch(&UserMBB->back(), 
                          MaxDisp, false, UncondBr));
    int delta = isThumb ? 2 : 4;
    BBSizes[UserMBB->getNumber()] += delta;
    AdjustBBOffsetsAfter(UserMBB, delta);
  } else {
    // What a big block.  Find a place within the block to split it.
    // This is a little tricky on Thumb since instructions are 2 bytes
    // and constant pool entries are 4 bytes: if instruction I references
    // island CPE, and instruction I+1 references CPE', it will
    // not work well to put CPE as far forward as possible, since then
    // CPE' cannot immediately follow it (that location is 2 bytes
    // farther away from I+1 than CPE was from I) and we'd need to create
    // a new island.  So, we make a first guess, then walk through the
    // instructions between the one currently being looked at and the
    // possible insertion point, and make sure any other instructions
    // that reference CPEs will be able to use the same island area;
    // if not, we back up the insertion point.

    // The 4 in the following is for the unconditional branch we'll be
    // inserting (allows for long branch on Thumb).  Alignment of the
    // island is handled inside OffsetIsInRange.
    unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
    // This could point off the end of the block if we've already got
    // constant pool entries following this block; only the last one is
    // in the water list.  Back past any possible branches (allow for a
    // conditional and a maximally long unconditional).
    if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
      BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - 
                              (isThumb ? 6 : 8);
    unsigned EndInsertOffset = BaseInsertOffset +
           CPEMI->getOperand(2).getImm();
    MachineBasicBlock::iterator MI = UserMI;
    ++MI;
    unsigned CPUIndex = CPUserIndex+1;
    for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
         Offset < BaseInsertOffset;
         Offset += TII->GetInstSizeInBytes(MI),
            MI = next(MI)) {
      if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
        if (!OffsetIsInRange(Offset, EndInsertOffset, 
              CPUsers[CPUIndex].MaxDisp, !isThumb)) {
          BaseInsertOffset -= (isThumb ? 2 : 4);
          EndInsertOffset -= (isThumb ? 2 : 4);
        }
        // This is overly conservative, as we don't account for CPEMIs
        // being reused within the block, but it doesn't matter much.
        EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
        CPUIndex++;
      }
    }
    DOUT << "Split in middle of big block\n";
    *NewMBB = SplitBlockBeforeInstr(prior(MI));
  }
}

/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
/// is out-of-range.  If so, pick it up the constant pool value and move it some
/// place in-range.  Return true if we changed any addresses (thus must run
/// another pass of branch lengthening), false otherwise.
bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, 
                                                unsigned CPUserIndex){
  CPUser &U = CPUsers[CPUserIndex];
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;
  unsigned CPI = CPEMI->getOperand(1).getIndex();
  unsigned Size = CPEMI->getOperand(2).getImm();
  MachineBasicBlock *NewMBB;
  // Compute this only once, it's expensive.  The 4 or 8 is the value the
  //  hardware keeps in the PC (2 insns ahead of the reference).
  unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);

  // Special case: tLEApcrel are two instructions MI's. The actual user is the
  // second instruction.
  if (UserMI->getOpcode() == ARM::tLEApcrel)
    UserOffset += 2;
 
  // See if the current entry is within range, or there is a clone of it
  // in range.
  int result = LookForExistingCPEntry(U, UserOffset);
  if (result==1) return false;
  else if (result==2) return true;

  // No existing clone of this CPE is within range.
  // We will be generating a new clone.  Get a UID for it.
  unsigned ID  = NextUID++;

  // Look for water where we can place this CPE.  We look for the farthest one
  // away that will work.  Forward references only for now (although later
  // we might find some that are backwards).

  if (!LookForWater(U, UserOffset, &NewMBB)) {
    // No water found.
    DOUT << "No water found\n";
    CreateNewWater(CPUserIndex, UserOffset, &NewMBB);
  }

  // Okay, we know we can put an island before NewMBB now, do it!
  MachineBasicBlock *NewIsland = Fn.CreateMachineBasicBlock();
  Fn.insert(NewMBB, NewIsland);

  // Update internal data structures to account for the newly inserted MBB.
  UpdateForInsertedWaterBlock(NewIsland);

  // Decrement the old entry, and remove it if refcount becomes 0.
  DecrementOldEntry(CPI, CPEMI);

  // Now that we have an island to add the CPE to, clone the original CPE and
  // add it to the island.
  U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
  NumCPEs++;

  BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
  // Compensate for .align 2 in thumb mode.
  if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0) 
    Size += 2;
  // Increase the size of the island block to account for the new entry.
  BBSizes[NewIsland->getNumber()] += Size;
  AdjustBBOffsetsAfter(NewIsland, Size);
  
  // Finally, change the CPI in the instruction operand to be ID.
  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
    if (UserMI->getOperand(i).isCPI()) {
      UserMI->getOperand(i).setIndex(ID);
      break;
    }
      
  DOUT << "  Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI;
      
  return true;
}

/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
/// sizes and offsets of impacted basic blocks.
void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
  MachineBasicBlock *CPEBB = CPEMI->getParent();
  unsigned Size = CPEMI->getOperand(2).getImm();
  CPEMI->eraseFromParent();
  BBSizes[CPEBB->getNumber()] -= Size;
  // All succeeding offsets have the current size value added in, fix this.
  if (CPEBB->empty()) {
    // In thumb mode, the size of island may be  padded by two to compensate for
    // the alignment requirement.  Then it will now be 2 when the block is
    // empty, so fix this.
    // All succeeding offsets have the current size value added in, fix this.
    if (BBSizes[CPEBB->getNumber()] != 0) {
      Size += BBSizes[CPEBB->getNumber()];
      BBSizes[CPEBB->getNumber()] = 0;
    }
  }
  AdjustBBOffsetsAfter(CPEBB, -Size);
  // An island has only one predecessor BB and one successor BB. Check if
  // this BB's predecessor jumps directly to this BB's successor. This
  // shouldn't happen currently.
  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
  // FIXME: remove the empty blocks after all the work is done?
}

/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
/// are zero.
bool ARMConstantIslands::RemoveUnusedCPEntries() {
  unsigned MadeChange = false;
  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
      std::vector<CPEntry> &CPEs = CPEntries[i];
      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
          RemoveDeadCPEMI(CPEs[j].CPEMI);
          CPEs[j].CPEMI = NULL;
          MadeChange = true;
        }
      }
  }  
  return MadeChange;
}

/// BBIsInRange - Returns true if the distance between specific MI and
/// specific BB can fit in MI's displacement field.
bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
                                     unsigned MaxDisp) {
  unsigned PCAdj      = isThumb ? 4 : 8;
  unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
  unsigned DestOffset = BBOffsets[DestBB->getNumber()];

  DOUT << "Branch of destination BB#" << DestBB->getNumber()
       << " from BB#" << MI->getParent()->getNumber()
       << " max delta=" << MaxDisp
       << " from " << GetOffsetOf(MI) << " to " << DestOffset
       << " offset " << int(DestOffset-BrOffset) << "\t" << *MI;

  if (BrOffset <= DestOffset) {
    // Branch before the Dest.
    if (DestOffset-BrOffset <= MaxDisp)
      return true;
  } else {
    if (BrOffset-DestOffset <= MaxDisp)
      return true;
  }
  return false;
}

/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
/// away to fit in its displacement field.
bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) {
  MachineInstr *MI = Br.MI;
  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();

  // Check to see if the DestBB is already in-range.
  if (BBIsInRange(MI, DestBB, Br.MaxDisp))
    return false;

  if (!Br.isCond)
    return FixUpUnconditionalBr(Fn, Br);
  return FixUpConditionalBr(Fn, Br);
}

/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
/// too far away to fit in its displacement field. If the LR register has been
/// spilled in the epilogue, then we can use BL to implement a far jump.
/// Otherwise, add an intermediate branch instruction to to a branch.
bool
ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) {
  MachineInstr *MI = Br.MI;
  MachineBasicBlock *MBB = MI->getParent();
  assert(isThumb && "Expected a Thumb function!");

  // Use BL to implement far jump.
  Br.MaxDisp = (1 << 21) * 2;
  MI->setDesc(TII->get(ARM::tBfar));
  BBSizes[MBB->getNumber()] += 2;
  AdjustBBOffsetsAfter(MBB, 2);
  HasFarJump = true;
  NumUBrFixed++;

  DOUT << "  Changed B to long jump " << *MI;

  return true;
}

/// FixUpConditionalBr - Fix up a conditional branch whose destination is too
/// far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool
ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
  MachineInstr *MI = Br.MI;
  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();

  // Add a unconditional branch to the destination and invert the branch
  // condition to jump over it:
  // blt L1
  // =>
  // bge L2
  // b   L1
  // L2:
  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
  CC = ARMCC::getOppositeCondition(CC);
  unsigned CCReg = MI->getOperand(2).getReg();

  // If the branch is at the end of its MBB and that has a fall-through block,
  // direct the updated conditional branch to the fall-through block. Otherwise,
  // split the MBB before the next instruction.
  MachineBasicBlock *MBB = MI->getParent();
  MachineInstr *BMI = &MBB->back();
  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);

  NumCBrFixed++;
  if (BMI != MI) {
    if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
        BMI->getOpcode() == Br.UncondBr) {
      // Last MI in the BB is a unconditional branch. Can we simply invert the
      // condition and swap destinations:
      // beq L1
      // b   L2
      // =>
      // bne L2
      // b   L1
      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
      if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
        DOUT << "  Invert Bcc condition and swap its destination with " << *BMI;
        BMI->getOperand(0).setMBB(DestBB);
        MI->getOperand(0).setMBB(NewDest);
        MI->getOperand(1).setImm(CC);
        return true;
      }
    }
  }

  if (NeedSplit) {
    SplitBlockBeforeInstr(MI);
    // No need for the branch to the next block. We're adding a unconditional
    // branch to the destination.
    int delta = TII->GetInstSizeInBytes(&MBB->back());
    BBSizes[MBB->getNumber()] -= delta;
    MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB));
    AdjustBBOffsetsAfter(SplitBB, -delta);
    MBB->back().eraseFromParent();
    // BBOffsets[SplitBB] is wrong temporarily, fixed below
  }
  MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
 
  DOUT << "  Insert B to BB#" << DestBB->getNumber()
       << " also invert condition and change dest. to BB#"
       << NextBB->getNumber() << "\n";

  // Insert a new conditional branch and a new unconditional branch.
  // Also update the ImmBranch as well as adding a new entry for the new branch.
  BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB)
    .addImm(CC).addReg(CCReg);
  Br.MI = &MBB->back();
  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
  BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));

  // Remove the old conditional branch.  It may or may not still be in MBB.
  BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
  MI->eraseFromParent();

  // The net size change is an addition of one unconditional branch.
  int delta = TII->GetInstSizeInBytes(&MBB->back());
  AdjustBBOffsetsAfter(MBB, delta);
  return true;
}

/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
/// LR / restores LR to pc.
bool ARMConstantIslands::UndoLRSpillRestore() {
  bool MadeChange = false;
  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
    MachineInstr *MI = PushPopMIs[i];
    if (MI->getOpcode() == ARM::tPOP_RET &&
        MI->getOperand(0).getReg() == ARM::PC &&
        MI->getNumExplicitOperands() == 1) {
      BuildMI(MI->getParent(), TII->get(ARM::tBX_RET));
      MI->eraseFromParent();
      MadeChange = true;
    }
  }
  return MadeChange;
}