llvm.org GIT mirror llvm / release_24 lib / CodeGen / SelectionDAG / SelectionDAGBuild.h
release_24

Tree @release_24 (Download .tar.gz)

SelectionDAGBuild.h @release_24raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
//===-- SelectionDAGBuild.h - Selection-DAG building ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating from LLVM IR into SelectionDAG IR.
//
//===----------------------------------------------------------------------===//

#ifndef SELECTIONDAGBUILD_H
#define SELECTIONDAGBUILD_H

#include "llvm/Constants.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#ifndef NDEBUG
#include "llvm/ADT/SmallSet.h"
#endif
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/Support/CallSite.h"
#include <vector>
#include <set>

namespace llvm {

class AliasAnalysis;
class AllocaInst;
class BasicBlock;
class BitCastInst;
class BranchInst;
class CallInst;
class ExtractElementInst;
class ExtractValueInst;
class FCmpInst;
class FPExtInst;
class FPToSIInst;
class FPToUIInst;
class FPTruncInst;
class FreeInst;
class Function;
class GetElementPtrInst;
class GCFunctionInfo;
class ICmpInst;
class IntToPtrInst;
class InvokeInst;
class InsertElementInst;
class InsertValueInst;
class Instruction;
class LoadInst;
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineModuleInfo;
class MachineRegisterInfo;
class MallocInst;
class PHINode;
class PtrToIntInst;
class ReturnInst;
class SDISelAsmOperandInfo;
class SExtInst;
class SelectInst;
class ShuffleVectorInst;
class SIToFPInst;
class StoreInst;
class SwitchInst;
class TargetData;
class TargetLowering;
class TruncInst;
class UIToFPInst;
class UnreachableInst;
class UnwindInst;
class VICmpInst;
class VFCmpInst;
class VAArgInst;
class ZExtInst;

//===--------------------------------------------------------------------===//
/// FunctionLoweringInfo - This contains information that is global to a
/// function that is used when lowering a region of the function.
///
class FunctionLoweringInfo {
public:
  TargetLowering &TLI;
  Function *Fn;
  MachineFunction *MF;
  MachineRegisterInfo *RegInfo;

  explicit FunctionLoweringInfo(TargetLowering &TLI);

  /// set - Initialize this FunctionLoweringInfo with the given Function
  /// and its associated MachineFunction.
  ///
  void set(Function &Fn, MachineFunction &MF, bool EnableFastISel);

  /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
  DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;

  /// ValueMap - Since we emit code for the function a basic block at a time,
  /// we must remember which virtual registers hold the values for
  /// cross-basic-block values.
  DenseMap<const Value*, unsigned> ValueMap;

  /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
  /// the entry block.  This allows the allocas to be efficiently referenced
  /// anywhere in the function.
  DenseMap<const AllocaInst*, int> StaticAllocaMap;

#ifndef NDEBUG
  SmallSet<Instruction*, 8> CatchInfoLost;
  SmallSet<Instruction*, 8> CatchInfoFound;
#endif

  unsigned MakeReg(MVT VT);
  
  /// isExportedInst - Return true if the specified value is an instruction
  /// exported from its block.
  bool isExportedInst(const Value *V) {
    return ValueMap.count(V);
  }

  unsigned CreateRegForValue(const Value *V);
  
  unsigned InitializeRegForValue(const Value *V) {
    unsigned &R = ValueMap[V];
    assert(R == 0 && "Already initialized this value register!");
    return R = CreateRegForValue(V);
  }
  
  struct LiveOutInfo {
    unsigned NumSignBits;
    APInt KnownOne, KnownZero;
    LiveOutInfo() : NumSignBits(0) {}
  };
  
  /// LiveOutRegInfo - Information about live out vregs, indexed by their
  /// register number offset by 'FirstVirtualRegister'.
  std::vector<LiveOutInfo> LiveOutRegInfo;

  /// clear - Clear out all the function-specific state. This returns this
  /// FunctionLoweringInfo to an empty state, ready to be used for a
  /// different function.
  void clear() {
    MBBMap.clear();
    ValueMap.clear();
    StaticAllocaMap.clear();
#ifndef NDEBUG
    CatchInfoLost.clear();
    CatchInfoFound.clear();
#endif
    LiveOutRegInfo.clear();
  }
};

//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
/// Also, targets can overload any lowering method.
///
class SelectionDAGLowering {
  MachineBasicBlock *CurMBB;

  DenseMap<const Value*, SDValue> NodeMap;

  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
  /// them up and then emit token factor nodes when possible.  This allows us to
  /// get simple disambiguation between loads without worrying about alias
  /// analysis.
  SmallVector<SDValue, 8> PendingLoads;

  /// PendingExports - CopyToReg nodes that copy values to virtual registers
  /// for export to other blocks need to be emitted before any terminator
  /// instruction, but they have no other ordering requirements. We bunch them
  /// up and the emit a single tokenfactor for them just before terminator
  /// instructions.
  SmallVector<SDValue, 8> PendingExports;

  /// Case - A struct to record the Value for a switch case, and the
  /// case's target basic block.
  struct Case {
    Constant* Low;
    Constant* High;
    MachineBasicBlock* BB;

    Case() : Low(0), High(0), BB(0) { }
    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
      Low(low), High(high), BB(bb) { }
    uint64_t size() const {
      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
      return (rHigh - rLow + 1ULL);
    }
  };

  struct CaseBits {
    uint64_t Mask;
    MachineBasicBlock* BB;
    unsigned Bits;

    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
      Mask(mask), BB(bb), Bits(bits) { }
  };

  typedef std::vector<Case>           CaseVector;
  typedef std::vector<CaseBits>       CaseBitsVector;
  typedef CaseVector::iterator        CaseItr;
  typedef std::pair<CaseItr, CaseItr> CaseRange;

  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
  /// of conditional branches.
  struct CaseRec {
    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
    CaseBB(bb), LT(lt), GE(ge), Range(r) {}

    /// CaseBB - The MBB in which to emit the compare and branch
    MachineBasicBlock *CaseBB;
    /// LT, GE - If nonzero, we know the current case value must be less-than or
    /// greater-than-or-equal-to these Constants.
    Constant *LT;
    Constant *GE;
    /// Range - A pair of iterators representing the range of case values to be
    /// processed at this point in the binary search tree.
    CaseRange Range;
  };

  typedef std::vector<CaseRec> CaseRecVector;

  /// The comparison function for sorting the switch case values in the vector.
  /// WARNING: Case ranges should be disjoint!
  struct CaseCmp {
    bool operator () (const Case& C1, const Case& C2) {
      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
      return CI1->getValue().slt(CI2->getValue());
    }
  };

  struct CaseBitsCmp {
    bool operator () (const CaseBits& C1, const CaseBits& C2) {
      return C1.Bits > C2.Bits;
    }
  };

  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
  
  /// CaseBlock - This structure is used to communicate between SDLowering and
  /// SDISel for the code generation of additional basic blocks needed by multi-
  /// case switch statements.
  struct CaseBlock {
    CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
              MachineBasicBlock *me)
      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
        TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
    // CC - the condition code to use for the case block's setcc node
    ISD::CondCode CC;
    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    // Emit by default LHS op RHS. MHS is used for range comparisons:
    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    Value *CmpLHS, *CmpMHS, *CmpRHS;
    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    MachineBasicBlock *TrueBB, *FalseBB;
    // ThisBB - the block into which to emit the code for the setcc and branches
    MachineBasicBlock *ThisBB;
  };
  struct JumpTable {
    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
  
    /// Reg - the virtual register containing the index of the jump table entry
    //. to jump to.
    unsigned Reg;
    /// JTI - the JumpTableIndex for this jump table in the function.
    unsigned JTI;
    /// MBB - the MBB into which to emit the code for the indirect jump.
    MachineBasicBlock *MBB;
    /// Default - the MBB of the default bb, which is a successor of the range
    /// check MBB.  This is when updating PHI nodes in successors.
    MachineBasicBlock *Default;
  };
  struct JumpTableHeader {
    JumpTableHeader(uint64_t F, uint64_t L, Value* SV, MachineBasicBlock* H,
                    bool E = false):
      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
    uint64_t First;
    uint64_t Last;
    Value *SValue;
    MachineBasicBlock *HeaderBB;
    bool Emitted;
  };
  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;

  struct BitTestCase {
    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
      Mask(M), ThisBB(T), TargetBB(Tr) { }
    uint64_t Mask;
    MachineBasicBlock* ThisBB;
    MachineBasicBlock* TargetBB;
  };

  typedef SmallVector<BitTestCase, 3> BitTestInfo;

  struct BitTestBlock {
    BitTestBlock(uint64_t F, uint64_t R, Value* SV,
                 unsigned Rg, bool E,
                 MachineBasicBlock* P, MachineBasicBlock* D,
                 const BitTestInfo& C):
      First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
      Parent(P), Default(D), Cases(C) { }
    uint64_t First;
    uint64_t Range;
    Value  *SValue;
    unsigned Reg;
    bool Emitted;
    MachineBasicBlock *Parent;
    MachineBasicBlock *Default;
    BitTestInfo Cases;
  };

public:
  // TLI - This is information that describes the available target features we
  // need for lowering.  This indicates when operations are unavailable,
  // implemented with a libcall, etc.
  TargetLowering &TLI;
  SelectionDAG &DAG;
  const TargetData *TD;
  AliasAnalysis *AA;

  /// SwitchCases - Vector of CaseBlock structures used to communicate
  /// SwitchInst code generation information.
  std::vector<CaseBlock> SwitchCases;
  /// JTCases - Vector of JumpTable structures used to communicate
  /// SwitchInst code generation information.
  std::vector<JumpTableBlock> JTCases;
  /// BitTestCases - Vector of BitTestBlock structures used to communicate
  /// SwitchInst code generation information.
  std::vector<BitTestBlock> BitTestCases;
  
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;

  // Emit PHI-node-operand constants only once even if used by multiple
  // PHI nodes.
  DenseMap<Constant*, unsigned> ConstantsOut;

  /// FuncInfo - Information about the function as a whole.
  ///
  FunctionLoweringInfo &FuncInfo;
  
  /// GFI - Garbage collection metadata for the function.
  GCFunctionInfo *GFI;

  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
                       FunctionLoweringInfo &funcinfo)
    : TLI(tli), DAG(dag), FuncInfo(funcinfo) {
  }

  void init(GCFunctionInfo *gfi, AliasAnalysis &aa);

  /// clear - Clear out the curret SelectionDAG and the associated
  /// state and prepare this SelectionDAGLowering object to be used
  /// for a new block. This doesn't clear out information about
  /// additional blocks that are needed to complete switch lowering
  /// or PHI node updating; that information is cleared out as it is
  /// consumed.
  void clear();

  /// getRoot - Return the current virtual root of the Selection DAG,
  /// flushing any PendingLoad items. This must be done before emitting
  /// a store or any other node that may need to be ordered after any
  /// prior load instructions.
  ///
  SDValue getRoot();

  /// getControlRoot - Similar to getRoot, but instead of flushing all the
  /// PendingLoad items, flush all the PendingExports items. It is necessary
  /// to do this before emitting a terminator instruction.
  ///
  SDValue getControlRoot();

  void CopyValueToVirtualRegister(Value *V, unsigned Reg);

  void visit(Instruction &I);

  void visit(unsigned Opcode, User &I);

  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }

  SDValue getValue(const Value *V);

  void setValue(const Value *V, SDValue NewN) {
    SDValue &N = NodeMap[V];
    assert(N.getNode() == 0 && "Already set a value for this node!");
    N = NewN;
  }
  
  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
                            std::set<unsigned> &OutputRegs, 
                            std::set<unsigned> &InputRegs);

  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
                            unsigned Opc);
  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
  void ExportFromCurrentBlock(Value *V);
  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
                   MachineBasicBlock *LandingPad = NULL);

private:
  // Terminator instructions.
  void visitRet(ReturnInst &I);
  void visitBr(BranchInst &I);
  void visitSwitch(SwitchInst &I);
  void visitUnreachable(UnreachableInst &I) { /* noop */ }

  // Helpers for visitSwitch
  bool handleSmallSwitchRange(CaseRec& CR,
                              CaseRecVector& WorkList,
                              Value* SV,
                              MachineBasicBlock* Default);
  bool handleJTSwitchCase(CaseRec& CR,
                          CaseRecVector& WorkList,
                          Value* SV,
                          MachineBasicBlock* Default);
  bool handleBTSplitSwitchCase(CaseRec& CR,
                               CaseRecVector& WorkList,
                               Value* SV,
                               MachineBasicBlock* Default);
  bool handleBitTestsSwitchCase(CaseRec& CR,
                                CaseRecVector& WorkList,
                                Value* SV,
                                MachineBasicBlock* Default);  
public:
  void visitSwitchCase(CaseBlock &CB);
  void visitBitTestHeader(BitTestBlock &B);
  void visitBitTestCase(MachineBasicBlock* NextMBB,
                        unsigned Reg,
                        BitTestCase &B);
  void visitJumpTable(JumpTable &JT);
  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
  
private:
  // These all get lowered before this pass.
  void visitInvoke(InvokeInst &I);
  void visitUnwind(UnwindInst &I);

  void visitBinary(User &I, unsigned OpCode);
  void visitShift(User &I, unsigned Opcode);
  void visitAdd(User &I);
  void visitSub(User &I);
  void visitMul(User &I);
  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
  void visitShl (User &I) { visitShift(I, ISD::SHL); }
  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
  void visitICmp(User &I);
  void visitFCmp(User &I);
  void visitVICmp(User &I);
  void visitVFCmp(User &I);
  // Visit the conversion instructions
  void visitTrunc(User &I);
  void visitZExt(User &I);
  void visitSExt(User &I);
  void visitFPTrunc(User &I);
  void visitFPExt(User &I);
  void visitFPToUI(User &I);
  void visitFPToSI(User &I);
  void visitUIToFP(User &I);
  void visitSIToFP(User &I);
  void visitPtrToInt(User &I);
  void visitIntToPtr(User &I);
  void visitBitCast(User &I);

  void visitExtractElement(User &I);
  void visitInsertElement(User &I);
  void visitShuffleVector(User &I);

  void visitExtractValue(ExtractValueInst &I);
  void visitInsertValue(InsertValueInst &I);

  void visitGetElementPtr(User &I);
  void visitSelect(User &I);

  void visitMalloc(MallocInst &I);
  void visitFree(FreeInst &I);
  void visitAlloca(AllocaInst &I);
  void visitLoad(LoadInst &I);
  void visitStore(StoreInst &I);
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
  void visitCall(CallInst &I);
  void visitInlineAsm(CallSite CS);
  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);

  void visitPow(CallInst &I);
  void visitExp2(CallInst &I);
  void visitExp(CallInst &I);
  void visitLog(CallInst &I);
  void visitLog2(CallInst &I);
  void visitLog10(CallInst &I);

  void visitVAStart(CallInst &I);
  void visitVAArg(VAArgInst &I);
  void visitVAEnd(CallInst &I);
  void visitVACopy(CallInst &I);

  void visitUserOp1(Instruction &I) {
    assert(0 && "UserOp1 should not exist at instruction selection time!");
    abort();
  }
  void visitUserOp2(Instruction &I) {
    assert(0 && "UserOp2 should not exist at instruction selection time!");
    abort();
  }
  
  const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
};

/// AddCatchInfo - Extract the personality and type infos from an eh.selector
/// call, and add them to the specified machine basic block.
void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
                  MachineBasicBlock *MBB);

} // end namespace llvm

#endif