llvm.org GIT mirror llvm / release_24 lib / CodeGen / SelectionDAG / ScheduleDAGList.cpp
release_24

Tree @release_24 (Download .tar.gz)

ScheduleDAGList.cpp @release_24raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/Statistic.h"
#include <climits>
using namespace llvm;

STATISTIC(NumNoops , "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");

static RegisterScheduler
  tdListDAGScheduler("list-td", "  Top-down list scheduler",
                     createTDListDAGScheduler);
   
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGList - The actual list scheduler implementation.  This supports
/// top-down scheduling.
///
class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
private:
  /// AvailableQueue - The priority queue to use for the available SUnits.
  ///
  SchedulingPriorityQueue *AvailableQueue;
  
  /// PendingQueue - This contains all of the instructions whose operands have
  /// been issued, but their results are not ready yet (due to the latency of
  /// the operation).  Once the operands becomes available, the instruction is
  /// added to the AvailableQueue.  This keeps track of each SUnit and the
  /// number of cycles left to execute before the operation is available.
  std::vector<std::pair<unsigned, SUnit*> > PendingQueue;

  /// HazardRec - The hazard recognizer to use.
  HazardRecognizer *HazardRec;

public:
  ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
                  const TargetMachine &tm,
                  SchedulingPriorityQueue *availqueue,
                  HazardRecognizer *HR)
    : ScheduleDAG(dag, bb, tm),
      AvailableQueue(availqueue), HazardRec(HR) {
    }

  ~ScheduleDAGList() {
    delete HazardRec;
    delete AvailableQueue;
  }

  void Schedule();

private:
  void ReleaseSucc(SUnit *SuccSU, bool isChain);
  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
  void ListScheduleTopDown();
};
}  // end anonymous namespace

HazardRecognizer::~HazardRecognizer() {}


/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGList::Schedule() {
  DOUT << "********** List Scheduling **********\n";
  
  // Build scheduling units.
  BuildSchedUnits();

  AvailableQueue->initNodes(SUnits);
  
  ListScheduleTopDown();
  
  AvailableQueue->releaseState();
}

//===----------------------------------------------------------------------===//
//  Top-Down Scheduling
//===----------------------------------------------------------------------===//

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero.
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
  SuccSU->NumPredsLeft--;
  
  assert(SuccSU->NumPredsLeft >= 0 &&
         "List scheduling internal error");
  
  if (SuccSU->NumPredsLeft == 0) {
    // Compute how many cycles it will be before this actually becomes
    // available.  This is the max of the start time of all predecessors plus
    // their latencies.
    unsigned AvailableCycle = 0;
    for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
         E = SuccSU->Preds.end(); I != E; ++I) {
      // If this is a token edge, we don't need to wait for the latency of the
      // preceeding instruction (e.g. a long-latency load) unless there is also
      // some other data dependence.
      SUnit &Pred = *I->Dep;
      unsigned PredDoneCycle = Pred.Cycle;
      if (!I->isCtrl)
        PredDoneCycle += Pred.Latency;
      else if (Pred.Latency)
        PredDoneCycle += 1;

      AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
    }
    
    PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
  }
}

/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
  DEBUG(SU->dump(&DAG));
  
  Sequence.push_back(SU);
  SU->Cycle = CurCycle;
  
  // Bottom up: release successors.
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I)
    ReleaseSucc(I->Dep, I->isCtrl);
}

/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGList::ListScheduleTopDown() {
  unsigned CurCycle = 0;

  // All leaves to Available queue.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    // It is available if it has no predecessors.
    if (SUnits[i].Preds.empty()) {
      AvailableQueue->push(&SUnits[i]);
      SUnits[i].isAvailable = SUnits[i].isPending = true;
    }
  }
  
  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  std::vector<SUnit*> NotReady;
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
    // Check to see if any of the pending instructions are ready to issue.  If
    // so, add them to the available queue.
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
      if (PendingQueue[i].first == CurCycle) {
        AvailableQueue->push(PendingQueue[i].second);
        PendingQueue[i].second->isAvailable = true;
        PendingQueue[i] = PendingQueue.back();
        PendingQueue.pop_back();
        --i; --e;
      } else {
        assert(PendingQueue[i].first > CurCycle && "Negative latency?");
      }
    }
    
    // If there are no instructions available, don't try to issue anything, and
    // don't advance the hazard recognizer.
    if (AvailableQueue->empty()) {
      ++CurCycle;
      continue;
    }

    SUnit *FoundSUnit = 0;
    SDNode *FoundNode = 0;
    
    bool HasNoopHazards = false;
    while (!AvailableQueue->empty()) {
      SUnit *CurSUnit = AvailableQueue->pop();
      
      // Get the node represented by this SUnit.
      FoundNode = CurSUnit->Node;
      
      // If this is a pseudo op, like copyfromreg, look to see if there is a
      // real target node flagged to it.  If so, use the target node.
      for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); 
           !FoundNode->isMachineOpcode() && i != e; ++i)
        FoundNode = CurSUnit->FlaggedNodes[i];
      
      HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
      if (HT == HazardRecognizer::NoHazard) {
        FoundSUnit = CurSUnit;
        break;
      }
      
      // Remember if this is a noop hazard.
      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
      
      NotReady.push_back(CurSUnit);
    }
    
    // Add the nodes that aren't ready back onto the available list.
    if (!NotReady.empty()) {
      AvailableQueue->push_all(NotReady);
      NotReady.clear();
    }

    // If we found a node to schedule, do it now.
    if (FoundSUnit) {
      ScheduleNodeTopDown(FoundSUnit, CurCycle);
      HazardRec->EmitInstruction(FoundNode);
      FoundSUnit->isScheduled = true;
      AvailableQueue->ScheduledNode(FoundSUnit);

      // If this is a pseudo-op node, we don't want to increment the current
      // cycle.
      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
        ++CurCycle;        
    } else if (!HasNoopHazards) {
      // Otherwise, we have a pipeline stall, but no other problem, just advance
      // the current cycle and try again.
      DOUT << "*** Advancing cycle, no work to do\n";
      HazardRec->AdvanceCycle();
      ++NumStalls;
      ++CurCycle;
    } else {
      // Otherwise, we have no instructions to issue and we have instructions
      // that will fault if we don't do this right.  This is the case for
      // processors without pipeline interlocks and other cases.
      DOUT << "*** Emitting noop\n";
      HazardRec->EmitNoop();
      Sequence.push_back(0);   // NULL SUnit* -> noop
      ++NumNoops;
      ++CurCycle;
    }
  }

#ifndef NDEBUG
  // Verify that all SUnits were scheduled.
  bool AnyNotSched = false;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    if (SUnits[i].NumPredsLeft != 0) {
      if (!AnyNotSched)
        cerr << "*** List scheduling failed! ***\n";
      SUnits[i].dump(&DAG);
      cerr << "has not been scheduled!\n";
      AnyNotSched = true;
    }
  }
  assert(!AnyNotSched);
#endif
}

//===----------------------------------------------------------------------===//
//                    LatencyPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using latency information to
// reduce the length of the critical path through the basic block.
// 
namespace {
  class LatencyPriorityQueue;
  
  /// Sorting functions for the Available queue.
  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
    LatencyPriorityQueue *PQ;
    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
    
    bool operator()(const SUnit* left, const SUnit* right) const;
  };
}  // end anonymous namespace

namespace {
  class LatencyPriorityQueue : public SchedulingPriorityQueue {
    // SUnits - The SUnits for the current graph.
    std::vector<SUnit> *SUnits;
    
    // Latencies - The latency (max of latency from this node to the bb exit)
    // for each node.
    std::vector<int> Latencies;

    /// NumNodesSolelyBlocking - This vector contains, for every node in the
    /// Queue, the number of nodes that the node is the sole unscheduled
    /// predecessor for.  This is used as a tie-breaker heuristic for better
    /// mobility.
    std::vector<unsigned> NumNodesSolelyBlocking;

    PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
public:
    LatencyPriorityQueue() : Queue(latency_sort(this)) {
    }
    
    void initNodes(std::vector<SUnit> &sunits) {
      SUnits = &sunits;
      // Calculate node priorities.
      CalculatePriorities();
    }

    void addNode(const SUnit *SU) {
      Latencies.resize(SUnits->size(), -1);
      NumNodesSolelyBlocking.resize(SUnits->size(), 0);
      CalcLatency(*SU);
    }

    void updateNode(const SUnit *SU) {
      Latencies[SU->NodeNum] = -1;
      CalcLatency(*SU);
    }

    void releaseState() {
      SUnits = 0;
      Latencies.clear();
    }
    
    unsigned getLatency(unsigned NodeNum) const {
      assert(NodeNum < Latencies.size());
      return Latencies[NodeNum];
    }
    
    unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
      assert(NodeNum < NumNodesSolelyBlocking.size());
      return NumNodesSolelyBlocking[NodeNum];
    }
    
    unsigned size() const { return Queue.size(); }

    bool empty() const { return Queue.empty(); }
    
    virtual void push(SUnit *U) {
      push_impl(U);
    }
    void push_impl(SUnit *U);
    
    void push_all(const std::vector<SUnit *> &Nodes) {
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
        push_impl(Nodes[i]);
    }
    
    SUnit *pop() {
      if (empty()) return NULL;
      SUnit *V = Queue.top();
      Queue.pop();
      return V;
    }

    void remove(SUnit *SU) {
      assert(!Queue.empty() && "Not in queue!");
      Queue.erase_one(SU);
    }

    // ScheduledNode - As nodes are scheduled, we look to see if there are any
    // successor nodes that have a single unscheduled predecessor.  If so, that
    // single predecessor has a higher priority, since scheduling it will make
    // the node available.
    void ScheduledNode(SUnit *Node);

private:
    void CalculatePriorities();
    int CalcLatency(const SUnit &SU);
    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
    SUnit *getSingleUnscheduledPred(SUnit *SU);
  };
}

bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
  unsigned LHSNum = LHS->NodeNum;
  unsigned RHSNum = RHS->NodeNum;

  // The most important heuristic is scheduling the critical path.
  unsigned LHSLatency = PQ->getLatency(LHSNum);
  unsigned RHSLatency = PQ->getLatency(RHSNum);
  if (LHSLatency < RHSLatency) return true;
  if (LHSLatency > RHSLatency) return false;
  
  // After that, if two nodes have identical latencies, look to see if one will
  // unblock more other nodes than the other.
  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
  if (LHSBlocked < RHSBlocked) return true;
  if (LHSBlocked > RHSBlocked) return false;
  
  // Finally, just to provide a stable ordering, use the node number as a
  // deciding factor.
  return LHSNum < RHSNum;
}


/// CalcNodePriority - Calculate the maximal path from the node to the exit.
///
int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
  int &Latency = Latencies[SU.NodeNum];
  if (Latency != -1)
    return Latency;

  std::vector<const SUnit*> WorkList;
  WorkList.push_back(&SU);
  while (!WorkList.empty()) {
    const SUnit *Cur = WorkList.back();
    bool AllDone = true;
    int MaxSuccLatency = 0;
    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
         I != E; ++I) {
      int SuccLatency = Latencies[I->Dep->NodeNum];
      if (SuccLatency == -1) {
        AllDone = false;
        WorkList.push_back(I->Dep);
      } else {
        MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
      }
    }
    if (AllDone) {
      Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
      WorkList.pop_back();
    }
  }

  return Latency;
}

/// CalculatePriorities - Calculate priorities of all scheduling units.
void LatencyPriorityQueue::CalculatePriorities() {
  Latencies.assign(SUnits->size(), -1);
  NumNodesSolelyBlocking.assign(SUnits->size(), 0);

  // For each node, calculate the maximal path from the node to the exit.
  std::vector<std::pair<const SUnit*, unsigned> > WorkList;
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
    const SUnit *SU = &(*SUnits)[i];
    if (SU->Succs.empty())
      WorkList.push_back(std::make_pair(SU, 0U));
  }

  while (!WorkList.empty()) {
    const SUnit *SU = WorkList.back().first;
    unsigned SuccLat = WorkList.back().second;
    WorkList.pop_back();
    int &Latency = Latencies[SU->NodeNum];
    if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
      Latency = SU->Latency + SuccLat;
      for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
           I != E; ++I)
        WorkList.push_back(std::make_pair(I->Dep, Latency));
    }
  }
}

/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
/// of SU, return it, otherwise return null.
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
  SUnit *OnlyAvailablePred = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    SUnit &Pred = *I->Dep;
    if (!Pred.isScheduled) {
      // We found an available, but not scheduled, predecessor.  If it's the
      // only one we have found, keep track of it... otherwise give up.
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
        return 0;
      OnlyAvailablePred = &Pred;
    }
  }
      
  return OnlyAvailablePred;
}

void LatencyPriorityQueue::push_impl(SUnit *SU) {
  // Look at all of the successors of this node.  Count the number of nodes that
  // this node is the sole unscheduled node for.
  unsigned NumNodesBlocking = 0;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I)
    if (getSingleUnscheduledPred(I->Dep) == SU)
      ++NumNodesBlocking;
  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
  
  Queue.push(SU);
}


// ScheduledNode - As nodes are scheduled, we look to see if there are any
// successor nodes that have a single unscheduled predecessor.  If so, that
// single predecessor has a higher priority, since scheduling it will make
// the node available.
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I)
    AdjustPriorityOfUnscheduledPreds(I->Dep);
}

/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
/// scheduled.  If SU is not itself available, then there is at least one
/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
/// unscheduled predecessor, we want to increase its priority: it getting
/// scheduled will make this node available, so it is better than some other
/// node of the same priority that will not make a node available.
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
  if (SU->isPending) return;  // All preds scheduled.
  
  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
  
  // Okay, we found a single predecessor that is available, but not scheduled.
  // Since it is available, it must be in the priority queue.  First remove it.
  remove(OnlyAvailablePred);

  // Reinsert the node into the priority queue, which recomputes its
  // NumNodesSolelyBlocking value.
  push(OnlyAvailablePred);
}


//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

/// createTDListDAGScheduler - This creates a top-down list scheduler with a
/// new hazard recognizer. This scheduler takes ownership of the hazard
/// recognizer and deletes it when done.
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
                                            SelectionDAG *DAG,
                                            MachineBasicBlock *BB, bool Fast) {
  return new ScheduleDAGList(*DAG, BB, DAG->getTarget(),
                             new LatencyPriorityQueue(),
                             IS->CreateTargetHazardRecognizer());
}