llvm.org GIT mirror llvm / release_24 lib / CodeGen / SelectionDAG / LegalizeVectorTypes.cpp
release_24

Tree @release_24 (Download .tar.gz)

LegalizeVectorTypes.cpp @release_24raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file performs vector type splitting and scalarization for LegalizeTypes.
// Scalarization is the act of changing a computation in an illegal one-element
// vector type to be a computation in its scalar element type.  For example,
// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
// as a base case when scalarizing vector arithmetic like <4 x f32>, which
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
// be a computation in multiple vectors of a smaller type.  For example,
// implementing <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//

#include "LegalizeTypes.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
//  Result Vector Scalarization: <1 x ty> -> ty.
//===----------------------------------------------------------------------===//

void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
        cerr << "\n");
  SDValue R = SDValue();

  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "ScalarizeVectorResult #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to scalarize the result of this operator!");
    abort();

  case ISD::BIT_CONVERT:    R = ScalarizeVecRes_BIT_CONVERT(N); break;
  case ISD::BUILD_VECTOR:   R = N->getOperand(0); break;
  case ISD::FPOWI:          R = ScalarizeVecRes_FPOWI(N); break;
  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
  case ISD::SELECT:         R = ScalarizeVecRes_SELECT(N); break;
  case ISD::UNDEF:          R = ScalarizeVecRes_UNDEF(N); break;
  case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
  case ISD::VSETCC:         R = ScalarizeVecRes_VSETCC(N); break;

  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::CTTZ:
  case ISD::FABS:
  case ISD::FCOS:
  case ISD::FNEG:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::FSIN:
  case ISD::FSQRT:
  case ISD::FTRUNC:
  case ISD::FFLOOR:
  case ISD::FCEIL:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP: R = ScalarizeVecRes_UnaryOp(N); break;

  case ISD::ADD:
  case ISD::AND:
  case ISD::FADD:
  case ISD::FDIV:
  case ISD::FMUL:
  case ISD::FPOW:
  case ISD::FREM:
  case ISD::FSUB:
  case ISD::MUL:
  case ISD::OR:
  case ISD::SDIV:
  case ISD::SREM:
  case ISD::SUB:
  case ISD::UDIV:
  case ISD::UREM:
  case ISD::XOR:  R = ScalarizeVecRes_BinOp(N); break;
  }

  // If R is null, the sub-method took care of registering the result.
  if (R.getNode())
    SetScalarizedVector(SDValue(N, ResNo), R);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(0));
  SDValue RHS = GetScalarizedVector(N->getOperand(1));
  return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
  MVT NewVT = N->getValueType(0).getVectorElementType();
  return DAG.getNode(ISD::BIT_CONVERT, NewVT, N->getOperand(0));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
  SDValue Op = GetScalarizedVector(N->getOperand(0));
  return DAG.getNode(ISD::FPOWI, Op.getValueType(), Op, N->getOperand(1));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
  // The value to insert may have a wider type than the vector element type,
  // so be sure to truncate it to the element type if necessary.
  SDValue Op = N->getOperand(1);
  MVT EltVT = N->getValueType(0).getVectorElementType();
  if (Op.getValueType() != EltVT)
    // FIXME: Can this happen for floating point types?
    Op = DAG.getNode(ISD::TRUNCATE, EltVT, Op);
  return Op;
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
  assert(N->isUnindexed() && "Indexed vector load?");

  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getExtensionType(),
                               N->getValueType(0).getVectorElementType(),
                               N->getChain(), N->getBasePtr(),
                               DAG.getNode(ISD::UNDEF,
                                           N->getBasePtr().getValueType()),
                               N->getSrcValue(), N->getSrcValueOffset(),
                               N->getMemoryVT().getVectorElementType(),
                               N->isVolatile(), N->getAlignment());

  // Legalized the chain result - switch anything that used the old chain to
  // use the new one.
  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
  return Result;
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
  MVT DestVT = TLI.getTypeToTransformTo(N->getValueType(0));
  SDValue Op = GetScalarizedVector(N->getOperand(0));
  return DAG.getNode(N->getOpcode(), DestVT, Op);
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
  return DAG.getNode(ISD::UNDEF, N->getValueType(0).getVectorElementType());
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
  SDValue LHS = GetScalarizedVector(N->getOperand(1));
  return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0), LHS,
                     GetScalarizedVector(N->getOperand(2)));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
  // Figure out if the scalar is the LHS or RHS and return it.
  SDValue EltNum = N->getOperand(2).getOperand(0);
  unsigned Op = cast<ConstantSDNode>(EltNum)->getZExtValue() != 0;
  return GetScalarizedVector(N->getOperand(Op));
}

SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
  MVT NewVT = N->getValueType(0).getVectorElementType();
  SDValue LHS = GetScalarizedVector(N->getOperand(0));
  SDValue RHS = GetScalarizedVector(N->getOperand(1));
  LHS = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHS), LHS, RHS,
                    N->getOperand(2));
  return
    DAG.getNode(ISD::SELECT, NewVT, LHS,
                DAG.getConstant(APInt::getAllOnesValue(NewVT.getSizeInBits()),
                                NewVT),
                DAG.getConstant(0ULL, NewVT));
}


//===----------------------------------------------------------------------===//
//  Operand Vector Scalarization <1 x ty> -> ty.
//===----------------------------------------------------------------------===//

bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
        cerr << "\n");
  SDValue Res = SDValue();

  if (Res.getNode() == 0) {
    switch (N->getOpcode()) {
    default:
#ifndef NDEBUG
      cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
      N->dump(&DAG); cerr << "\n";
#endif
      assert(0 && "Do not know how to scalarize this operator's operand!");
      abort();

    case ISD::BIT_CONVERT:
      Res = ScalarizeVecOp_BIT_CONVERT(N); break;

    case ISD::EXTRACT_VECTOR_ELT:
      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;

    case ISD::STORE:
      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
    }
  }

  // If the result is null, the sub-method took care of registering results etc.
  if (!Res.getNode()) return false;

  // If the result is N, the sub-method updated N in place.  Check to see if any
  // operands are new, and if so, mark them.
  if (Res.getNode() == N) {
    // Mark N as new and remark N and its operands.  This allows us to correctly
    // revisit N if it needs another step of promotion and allows us to visit
    // any new operands to N.
    ReanalyzeNode(N);
    return true;
  }

  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
         "Invalid operand expansion");

  ReplaceValueWith(SDValue(N, 0), Res);
  return false;
}

/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
  SDValue Elt = GetScalarizedVector(N->getOperand(0));
  return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Elt);
}

/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
/// index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
  return GetScalarizedVector(N->getOperand(0));
}

/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
/// scalarized, it must be <1 x ty>.  Just store the element.
SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
  assert(N->isUnindexed() && "Indexed store of one-element vector?");
  assert(OpNo == 1 && "Do not know how to scalarize this operand!");

  if (N->isTruncatingStore())
    return DAG.getTruncStore(N->getChain(),
                             GetScalarizedVector(N->getOperand(1)),
                             N->getBasePtr(),
                             N->getSrcValue(), N->getSrcValueOffset(),
                             N->getMemoryVT().getVectorElementType(),
                             N->isVolatile(), N->getAlignment());

  return DAG.getStore(N->getChain(), GetScalarizedVector(N->getOperand(1)),
                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
                      N->isVolatile(), N->getAlignment());
}


//===----------------------------------------------------------------------===//
//  Result Vector Splitting
//===----------------------------------------------------------------------===//

/// SplitVectorResult - This method is called when the specified result of the
/// specified node is found to need vector splitting.  At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
  SDValue Lo, Hi;

  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "SplitVectorResult #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to split the result of this operator!");
    abort();

  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;

  case ISD::BIT_CONVERT:    SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
  case ISD::BUILD_VECTOR:   SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
  case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
  case ISD::FPOWI:          SplitVecRes_FPOWI(N, Lo, Hi); break;
  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
  case ISD::LOAD:           SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
  case ISD::VECTOR_SHUFFLE: SplitVecRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
  case ISD::VSETCC:         SplitVecRes_VSETCC(N, Lo, Hi); break;

  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FTRUNC:
  case ISD::FFLOOR:
  case ISD::FCEIL:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP: SplitVecRes_UnaryOp(N, Lo, Hi); break;

  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::FDIV:
  case ISD::FPOW:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::UREM:
  case ISD::SREM:
  case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break;
  }

  // If Lo/Hi is null, the sub-method took care of registering results etc.
  if (Lo.getNode())
    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
}

void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
                                         SDValue &Hi) {
  SDValue LHSLo, LHSHi;
  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
  SDValue RHSLo, RHSHi;
  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);

  Lo = DAG.getNode(N->getOpcode(), LHSLo.getValueType(), LHSLo, RHSLo);
  Hi = DAG.getNode(N->getOpcode(), LHSHi.getValueType(), LHSHi, RHSHi);
}

void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
                                               SDValue &Hi) {
  // We know the result is a vector.  The input may be either a vector or a
  // scalar value.
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SDValue InOp = N->getOperand(0);
  MVT InVT = InOp.getValueType();

  // Handle some special cases efficiently.
  switch (getTypeAction(InVT)) {
  default:
    assert(false && "Unknown type action!");
  case Legal:
  case PromoteInteger:
  case SoftenFloat:
  case ScalarizeVector:
    break;
  case ExpandInteger:
  case ExpandFloat:
    // A scalar to vector conversion, where the scalar needs expansion.
    // If the vector is being split in two then we can just convert the
    // expanded pieces.
    if (LoVT == HiVT) {
      GetExpandedOp(InOp, Lo, Hi);
      if (TLI.isBigEndian())
        std::swap(Lo, Hi);
      Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
      Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
      return;
    }
    break;
  case SplitVector:
    // If the input is a vector that needs to be split, convert each split
    // piece of the input now.
    GetSplitVector(InOp, Lo, Hi);
    Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
    Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
    return;
  }

  // In the general case, convert the input to an integer and split it by hand.
  MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
  MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
  if (TLI.isBigEndian())
    std::swap(LoIntVT, HiIntVT);

  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);

  if (TLI.isBigEndian())
    std::swap(Lo, Hi);
  Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
  Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
}

void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
                                                SDValue &Hi) {
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  unsigned LoNumElts = LoVT.getVectorNumElements();
  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
  Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &LoOps[0], LoOps.size());

  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
  Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &HiOps[0], HiOps.size());
}

void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
                                                  SDValue &Hi) {
  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
  unsigned NumSubvectors = N->getNumOperands() / 2;
  if (NumSubvectors == 1) {
    Lo = N->getOperand(0);
    Hi = N->getOperand(1);
    return;
  }

  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
  Lo = DAG.getNode(ISD::CONCAT_VECTORS, LoVT, &LoOps[0], LoOps.size());

  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
  Hi = DAG.getNode(ISD::CONCAT_VECTORS, HiVT, &HiOps[0], HiOps.size());
}

void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
                                         SDValue &Hi) {
  GetSplitVector(N->getOperand(0), Lo, Hi);
  Lo = DAG.getNode(ISD::FPOWI, Lo.getValueType(), Lo, N->getOperand(1));
  Hi = DAG.getNode(ISD::FPOWI, Hi.getValueType(), Hi, N->getOperand(1));
}

void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
                                                     SDValue &Hi) {
  SDValue Vec = N->getOperand(0);
  SDValue Elt = N->getOperand(1);
  SDValue Idx = N->getOperand(2);
  GetSplitVector(Vec, Lo, Hi);

  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
    unsigned IdxVal = CIdx->getZExtValue();
    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
    if (IdxVal < LoNumElts)
      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, Lo.getValueType(), Lo, Elt, Idx);
    else
      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, Hi.getValueType(), Hi, Elt,
                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
    return;
  }

  // Spill the vector to the stack.
  MVT VecVT = Vec.getValueType();
  MVT EltVT = VecVT.getVectorElementType();
  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
  SDValue Store = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);

  // Store the new element.  This may be larger than the vector element type,
  // so use a truncating store.
  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
  Store = DAG.getTruncStore(Store, Elt, EltPtr, NULL, 0, EltVT);

  // Reload the vector from the stack.
  SDValue Load = DAG.getLoad(VecVT, Store, StackPtr, NULL, 0);

  // Split it.
  SplitVecRes_LOAD(cast<LoadSDNode>(Load.getNode()), Lo, Hi);
}

void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
                                        SDValue &Hi) {
  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
  MVT LoVT, HiVT;
  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);

  ISD::LoadExtType ExtType = LD->getExtensionType();
  SDValue Ch = LD->getChain();
  SDValue Ptr = LD->getBasePtr();
  SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType());
  const Value *SV = LD->getSrcValue();
  int SVOffset = LD->getSrcValueOffset();
  MVT MemoryVT = LD->getMemoryVT();
  unsigned Alignment = LD->getAlignment();
  bool isVolatile = LD->isVolatile();

  MVT LoMemVT, HiMemVT;
  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);

  Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, Ch, Ptr, Offset,
                   SV, SVOffset, LoMemVT, isVolatile, Alignment);

  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
  Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                    DAG.getIntPtrConstant(IncrementSize));
  SVOffset += IncrementSize;
  Alignment = MinAlign(Alignment, IncrementSize);
  Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, Ch, Ptr, Offset,
                   SV, SVOffset, HiMemVT, isVolatile, Alignment);

  // Build a factor node to remember that this load is independent of the
  // other one.
  Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                   Hi.getValue(1));

  // Legalized the chain result - switch anything that used the old chain to
  // use the new one.
  ReplaceValueWith(SDValue(LD, 1), Ch);
}

void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
                                           SDValue &Hi) {
  // Get the dest types - they may not match the input types, e.g. int_to_fp.
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  // Split the input.
  MVT InVT = N->getOperand(0).getValueType();
  switch (getTypeAction(InVT)) {
  default: assert(0 && "Unexpected type action!");
  case Legal: {
    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
                                 LoVT.getVectorNumElements());
    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, InNVT, N->getOperand(0),
                     DAG.getIntPtrConstant(0));
    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, InNVT, N->getOperand(0),
                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
    break;
  }
  case SplitVector:
    GetSplitVector(N->getOperand(0), Lo, Hi);
    break;
  }

  Lo = DAG.getNode(N->getOpcode(), LoVT, Lo);
  Hi = DAG.getNode(N->getOpcode(), HiVT, Hi);
}

void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo,
                                                  SDValue &Hi) {
  // Build the low part.
  SDValue Mask = N->getOperand(2);
  SmallVector<SDValue, 16> Ops;
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  MVT EltVT = LoVT.getVectorElementType();
  unsigned LoNumElts = LoVT.getVectorNumElements();
  unsigned NumElements = Mask.getNumOperands();

  // Insert all of the elements from the input that are needed.  We use
  // buildvector of extractelement here because the input vectors will have
  // to be legalized, so this makes the code simpler.
  for (unsigned i = 0; i != LoNumElts; ++i) {
    unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
    SDValue InVec = N->getOperand(0);
    if (Idx >= NumElements) {
      InVec = N->getOperand(1);
      Idx -= NumElements;
    }
    Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, InVec,
                              DAG.getIntPtrConstant(Idx)));
  }
  Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &Ops[0], Ops.size());
  Ops.clear();

  for (unsigned i = LoNumElts; i != NumElements; ++i) {
    unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
    SDValue InVec = N->getOperand(0);
    if (Idx >= NumElements) {
      InVec = N->getOperand(1);
      Idx -= NumElements;
    }
    Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, InVec,
                              DAG.getIntPtrConstant(Idx)));
  }
  Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &Ops[0], Ops.size());
}

void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
                                          SDValue &Hi) {
  MVT LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SDValue LL, LH, RL, RH;
  GetSplitVector(N->getOperand(0), LL, LH);
  GetSplitVector(N->getOperand(1), RL, RH);

  Lo = DAG.getNode(ISD::VSETCC, LoVT, LL, RL, N->getOperand(2));
  Hi = DAG.getNode(ISD::VSETCC, HiVT, LH, RH, N->getOperand(2));
}


//===----------------------------------------------------------------------===//
//  Operand Vector Splitting
//===----------------------------------------------------------------------===//

/// SplitVectorOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting.  At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
  SDValue Res = SDValue();

  if (Res.getNode() == 0) {
    switch (N->getOpcode()) {
    default:
#ifndef NDEBUG
      cerr << "SplitVectorOperand Op #" << OpNo << ": ";
      N->dump(&DAG); cerr << "\n";
#endif
      assert(0 && "Do not know how to split this operator's operand!");
      abort();

    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
    case ISD::STORE:             Res = SplitVecOp_STORE(cast<StoreSDNode>(N),
                                                        OpNo); break;
    case ISD::VECTOR_SHUFFLE:    Res = SplitVecOp_VECTOR_SHUFFLE(N, OpNo);break;
    }
  }

  // If the result is null, the sub-method took care of registering results etc.
  if (!Res.getNode()) return false;

  // If the result is N, the sub-method updated N in place.  Check to see if any
  // operands are new, and if so, mark them.
  if (Res.getNode() == N) {
    // Mark N as new and remark N and its operands.  This allows us to correctly
    // revisit N if it needs another step of promotion and allows us to visit
    // any new operands to N.
    ReanalyzeNode(N);
    return true;
  }

  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
         "Invalid operand expansion");

  ReplaceValueWith(SDValue(N, 0), Res);
  return false;
}

SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
  // end up being split all the way down to individual components.  Convert the
  // split pieces into integers and reassemble.
  SDValue Lo, Hi;
  GetSplitVector(N->getOperand(0), Lo, Hi);
  Lo = BitConvertToInteger(Lo);
  Hi = BitConvertToInteger(Hi);

  if (TLI.isBigEndian())
    std::swap(Lo, Hi);

  return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
                     JoinIntegers(Lo, Hi));
}

SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
  // We know that the extracted result type is legal.  For now, assume the index
  // is a constant.
  MVT SubVT = N->getValueType(0);
  SDValue Idx = N->getOperand(1);
  SDValue Lo, Hi;
  GetSplitVector(N->getOperand(0), Lo, Hi);

  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();

  if (IdxVal < LoElts) {
    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
           "Extracted subvector crosses vector split!");
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Lo, Idx);
  } else {
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Hi,
                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
  }
}

SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
  SDValue Vec = N->getOperand(0);
  SDValue Idx = N->getOperand(1);
  MVT VecVT = Vec.getValueType();

  if (isa<ConstantSDNode>(Idx)) {
    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");

    SDValue Lo, Hi;
    GetSplitVector(Vec, Lo, Hi);

    uint64_t LoElts = Lo.getValueType().getVectorNumElements();

    if (IdxVal < LoElts)
      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
    else
      return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
                                    DAG.getConstant(IdxVal - LoElts,
                                                    Idx.getValueType()));
  }

  // Store the vector to the stack.
  MVT EltVT = VecVT.getVectorElementType();
  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
  SDValue Store = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);

  // Load back the required element.
  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
  return DAG.getLoad(EltVT, Store, StackPtr, NULL, 0);
}

SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
  assert(N->isUnindexed() && "Indexed store of vector?");
  assert(OpNo == 1 && "Can only split the stored value");

  bool isTruncating = N->isTruncatingStore();
  SDValue Ch  = N->getChain();
  SDValue Ptr = N->getBasePtr();
  int SVOffset = N->getSrcValueOffset();
  MVT MemoryVT = N->getMemoryVT();
  unsigned Alignment = N->getAlignment();
  bool isVol = N->isVolatile();
  SDValue Lo, Hi;
  GetSplitVector(N->getOperand(1), Lo, Hi);

  MVT LoMemVT, HiMemVT;
  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);

  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;

  if (isTruncating)
    Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
                           LoMemVT, isVol, Alignment);
  else
    Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
                      isVol, Alignment);

  // Increment the pointer to the other half.
  Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                    DAG.getIntPtrConstant(IncrementSize));

  if (isTruncating)
    Hi = DAG.getTruncStore(Ch, Hi, Ptr,
                           N->getSrcValue(), SVOffset+IncrementSize,
                           HiMemVT,
                           isVol, MinAlign(Alignment, IncrementSize));
  else
    Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
                      isVol, MinAlign(Alignment, IncrementSize));

  return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}

SDValue DAGTypeLegalizer::SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo){
  assert(OpNo == 2 && "Shuffle source type differs from result type?");
  SDValue Mask = N->getOperand(2);
  unsigned MaskLength = Mask.getValueType().getVectorNumElements();
  unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
  unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);

  // Look for a legal vector type to place the mask values in.
  // Note that there may not be *any* legal vector-of-integer
  // type for which the element type is legal!
  for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
       EltVT <= MVT::LAST_INTEGER_VALUETYPE;
       // Integer values types are consecutively numbered.  Exploit this.
       EltVT = MVT::SimpleValueType(EltVT + 1)) {

    // Is the element type big enough to hold the values?
    if (MVT(EltVT).getSizeInBits() < MinimumBitWidth)
      // Nope.
      continue;

    // Is the vector type legal?
    MVT VecVT = MVT::getVectorVT(EltVT, MaskLength);
    if (!isTypeLegal(VecVT))
      // Nope.
      continue;

    // If the element type is not legal, find a larger legal type to use for
    // the BUILD_VECTOR operands.  This is an ugly hack, but seems to work!
    // FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
    // node where the shuffle mask is a list of integer operands, #2 .. #2+n.
    for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
         // Integer values types are consecutively numbered.  Exploit this.
         OpVT = MVT::SimpleValueType(OpVT + 1)) {
      if (!isTypeLegal(OpVT))
        continue;

      // Success!  Rebuild the vector using the legal types.
      SmallVector<SDValue, 16> Ops(MaskLength);
      for (unsigned i = 0; i < MaskLength; ++i) {
        uint64_t Idx =
          cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
        Ops[i] = DAG.getConstant(Idx, OpVT);
      }
      return DAG.UpdateNodeOperands(SDValue(N,0),
                                    N->getOperand(0), N->getOperand(1),
                                    DAG.getNode(ISD::BUILD_VECTOR,
                                                VecVT, &Ops[0], Ops.size()));
    }

    // Continuing is pointless - failure is certain.
    break;
  }
  assert(false && "Failed to find an appropriate mask type!");
  return SDValue(N, 0);
}