llvm.org GIT mirror llvm / release_24 lib / CodeGen / SelectionDAG / LegalizeTypes.cpp
release_24

Tree @release_24 (Download .tar.gz)

LegalizeTypes.cpp @release_24raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
// is common code shared among the LegalizeTypes*.cpp files.
//
//===----------------------------------------------------------------------===//

#include "LegalizeTypes.h"
#include "llvm/CallingConv.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;

/// run - This is the main entry point for the type legalizer.  This does a
/// top-down traversal of the dag, legalizing types as it goes.
void DAGTypeLegalizer::run() {
  // Create a dummy node (which is not added to allnodes), that adds a reference
  // to the root node, preventing it from being deleted, and tracking any
  // changes of the root.
  HandleSDNode Dummy(DAG.getRoot());

  // The root of the dag may dangle to deleted nodes until the type legalizer is
  // done.  Set it to null to avoid confusion.
  DAG.setRoot(SDValue());

  // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
  // (and remembering them) if they are leaves and assigning 'NewNode' if
  // non-leaves.
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = DAG.allnodes_end(); I != E; ++I) {
    if (I->getNumOperands() == 0) {
      I->setNodeId(ReadyToProcess);
      Worklist.push_back(I);
    } else {
      I->setNodeId(NewNode);
    }
  }

  // Now that we have a set of nodes to process, handle them all.
  while (!Worklist.empty()) {
    SDNode *N = Worklist.back();
    Worklist.pop_back();
    assert(N->getNodeId() == ReadyToProcess &&
           "Node should be ready if on worklist!");

    if (IgnoreNodeResults(N))
      goto ScanOperands;

    // Scan the values produced by the node, checking to see if any result
    // types are illegal.
    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
      MVT ResultVT = N->getValueType(i);
      switch (getTypeAction(ResultVT)) {
      default:
        assert(false && "Unknown action!");
      case Legal:
        break;
      case PromoteInteger:
        PromoteIntegerResult(N, i);
        goto NodeDone;
      case ExpandInteger:
        ExpandIntegerResult(N, i);
        goto NodeDone;
      case SoftenFloat:
        SoftenFloatResult(N, i);
        goto NodeDone;
      case ExpandFloat:
        ExpandFloatResult(N, i);
        goto NodeDone;
      case ScalarizeVector:
        ScalarizeVectorResult(N, i);
        goto NodeDone;
      case SplitVector:
        SplitVectorResult(N, i);
        goto NodeDone;
      }
    }

ScanOperands:
    // Scan the operand list for the node, handling any nodes with operands that
    // are illegal.
    {
    unsigned NumOperands = N->getNumOperands();
    bool NeedsRevisit = false;
    unsigned i;
    for (i = 0; i != NumOperands; ++i) {
      if (IgnoreNodeResults(N->getOperand(i).getNode()))
        continue;

      MVT OpVT = N->getOperand(i).getValueType();
      switch (getTypeAction(OpVT)) {
      default:
        assert(false && "Unknown action!");
      case Legal:
        continue;
      case PromoteInteger:
        NeedsRevisit = PromoteIntegerOperand(N, i);
        break;
      case ExpandInteger:
        NeedsRevisit = ExpandIntegerOperand(N, i);
        break;
      case SoftenFloat:
        NeedsRevisit = SoftenFloatOperand(N, i);
        break;
      case ExpandFloat:
        NeedsRevisit = ExpandFloatOperand(N, i);
        break;
      case ScalarizeVector:
        NeedsRevisit = ScalarizeVectorOperand(N, i);
        break;
      case SplitVector:
        NeedsRevisit = SplitVectorOperand(N, i);
        break;
      }
      break;
    }

    // If the node needs revisiting, don't add all users to the worklist etc.
    if (NeedsRevisit)
      continue;

    if (i == NumOperands) {
      DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
    }
    }
NodeDone:

    // If we reach here, the node was processed, potentially creating new nodes.
    // Mark it as processed and add its users to the worklist as appropriate.
    N->setNodeId(Processed);

    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
         UI != E; ++UI) {
      SDNode *User = *UI;
      int NodeID = User->getNodeId();
      assert(NodeID != ReadyToProcess && NodeID != Processed &&
             "Invalid node id for user of unprocessed node!");

      // This node has two options: it can either be a new node or its Node ID
      // may be a count of the number of operands it has that are not ready.
      if (NodeID > 0) {
        User->setNodeId(NodeID-1);

        // If this was the last use it was waiting on, add it to the ready list.
        if (NodeID-1 == ReadyToProcess)
          Worklist.push_back(User);
        continue;
      }

      // Otherwise, this node is new: this is the first operand of it that
      // became ready.  Its new NodeID is the number of operands it has minus 1
      // (as this node is now processed).
      assert(NodeID == NewNode && "Unknown node ID!");
      User->setNodeId(User->getNumOperands()-1);

      // If the node only has a single operand, it is now ready.
      if (User->getNumOperands() == 1)
        Worklist.push_back(User);
    }
  }

  // If the root changed (e.g. it was a dead load, update the root).
  DAG.setRoot(Dummy.getValue());

  //DAG.viewGraph();

  // Remove dead nodes.  This is important to do for cleanliness but also before
  // the checking loop below.  Implicit folding by the DAG.getNode operators can
  // cause unreachable nodes to be around with their flags set to new.
  DAG.RemoveDeadNodes();

  // In a debug build, scan all the nodes to make sure we found them all.  This
  // ensures that there are no cycles and that everything got processed.
#ifndef NDEBUG
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = DAG.allnodes_end(); I != E; ++I) {
    bool Failed = false;

    // Check that all result types are legal.
    if (!IgnoreNodeResults(I))
      for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
        if (!isTypeLegal(I->getValueType(i))) {
          cerr << "Result type " << i << " illegal!\n";
          Failed = true;
        }

    // Check that all operand types are legal.
    for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
      if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
          !isTypeLegal(I->getOperand(i).getValueType())) {
        cerr << "Operand type " << i << " illegal!\n";
        Failed = true;
      }

    if (I->getNodeId() != Processed) {
       if (I->getNodeId() == NewNode)
         cerr << "New node not 'noticed'?\n";
       else if (I->getNodeId() > 0)
         cerr << "Operand not processed?\n";
       else if (I->getNodeId() == ReadyToProcess)
         cerr << "Not added to worklist?\n";
       Failed = true;
    }

    if (Failed) {
      I->dump(&DAG); cerr << "\n";
      abort();
    }
  }
#endif
}

/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
/// new nodes.  Correct any processed operands (this may change the node) and
/// calculate the NodeId.
/// Returns the potentially changed node.
SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
  // If this was an existing node that is already done, we're done.
  if (N->getNodeId() != NewNode)
    return N;

  // Remove any stale map entries.
  ExpungeNode(N);

  // Okay, we know that this node is new.  Recursively walk all of its operands
  // to see if they are new also.  The depth of this walk is bounded by the size
  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
  // about revisiting of nodes.
  //
  // As we walk the operands, keep track of the number of nodes that are
  // processed.  If non-zero, this will become the new nodeid of this node.
  // Already processed operands may need to be remapped to the node that
  // replaced them, which can result in our node changing.  Since remapping
  // is rare, the code tries to minimize overhead in the non-remapping case.

  SmallVector<SDValue, 8> NewOps;
  unsigned NumProcessed = 0;
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDValue OrigOp = N->getOperand(i);
    SDValue Op = OrigOp;

    if (Op.getNode()->getNodeId() == Processed)
      RemapNode(Op);

    if (Op.getNode()->getNodeId() == NewNode)
      AnalyzeNewNode(Op);
    else if (Op.getNode()->getNodeId() == Processed)
      ++NumProcessed;

    if (!NewOps.empty()) {
      // Some previous operand changed.  Add this one to the list.
      NewOps.push_back(Op);
    } else if (Op != OrigOp) {
      // This is the first operand to change - add all operands so far.
      for (unsigned j = 0; j < i; ++j)
        NewOps.push_back(N->getOperand(j));
      NewOps.push_back(Op);
    }
  }

  // Some operands changed - update the node.
  if (!NewOps.empty())
    N = DAG.UpdateNodeOperands(SDValue(N, 0),
                               &NewOps[0],
                               NewOps.size()).getNode();

  N->setNodeId(N->getNumOperands()-NumProcessed);
  if (N->getNodeId() == ReadyToProcess)
    Worklist.push_back(N);
  return N;
}

/// AnalyzeNewNode - call AnalyzeNewNode(SDNode *N)
/// and update the node in SDValue if necessary.
void DAGTypeLegalizer::AnalyzeNewNode(SDValue &Val) {
  SDNode *N(Val.getNode());
  SDNode *M(AnalyzeNewNode(N));
  if (N != M)
    Val.setNode(M);
}


namespace {
  /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
  /// updates to nodes and recomputes their ready state.
  class VISIBILITY_HIDDEN NodeUpdateListener :
    public SelectionDAG::DAGUpdateListener {
    DAGTypeLegalizer &DTL;
  public:
    explicit NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}

    virtual void NodeDeleted(SDNode *N, SDNode *E) {
      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
             "RAUW deleted processed node!");
      // It is possible, though rare, for the deleted node N to occur as a
      // target in a map, so note the replacement N -> E in ReplacedNodes.
      assert(E && "Node not replaced?");
      DTL.NoteDeletion(N, E);
    }

    virtual void NodeUpdated(SDNode *N) {
      // Node updates can mean pretty much anything.  It is possible that an
      // operand was set to something already processed (f.e.) in which case
      // this node could become ready.  Recompute its flags.
      assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
             N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
             "RAUW updated processed node!");
      DTL.ReanalyzeNode(N);
    }
  };
}


/// ReplaceValueWith - The specified value was legalized to the specified other
/// value.  If they are different, update the DAG and NodeIDs replacing any uses
/// of From to use To instead.
void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
  if (From == To) return;

  // If expansion produced new nodes, make sure they are properly marked.
  ExpungeNode(From.getNode());
  AnalyzeNewNode(To); // Expunges To.

  // Anything that used the old node should now use the new one.  Note that this
  // can potentially cause recursive merging.
  NodeUpdateListener NUL(*this);
  DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);

  // The old node may still be present in a map like ExpandedIntegers or
  // PromotedIntegers.  Inform maps about the replacement.
  ReplacedNodes[From] = To;
}

/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
/// node's results.  The from and to node must define identical result types.
void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
  if (From == To) return;

  // If expansion produced new nodes, make sure they are properly marked.
  ExpungeNode(From);

  To = AnalyzeNewNode(To); // Expunges To.

  assert(From->getNumValues() == To->getNumValues() &&
         "Node results don't match");

  // Anything that used the old node should now use the new one.  Note that this
  // can potentially cause recursive merging.
  NodeUpdateListener NUL(*this);
  DAG.ReplaceAllUsesWith(From, To, &NUL);

  // The old node may still be present in a map like ExpandedIntegers or
  // PromotedIntegers.  Inform maps about the replacement.
  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
    assert(From->getValueType(i) == To->getValueType(i) &&
           "Node results don't match");
    ReplacedNodes[SDValue(From, i)] = SDValue(To, i);
  }
}

/// RemapNode - If the specified value was already legalized to another value,
/// replace it by that value.
void DAGTypeLegalizer::RemapNode(SDValue &N) {
  DenseMap<SDValue, SDValue>::iterator I = ReplacedNodes.find(N);
  if (I != ReplacedNodes.end()) {
    // Use path compression to speed up future lookups if values get multiply
    // replaced with other values.
    RemapNode(I->second);
    N = I->second;
  }
}

/// ExpungeNode - If N has a bogus mapping in ReplacedNodes, eliminate it.
/// This can occur when a node is deleted then reallocated as a new node -
/// the mapping in ReplacedNodes applies to the deleted node, not the new
/// one.
/// The only map that can have a deleted node as a source is ReplacedNodes.
/// Other maps can have deleted nodes as targets, but since their looked-up
/// values are always immediately remapped using RemapNode, resulting in a
/// not-deleted node, this is harmless as long as ReplacedNodes/RemapNode
/// always performs correct mappings.  In order to keep the mapping correct,
/// ExpungeNode should be called on any new nodes *before* adding them as
/// either source or target to ReplacedNodes (which typically means calling
/// Expunge when a new node is first seen, since it may no longer be marked
/// NewNode by the time it is added to ReplacedNodes).
void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
  if (N->getNodeId() != NewNode)
    return;

  // If N is not remapped by ReplacedNodes then there is nothing to do.
  unsigned i, e;
  for (i = 0, e = N->getNumValues(); i != e; ++i)
    if (ReplacedNodes.find(SDValue(N, i)) != ReplacedNodes.end())
      break;

  if (i == e)
    return;

  // Remove N from all maps - this is expensive but rare.

  for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
       E = PromotedIntegers.end(); I != E; ++I) {
    assert(I->first.getNode() != N);
    RemapNode(I->second);
  }

  for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
       E = SoftenedFloats.end(); I != E; ++I) {
    assert(I->first.getNode() != N);
    RemapNode(I->second);
  }

  for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
       E = ScalarizedVectors.end(); I != E; ++I) {
    assert(I->first.getNode() != N);
    RemapNode(I->second);
  }

  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
       I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    assert(I->first.getNode() != N);
    RemapNode(I->second.first);
    RemapNode(I->second.second);
  }

  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
       I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    assert(I->first.getNode() != N);
    RemapNode(I->second.first);
    RemapNode(I->second.second);
  }

  for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
       I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    assert(I->first.getNode() != N);
    RemapNode(I->second.first);
    RemapNode(I->second.second);
  }

  for (DenseMap<SDValue, SDValue>::iterator I = ReplacedNodes.begin(),
       E = ReplacedNodes.end(); I != E; ++I)
    RemapNode(I->second);

  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    ReplacedNodes.erase(SDValue(N, i));
}

void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
  AnalyzeNewNode(Result);

  SDValue &OpEntry = PromotedIntegers[Op];
  assert(OpEntry.getNode() == 0 && "Node is already promoted!");
  OpEntry = Result;
}

void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
  AnalyzeNewNode(Result);

  SDValue &OpEntry = SoftenedFloats[Op];
  assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
  OpEntry = Result;
}

void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
  AnalyzeNewNode(Result);

  SDValue &OpEntry = ScalarizedVectors[Op];
  assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
  OpEntry = Result;
}

void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
                                          SDValue &Hi) {
  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
  RemapNode(Entry.first);
  RemapNode(Entry.second);
  assert(Entry.first.getNode() && "Operand isn't expanded");
  Lo = Entry.first;
  Hi = Entry.second;
}

void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
                                          SDValue Hi) {
  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
  AnalyzeNewNode(Lo);
  AnalyzeNewNode(Hi);

  // Remember that this is the result of the node.
  std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
  assert(Entry.first.getNode() == 0 && "Node already expanded");
  Entry.first = Lo;
  Entry.second = Hi;
}

void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
                                        SDValue &Hi) {
  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
  RemapNode(Entry.first);
  RemapNode(Entry.second);
  assert(Entry.first.getNode() && "Operand isn't expanded");
  Lo = Entry.first;
  Hi = Entry.second;
}

void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
                                        SDValue Hi) {
  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
  AnalyzeNewNode(Lo);
  AnalyzeNewNode(Hi);

  // Remember that this is the result of the node.
  std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
  assert(Entry.first.getNode() == 0 && "Node already expanded");
  Entry.first = Lo;
  Entry.second = Hi;
}

void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
                                      SDValue &Hi) {
  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
  RemapNode(Entry.first);
  RemapNode(Entry.second);
  assert(Entry.first.getNode() && "Operand isn't split");
  Lo = Entry.first;
  Hi = Entry.second;
}

void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
                                      SDValue Hi) {
  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
  AnalyzeNewNode(Lo);
  AnalyzeNewNode(Hi);

  // Remember that this is the result of the node.
  std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
  assert(Entry.first.getNode() == 0 && "Node already split");
  Entry.first = Lo;
  Entry.second = Hi;
}


//===----------------------------------------------------------------------===//
// Utilities.
//===----------------------------------------------------------------------===//

/// BitConvertToInteger - Convert to an integer of the same size.
SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
  unsigned BitWidth = Op.getValueType().getSizeInBits();
  return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
}

SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
                                               MVT DestVT) {
  // Create the stack frame object.  Make sure it is aligned for both
  // the source and destination types.
  unsigned SrcAlign =
   TLI.getTargetData()->getPrefTypeAlignment(Op.getValueType().getTypeForMVT());
  SDValue FIPtr = DAG.CreateStackTemporary(DestVT, SrcAlign);

  // Emit a store to the stack slot.
  SDValue Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
  // Result is a load from the stack slot.
  return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}

/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
  MVT LVT = Lo.getValueType();
  MVT HVT = Hi.getValueType();
  MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());

  Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
  Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
  Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
                                                      TLI.getShiftAmountTy()));
  return DAG.getNode(ISD::OR, NVT, Lo, Hi);
}

/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
/// bits in Hi.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
                                    MVT LoVT, MVT HiVT,
                                    SDValue &Lo, SDValue &Hi) {
  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
         Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
  Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
  Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
                   DAG.getConstant(LoVT.getSizeInBits(),
                                   TLI.getShiftAmountTy()));
  Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
}

/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
/// half the size of Op's.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
                                    SDValue &Lo, SDValue &Hi) {
  MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
}

/// MakeLibCall - Generate a libcall taking the given operands as arguments and
/// returning a result of type RetVT.
SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
                                      const SDValue *Ops, unsigned NumOps,
                                      bool isSigned) {
  TargetLowering::ArgListTy Args;
  Args.reserve(NumOps);

  TargetLowering::ArgListEntry Entry;
  for (unsigned i = 0; i != NumOps; ++i) {
    Entry.Node = Ops[i];
    Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
    Entry.isSExt = isSigned;
    Entry.isZExt = !isSigned;
    Args.push_back(Entry);
  }
  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
                                           TLI.getPointerTy());

  const Type *RetTy = RetVT.getTypeForMVT();
  std::pair<SDValue,SDValue> CallInfo =
    TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
                    false, CallingConv::C, false, Callee, Args, DAG);
  return CallInfo.first;
}

SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
                                                  SDValue Index) {
  // Make sure the index type is big enough to compute in.
  if (Index.getValueType().bitsGT(TLI.getPointerTy()))
    Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
  else
    Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);

  // Calculate the element offset and add it to the pointer.
  unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.

  Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
                      DAG.getConstant(EltSize, Index.getValueType()));
  return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
}

/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split into two not necessarily identical pieces.
void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
  if (!InVT.isVector()) {
    LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
  } else {
    MVT NewEltVT = InVT.getVectorElementType();
    unsigned NumElements = InVT.getVectorNumElements();
    if ((NumElements & (NumElements-1)) == 0) {  // Simple power of two vector.
      NumElements >>= 1;
      LoVT = HiVT =  MVT::getVectorVT(NewEltVT, NumElements);
    } else {                                     // Non-power-of-two vectors.
      unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
      unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
      LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
      HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
    }
  }
}


//===----------------------------------------------------------------------===//
//  Entry Point
//===----------------------------------------------------------------------===//

/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void SelectionDAG::LegalizeTypes() {
  DAGTypeLegalizer(*this).run();
}