llvm.org GIT mirror llvm / release_24 lib / CodeGen / RegAllocLocal.cpp
release_24

Tree @release_24 (Download .tar.gz)

RegAllocLocal.cpp @release_24raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");

static RegisterRegAlloc
  localRegAlloc("local", "  local register allocator",
                createLocalRegisterAllocator);

namespace {
  class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
  public:
    static char ID;
    RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
  private:
    const TargetMachine *TM;
    MachineFunction *MF;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;

    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
    // values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    // Virt2PhysRegMap - This map contains entries for each virtual register
    // that is currently available in a physical register.
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;

    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
      return Virt2PhysRegMap[VirtReg];
    }

    // PhysRegsUsed - This array is effectively a map, containing entries for
    // each physical register that currently has a value (ie, it is in
    // Virt2PhysRegMap).  The value mapped to is the virtual register
    // corresponding to the physical register (the inverse of the
    // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
    // because it is used by a future instruction, and to -2 if it is not
    // allocatable.  If the entry for a physical register is -1, then the
    // physical register is "not in the map".
    //
    std::vector<int> PhysRegsUsed;

    // PhysRegsUseOrder - This contains a list of the physical registers that
    // currently have a virtual register value in them.  This list provides an
    // ordering of registers, imposing a reallocation order.  This list is only
    // used if all registers are allocated and we have to spill one, in which
    // case we spill the least recently used register.  Entries at the front of
    // the list are the least recently used registers, entries at the back are
    // the most recently used.
    //
    std::vector<unsigned> PhysRegsUseOrder;

    // Virt2LastUseMap - This maps each virtual register to its last use
    // (MachineInstr*, operand index pair).
    IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
    Virt2LastUseMap;

    std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      return Virt2LastUseMap[Reg];
    }

    // VirtRegModified - This bitset contains information about which virtual
    // registers need to be spilled back to memory when their registers are
    // scavenged.  If a virtual register has simply been rematerialized, there
    // is no reason to spill it to memory when we need the register back.
    //
    BitVector VirtRegModified;
    
    // UsedInMultipleBlocks - Tracks whether a particular register is used in
    // more than one block.
    BitVector UsedInMultipleBlocks;

    void markVirtRegModified(unsigned Reg, bool Val = true) {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      Reg -= TargetRegisterInfo::FirstVirtualRegister;
      if (Val)
        VirtRegModified.set(Reg);
      else
        VirtRegModified.reset(Reg);
    }

    bool isVirtRegModified(unsigned Reg) const {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
             && "Illegal virtual register!");
      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
    }

    void AddToPhysRegsUseOrder(unsigned Reg) {
      std::vector<unsigned>::iterator It =
        std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
      if (It != PhysRegsUseOrder.end())
        PhysRegsUseOrder.erase(It);
      PhysRegsUseOrder.push_back(Reg);
    }

    void MarkPhysRegRecentlyUsed(unsigned Reg) {
      if (PhysRegsUseOrder.empty() ||
          PhysRegsUseOrder.back() == Reg) return;  // Already most recently used

      for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
        if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
          unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
          PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
          // Add it to the end of the list
          PhysRegsUseOrder.push_back(RegMatch);
          if (RegMatch == Reg)
            return;    // Found an exact match, exit early
        }
    }

  public:
    virtual const char *getPassName() const {
      return "Local Register Allocator";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(PHIEliminationID);
      AU.addRequiredID(TwoAddressInstructionPassID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// runOnMachineFunction - Register allocate the whole function
    bool runOnMachineFunction(MachineFunction &Fn);

    /// AllocateBasicBlock - Register allocate the specified basic block.
    void AllocateBasicBlock(MachineBasicBlock &MBB);


    /// areRegsEqual - This method returns true if the specified registers are
    /// related to each other.  To do this, it checks to see if they are equal
    /// or if the first register is in the alias set of the second register.
    ///
    bool areRegsEqual(unsigned R1, unsigned R2) const {
      if (R1 == R2) return true;
      for (const unsigned *AliasSet = TRI->getAliasSet(R2);
           *AliasSet; ++AliasSet) {
        if (*AliasSet == R1) return true;
      }
      return false;
    }

    /// getStackSpaceFor - This returns the frame index of the specified virtual
    /// register on the stack, allocating space if necessary.
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);

    /// removePhysReg - This method marks the specified physical register as no
    /// longer being in use.
    ///
    void removePhysReg(unsigned PhysReg);

    /// spillVirtReg - This method spills the value specified by PhysReg into
    /// the virtual register slot specified by VirtReg.  It then updates the RA
    /// data structures to indicate the fact that PhysReg is now available.
    ///
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                      unsigned VirtReg, unsigned PhysReg);

    /// spillPhysReg - This method spills the specified physical register into
    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
    /// true, then the request is ignored if the physical register does not
    /// contain a virtual register.
    ///
    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
                      unsigned PhysReg, bool OnlyVirtRegs = false);

    /// assignVirtToPhysReg - This method updates local state so that we know
    /// that PhysReg is the proper container for VirtReg now.  The physical
    /// register must not be used for anything else when this is called.
    ///
    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);

    /// isPhysRegAvailable - Return true if the specified physical register is
    /// free and available for use.  This also includes checking to see if
    /// aliased registers are all free...
    ///
    bool isPhysRegAvailable(unsigned PhysReg) const;

    /// getFreeReg - Look to see if there is a free register available in the
    /// specified register class.  If not, return 0.
    ///
    unsigned getFreeReg(const TargetRegisterClass *RC);

    /// getReg - Find a physical register to hold the specified virtual
    /// register.  If all compatible physical registers are used, this method
    /// spills the last used virtual register to the stack, and uses that
    /// register.
    ///
    unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
                    unsigned VirtReg);

    /// reloadVirtReg - This method transforms the specified specified virtual
    /// register use to refer to a physical register.  This method may do this
    /// in one of several ways: if the register is available in a physical
    /// register already, it uses that physical register.  If the value is not
    /// in a physical register, and if there are physical registers available,
    /// it loads it into a register.  If register pressure is high, and it is
    /// possible, it tries to fold the load of the virtual register into the
    /// instruction itself.  It avoids doing this if register pressure is low to
    /// improve the chance that subsequent instructions can use the reloaded
    /// value.  This method returns the modified instruction.
    ///
    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                unsigned OpNum);

    /// ComputeLocalLiveness - Computes liveness of registers within a basic
    /// block, setting the killed/dead flags as appropriate.
    void ComputeLocalLiveness(MachineBasicBlock& MBB);

    void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                       unsigned PhysReg);
  };
  char RALocal::ID = 0;
}

/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  if (SS != -1)
    return SS;          // Already has space allocated?

  // Allocate a new stack object for this spill location...
  int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
                                                       RC->getAlignment());

  // Assign the slot...
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}


/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RALocal::removePhysReg(unsigned PhysReg) {
  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used

  std::vector<unsigned>::iterator It =
    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
  if (It != PhysRegsUseOrder.end())
    PhysRegsUseOrder.erase(It);
}


/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg.  It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RALocal::spillVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator I,
                           unsigned VirtReg, unsigned PhysReg) {
  assert(VirtReg && "Spilling a physical register is illegal!"
         " Must not have appropriate kill for the register or use exists beyond"
         " the intended one.");
  DOUT << "  Spilling register " << TRI->getName(PhysReg)
       << " containing %reg" << VirtReg;
  
  if (!isVirtRegModified(VirtReg)) {
    DOUT << " which has not been modified, so no store necessary!";
    std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
    if (LastUse.first)
      LastUse.first->getOperand(LastUse.second).setIsKill();
  } else {
    // Otherwise, there is a virtual register corresponding to this physical
    // register.  We only need to spill it into its stack slot if it has been
    // modified.
    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
    DOUT << " to stack slot #" << FrameIndex;
    // If the instruction reads the register that's spilled, (e.g. this can
    // happen if it is a move to a physical register), then the spill
    // instruction is not a kill.
    bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
    TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
    ++NumStores;   // Update statistics
  }

  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available

  DOUT << "\n";
  removePhysReg(PhysReg);
}


/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
/// then the request is ignored if the physical register does not contain a
/// virtual register.
///
void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
                           unsigned PhysReg, bool OnlyVirtRegs) {
  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
  } else {
    // If the selected register aliases any other registers, we must make
    // sure that one of the aliases isn't alive.
    for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
         *AliasSet; ++AliasSet)
      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
          if (PhysRegsUsed[*AliasSet])
            spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
  }
}


/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now.  The physical
/// register must not be used for anything else when this is called.
///
void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
  // Update information to note the fact that this register was just used, and
  // it holds VirtReg.
  PhysRegsUsed[PhysReg] = VirtReg;
  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
  AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg
}


/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use.  This also includes checking to see if aliased
/// registers are all free...
///
bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
  if (PhysRegsUsed[PhysReg] != -1) return false;

  // If the selected register aliases any other allocated registers, it is
  // not free!
  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
       *AliasSet; ++AliasSet)
    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
      return false;                    // Can't use this reg then.
  return true;
}


/// getFreeReg - Look to see if there is a free register available in the
/// specified register class.  If not, return 0.
///
unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
  // Get iterators defining the range of registers that are valid to allocate in
  // this class, which also specifies the preferred allocation order.
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);

  for (; RI != RE; ++RI)
    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
      assert(*RI != 0 && "Cannot use register!");
      return *RI; // Found an unused register!
    }
  return 0;
}


/// getReg - Find a physical register to hold the specified virtual
/// register.  If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
                         unsigned VirtReg) {
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);

  // First check to see if we have a free register of the requested type...
  unsigned PhysReg = getFreeReg(RC);

  // If we didn't find an unused register, scavenge one now!
  if (PhysReg == 0) {
    assert(!PhysRegsUseOrder.empty() && "No allocated registers??");

    // Loop over all of the preallocated registers from the least recently used
    // to the most recently used.  When we find one that is capable of holding
    // our register, use it.
    for (unsigned i = 0; PhysReg == 0; ++i) {
      assert(i != PhysRegsUseOrder.size() &&
             "Couldn't find a register of the appropriate class!");

      unsigned R = PhysRegsUseOrder[i];

      // We can only use this register if it holds a virtual register (ie, it
      // can be spilled).  Do not use it if it is an explicitly allocated
      // physical register!
      assert(PhysRegsUsed[R] != -1 &&
             "PhysReg in PhysRegsUseOrder, but is not allocated?");
      if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
        // If the current register is compatible, use it.
        if (RC->contains(R)) {
          PhysReg = R;
          break;
        } else {
          // If one of the registers aliased to the current register is
          // compatible, use it.
          for (const unsigned *AliasIt = TRI->getAliasSet(R);
               *AliasIt; ++AliasIt) {
            if (RC->contains(*AliasIt) &&
                // If this is pinned down for some reason, don't use it.  For
                // example, if CL is pinned, and we run across CH, don't use
                // CH as justification for using scavenging ECX (which will
                // fail).
                PhysRegsUsed[*AliasIt] != 0 &&
                
                // Make sure the register is allocatable.  Don't allocate SIL on
                // x86-32.
                PhysRegsUsed[*AliasIt] != -2) {
              PhysReg = *AliasIt;    // Take an aliased register
              break;
            }
          }
        }
      }
    }

    assert(PhysReg && "Physical register not assigned!?!?");

    // At this point PhysRegsUseOrder[i] is the least recently used register of
    // compatible register class.  Spill it to memory and reap its remains.
    spillPhysReg(MBB, I, PhysReg);
  }

  // Now that we know which register we need to assign this to, do it now!
  assignVirtToPhysReg(VirtReg, PhysReg);
  return PhysReg;
}


/// reloadVirtReg - This method transforms the specified specified virtual
/// register use to refer to a physical register.  This method may do this in
/// one of several ways: if the register is available in a physical register
/// already, it uses that physical register.  If the value is not in a physical
/// register, and if there are physical registers available, it loads it into a
/// register.  If register pressure is high, and it is possible, it tries to
/// fold the load of the virtual register into the instruction itself.  It
/// avoids doing this if register pressure is low to improve the chance that
/// subsequent instructions can use the reloaded value.  This method returns the
/// modified instruction.
///
MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                     unsigned OpNum) {
  unsigned VirtReg = MI->getOperand(OpNum).getReg();

  // If the virtual register is already available, just update the instruction
  // and return.
  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
    MarkPhysRegRecentlyUsed(PR);       // Already have this value available!
    MI->getOperand(OpNum).setReg(PR);  // Assign the input register
    getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
    return MI;
  }

  // Otherwise, we need to fold it into the current instruction, or reload it.
  // If we have registers available to hold the value, use them.
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
  unsigned PhysReg = getFreeReg(RC);
  int FrameIndex = getStackSpaceFor(VirtReg, RC);

  if (PhysReg) {   // Register is available, allocate it!
    assignVirtToPhysReg(VirtReg, PhysReg);
  } else {         // No registers available.
    // Force some poor hapless value out of the register file to
    // make room for the new register, and reload it.
    PhysReg = getReg(MBB, MI, VirtReg);
  }

  markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded

  DOUT << "  Reloading %reg" << VirtReg << " into "
       << TRI->getName(PhysReg) << "\n";

  // Add move instruction(s)
  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
  ++NumLoads;    // Update statistics

  MF->getRegInfo().setPhysRegUsed(PhysReg);
  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
  getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
  return MI;
}

/// isReadModWriteImplicitKill - True if this is an implicit kill for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand& MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
        MO.isDef() && !MO.isDead())
      return true;
  }
  return false;
}

/// isReadModWriteImplicitDef - True if this is an implicit def for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand& MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
        !MO.isDef() && MO.isKill())
      return true;
  }
  return false;
}

// precedes - Helper function to determine with MachineInstr A
// precedes MachineInstr B within the same MBB.
static bool precedes(MachineBasicBlock::iterator A,
                     MachineBasicBlock::iterator B) {
  if (A == B)
    return false;
  
  MachineBasicBlock::iterator I = A->getParent()->begin();
  while (I != A->getParent()->end()) {
    if (I == A)
      return true;
    else if (I == B)
      return false;
    
    ++I;
  }
  
  return false;
}

/// ComputeLocalLiveness - Computes liveness of registers within a basic
/// block, setting the killed/dead flags as appropriate.
void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
  MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
  // Keep track of the most recently seen previous use or def of each reg, 
  // so that we can update them with dead/kill markers.
  DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
       I != E; ++I) {
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = I->getOperand(i);
      // Uses don't trigger any flags, but we need to save
      // them for later.  Also, we have to process these
      // _before_ processing the defs, since an instr
      // uses regs before it defs them.
      if (MO.isReg() && MO.getReg() && MO.isUse())
        LastUseDef[MO.getReg()] = std::make_pair(I, i);
    }
    
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = I->getOperand(i);
      // Defs others than 2-addr redefs _do_ trigger flag changes:
      //   - A def followed by a def is dead
      //   - A use followed by a def is a kill
      if (MO.isReg() && MO.getReg() && MO.isDef()) {
        DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
          last = LastUseDef.find(MO.getReg());
        if (last != LastUseDef.end()) {
          // Check if this is a two address instruction.  If so, then
          // the def does not kill the use.
          if (last->second.first == I &&
              I->isRegReDefinedByTwoAddr(MO.getReg(), i))
            continue;
          
          MachineOperand& lastUD =
                      last->second.first->getOperand(last->second.second);
          if (lastUD.isDef())
            lastUD.setIsDead(true);
          else
            lastUD.setIsKill(true);
        }
        
        LastUseDef[MO.getReg()] = std::make_pair(I, i);
      }
    }
  }
  
  // Live-out (of the function) registers contain return values of the function,
  // so we need to make sure they are alive at return time.
  if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
    MachineInstr* Ret = &MBB.back();
    for (MachineRegisterInfo::liveout_iterator
         I = MF->getRegInfo().liveout_begin(),
         E = MF->getRegInfo().liveout_end(); I != E; ++I)
      if (!Ret->readsRegister(*I)) {
        Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
        LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
      }
  }
  
  // Finally, loop over the final use/def of each reg 
  // in the block and determine if it is dead.
  for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
       I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
    MachineInstr* MI = I->second.first;
    unsigned idx = I->second.second;
    MachineOperand& MO = MI->getOperand(idx);
    
    bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
    
    // A crude approximation of "live-out" calculation
    bool usedOutsideBlock = isPhysReg ? false :   
          UsedInMultipleBlocks.test(MO.getReg() -  
                                    TargetRegisterInfo::FirstVirtualRegister);
    if (!isPhysReg && !usedOutsideBlock)
      for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
           UE = MRI.reg_end(); UI != UE; ++UI)
        // Two cases:
        // - used in another block
        // - used in the same block before it is defined (loop)
        if (UI->getParent() != &MBB ||
            (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
          UsedInMultipleBlocks.set(MO.getReg() - 
                                   TargetRegisterInfo::FirstVirtualRegister);
          usedOutsideBlock = true;
          break;
        }
    
    // Physical registers and those that are not live-out of the block
    // are killed/dead at their last use/def within this block.
    if (isPhysReg || !usedOutsideBlock) {
      if (MO.isUse()) {
        // Don't mark uses that are tied to defs as kills.
        if (MI->getDesc().getOperandConstraint(idx, TOI::TIED_TO) == -1)
          MO.setIsKill(true);
      } else
        MO.setIsDead(true);
    }
  }
}

void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
  // loop over each instruction
  MachineBasicBlock::iterator MII = MBB.begin();
  
  DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
        if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());

  // If this is the first basic block in the machine function, add live-in
  // registers as active.
  if (&MBB == &*MF->begin() || MBB.isLandingPad()) {
    for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
         E = MBB.livein_end(); I != E; ++I) {
      unsigned Reg = *I;
      MF->getRegInfo().setPhysRegUsed(Reg);
      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
      AddToPhysRegsUseOrder(Reg); 
      for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
           *AliasSet; ++AliasSet) {
        if (PhysRegsUsed[*AliasSet] != -2) {
          AddToPhysRegsUseOrder(*AliasSet); 
          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
          MF->getRegInfo().setPhysRegUsed(*AliasSet);
        }
      }
    }    
  }
  
  ComputeLocalLiveness(MBB);
  
  // Otherwise, sequentially allocate each instruction in the MBB.
  while (MII != MBB.end()) {
    MachineInstr *MI = MII++;
    const TargetInstrDesc &TID = MI->getDesc();
    DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
          DOUT << "  Regs have values: ";
          for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
            if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
               DOUT << "[" << TRI->getName(i)
                    << ",%reg" << PhysRegsUsed[i] << "] ";
          DOUT << "\n");

    // Loop over the implicit uses, making sure that they are at the head of the
    // use order list, so they don't get reallocated.
    if (TID.ImplicitUses) {
      for (const unsigned *ImplicitUses = TID.ImplicitUses;
           *ImplicitUses; ++ImplicitUses)
        MarkPhysRegRecentlyUsed(*ImplicitUses);
    }

    SmallVector<unsigned, 8> Kills;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isKill()) {
        if (!MO.isImplicit())
          Kills.push_back(MO.getReg());
        else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
          // These are extra physical register kills when a sub-register
          // is defined (def of a sub-register is a read/mod/write of the
          // larger registers). Ignore.
          Kills.push_back(MO.getReg());
      }
    }

    // If any physical regs are earlyclobber, spill any value they might
    // have in them, then mark them unallocatable.
    // If any virtual regs are earlyclobber, allocate them now (before
    // freeing inputs that are killed).
    if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
        MachineOperand& MO = MI->getOperand(i);
        if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
            MO.getReg()) {
          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
            unsigned DestVirtReg = MO.getReg();
            unsigned DestPhysReg;

            // If DestVirtReg already has a value, use it.
            if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
              DestPhysReg = getReg(MBB, MI, DestVirtReg);
            MF->getRegInfo().setPhysRegUsed(DestPhysReg);
            markVirtRegModified(DestVirtReg);
            getVirtRegLastUse(DestVirtReg) =
                   std::make_pair((MachineInstr*)0, 0);
            DOUT << "  Assigning " << TRI->getName(DestPhysReg)
                 << " to %reg" << DestVirtReg << "\n";
            MO.setReg(DestPhysReg);  // Assign the earlyclobber register
          } else {
            unsigned Reg = MO.getReg();
            if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
            // These are extra physical register defs when a sub-register
            // is defined (def of a sub-register is a read/mod/write of the
            // larger registers). Ignore.
            if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;

            MF->getRegInfo().setPhysRegUsed(Reg);
            spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
            PhysRegsUsed[Reg] = 0;            // It is free and reserved now
            AddToPhysRegsUseOrder(Reg); 

            for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
                 *AliasSet; ++AliasSet) {
              if (PhysRegsUsed[*AliasSet] != -2) {
                MF->getRegInfo().setPhysRegUsed(*AliasSet);
                PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
                AddToPhysRegsUseOrder(*AliasSet); 
              }
            }
          }
        }
      }
    }

    // Get the used operands into registers.  This has the potential to spill
    // incoming values if we are out of registers.  Note that we completely
    // ignore physical register uses here.  We assume that if an explicit
    // physical register is referenced by the instruction, that it is guaranteed
    // to be live-in, or the input is badly hosed.
    //
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
      MachineOperand& MO = MI->getOperand(i);
      // here we are looking for only used operands (never def&use)
      if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        MI = reloadVirtReg(MBB, MI, i);
    }

    // If this instruction is the last user of this register, kill the
    // value, freeing the register being used, so it doesn't need to be
    // spilled to memory.
    //
    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
      unsigned VirtReg = Kills[i];
      unsigned PhysReg = VirtReg;
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        // If the virtual register was never materialized into a register, it
        // might not be in the map, but it won't hurt to zero it out anyway.
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
        PhysReg = PhysRegSlot;
        PhysRegSlot = 0;
      } else if (PhysRegsUsed[PhysReg] == -2) {
        // Unallocatable register dead, ignore.
        continue;
      } else {
        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
               "Silently clearing a virtual register?");
      }

      if (PhysReg) {
        DOUT << "  Last use of " << TRI->getName(PhysReg)
             << "[%reg" << VirtReg <<"], removing it from live set\n";
        removePhysReg(PhysReg);
        for (const unsigned *AliasSet = TRI->getSubRegisters(PhysReg);
             *AliasSet; ++AliasSet) {
          if (PhysRegsUsed[*AliasSet] != -2) {
            DOUT  << "  Last use of "
                  << TRI->getName(*AliasSet)
                  << "[%reg" << VirtReg <<"], removing it from live set\n";
            removePhysReg(*AliasSet);
          }
        }
      }
    }

    // Loop over all of the operands of the instruction, spilling registers that
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
          !MO.isEarlyClobber() &&
          TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
        unsigned Reg = MO.getReg();
        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
        // These are extra physical register defs when a sub-register
        // is defined (def of a sub-register is a read/mod/write of the
        // larger registers). Ignore.
        if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;

        MF->getRegInfo().setPhysRegUsed(Reg);
        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
        AddToPhysRegsUseOrder(Reg); 

        for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
             *AliasSet; ++AliasSet) {
          if (PhysRegsUsed[*AliasSet] != -2) {
            MF->getRegInfo().setPhysRegUsed(*AliasSet);
            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
            AddToPhysRegsUseOrder(*AliasSet); 
          }
        }
      }
    }

    // Loop over the implicit defs, spilling them as well.
    if (TID.ImplicitDefs) {
      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
           *ImplicitDefs; ++ImplicitDefs) {
        unsigned Reg = *ImplicitDefs;
        if (PhysRegsUsed[Reg] != -2) {
          spillPhysReg(MBB, MI, Reg, true);
          AddToPhysRegsUseOrder(Reg); 
          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
        }
        MF->getRegInfo().setPhysRegUsed(Reg);
        for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
             *AliasSet; ++AliasSet) {
          if (PhysRegsUsed[*AliasSet] != -2) {
            AddToPhysRegsUseOrder(*AliasSet); 
            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
            MF->getRegInfo().setPhysRegUsed(*AliasSet);
          }
        }
      }
    }

    SmallVector<unsigned, 8> DeadDefs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDead())
        DeadDefs.push_back(MO.getReg());
    }

    // Okay, we have allocated all of the source operands and spilled any values
    // that would be destroyed by defs of this instruction.  Loop over the
    // explicit defs and assign them to a register, spilling incoming values if
    // we need to scavenge a register.
    //
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDef() && MO.getReg() &&
          !MO.isEarlyClobber() &&
          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
        unsigned DestVirtReg = MO.getReg();
        unsigned DestPhysReg;

        // If DestVirtReg already has a value, use it.
        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
          DestPhysReg = getReg(MBB, MI, DestVirtReg);
        MF->getRegInfo().setPhysRegUsed(DestPhysReg);
        markVirtRegModified(DestVirtReg);
        getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
        DOUT << "  Assigning " << TRI->getName(DestPhysReg)
             << " to %reg" << DestVirtReg << "\n";
        MO.setReg(DestPhysReg);  // Assign the output register
      }
    }

    // If this instruction defines any registers that are immediately dead,
    // kill them now.
    //
    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
      unsigned VirtReg = DeadDefs[i];
      unsigned PhysReg = VirtReg;
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
        PhysReg = PhysRegSlot;
        assert(PhysReg != 0);
        PhysRegSlot = 0;
      } else if (PhysRegsUsed[PhysReg] == -2) {
        // Unallocatable register dead, ignore.
        continue;
      }

      if (PhysReg) {
        DOUT  << "  Register " << TRI->getName(PhysReg)
              << " [%reg" << VirtReg
              << "] is never used, removing it frame live list\n";
        removePhysReg(PhysReg);
        for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
             *AliasSet; ++AliasSet) {
          if (PhysRegsUsed[*AliasSet] != -2) {
            DOUT  << "  Register " << TRI->getName(*AliasSet)
                  << " [%reg" << *AliasSet
                  << "] is never used, removing it frame live list\n";
            removePhysReg(*AliasSet);
          }
        }
      }
    }
    
    // Finally, if this is a noop copy instruction, zap it.
    unsigned SrcReg, DstReg;
    if (TII->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
      MBB.erase(MI);
  }

  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();

  // Spill all physical registers holding virtual registers now.
  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
      if (unsigned VirtReg = PhysRegsUsed[i])
        spillVirtReg(MBB, MI, VirtReg, i);
      else
        removePhysReg(i);
    }

#if 0
  // This checking code is very expensive.
  bool AllOk = true;
  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
           e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
    if (unsigned PR = Virt2PhysRegMap[i]) {
      cerr << "Register still mapped: " << i << " -> " << PR << "\n";
      AllOk = false;
    }
  assert(AllOk && "Virtual registers still in phys regs?");
#endif

  // Clear any physical register which appear live at the end of the basic
  // block, but which do not hold any virtual registers.  e.g., the stack
  // pointer.
  PhysRegsUseOrder.clear();
}

/// runOnMachineFunction - Register allocate the whole function
///
bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
  DOUT << "Machine Function " << "\n";
  MF = &Fn;
  TM = &Fn.getTarget();
  TRI = TM->getRegisterInfo();
  TII = TM->getInstrInfo();

  PhysRegsUsed.assign(TRI->getNumRegs(), -1);
  
  // At various places we want to efficiently check to see whether a register
  // is allocatable.  To handle this, we mark all unallocatable registers as
  // being pinned down, permanently.
  {
    BitVector Allocable = TRI->getAllocatableSet(Fn);
    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
      if (!Allocable[i])
        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
  }

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
  StackSlotForVirtReg.grow(LastVirtReg);
  Virt2PhysRegMap.grow(LastVirtReg);
  Virt2LastUseMap.grow(LastVirtReg);
  VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
  UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
 
  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB)
    AllocateBasicBlock(*MBB);

  StackSlotForVirtReg.clear();
  PhysRegsUsed.clear();
  VirtRegModified.clear();
  UsedInMultipleBlocks.clear();
  Virt2PhysRegMap.clear();
  Virt2LastUseMap.clear();
  return true;
}

FunctionPass *llvm::createLocalRegisterAllocator() {
  return new RALocal();
}