llvm.org GIT mirror llvm / release_23 lib / CodeGen / SimpleRegisterCoalescing.cpp
release_23

Tree @release_23 (Download .tar.gz)

SimpleRegisterCoalescing.cpp @release_23raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple register coalescing pass that attempts to
// aggressively coalesce every register copy that it can.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regcoalescing"
#include "SimpleRegisterCoalescing.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

STATISTIC(numJoins    , "Number of interval joins performed");
STATISTIC(numCommutes , "Number of instruction commuting performed");
STATISTIC(numExtends  , "Number of copies extended");
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
STATISTIC(numAborts   , "Number of times interval joining aborted");

char SimpleRegisterCoalescing::ID = 0;
namespace {
  static cl::opt<bool>
  EnableJoining("join-liveintervals",
                cl::desc("Coalesce copies (default=true)"),
                cl::init(true));

  static cl::opt<bool>
  NewHeuristic("new-coalescer-heuristic",
                cl::desc("Use new coalescer heuristic"),
                cl::init(false));

  RegisterPass<SimpleRegisterCoalescing> 
  X("simple-register-coalescing", "Simple Register Coalescing");

  // Declare that we implement the RegisterCoalescer interface
  RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
}

const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo();

void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addPreserved<LiveIntervals>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreservedID(MachineDominatorsID);
  AU.addPreservedID(PHIEliminationID);
  AU.addPreservedID(TwoAddressInstructionPassID);
  AU.addRequired<LiveVariables>();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy.  For example:
///
///  A3 = B0
///    ...
///  B1 = A3      <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
                                                    LiveInterval &IntB,
                                                    MachineInstr *CopyMI) {
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));

  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  if (BLR == IntB.end()) // Should never happen!
    return false;
  VNInfo *BValNo = BLR->valno;
  
  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
  // can't process it.
  if (!BValNo->copy) return false;
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
  
  // AValNo is the value number in A that defines the copy, A3 in the example.
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
  if (ALR == IntA.end()) // Should never happen!
    return false;
  VNInfo *AValNo = ALR->valno;
  
  // If AValNo is defined as a copy from IntB, we can potentially process this.  
  // Get the instruction that defines this value number.
  unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
  if (!SrcReg) return false;  // Not defined by a copy.
    
  // If the value number is not defined by a copy instruction, ignore it.

  // If the source register comes from an interval other than IntB, we can't
  // handle this.
  if (SrcReg != IntB.reg) return false;
  
  // Get the LiveRange in IntB that this value number starts with.
  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
  if (ValLR == IntB.end()) // Should never happen!
    return false;
  
  // Make sure that the end of the live range is inside the same block as
  // CopyMI.
  MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
  if (!ValLREndInst || 
      ValLREndInst->getParent() != CopyMI->getParent()) return false;

  // Okay, we now know that ValLR ends in the same block that the CopyMI
  // live-range starts.  If there are no intervening live ranges between them in
  // IntB, we can merge them.
  if (ValLR+1 != BLR) return false;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
      *tri_->getSubRegisters(IntB.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
        return false;
      }
  }
  
  DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
  
  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
  // We are about to delete CopyMI, so need to remove it as the 'instruction
  // that defines this value #'. Update the the valnum with the new defining
  // instruction #.
  BValNo->def  = FillerStart;
  BValNo->copy = NULL;
  
  // Okay, we can merge them.  We need to insert a new liverange:
  // [ValLR.end, BLR.begin) of either value number, then we merge the
  // two value numbers.
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));

  // If the IntB live range is assigned to a physical register, and if that
  // physreg has aliases, 
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = tri_->getSubRegisters(IntB.reg); *AS; ++AS) {
      LiveInterval &AliasLI = li_->getInterval(*AS);
      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
              AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
    }
  }

  // Okay, merge "B1" into the same value number as "B0".
  if (BValNo != ValLR->valno)
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
  DOUT << "   result = "; IntB.print(DOUT, tri_);
  DOUT << "\n";

  // If the source instruction was killing the source register before the
  // merge, unset the isKill marker given the live range has been extended.
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
  if (UIdx != -1)
    ValLREndInst->getOperand(UIdx).setIsKill(false);

  ++numExtends;
  return true;
}

/// HasOtherReachingDefs - Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
                                                    LiveInterval &IntB,
                                                    VNInfo *AValNo,
                                                    VNInfo *BValNo) {
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
       AI != AE; ++AI) {
    if (AI->valno != AValNo) continue;
    LiveInterval::Ranges::iterator BI =
      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    if (BI != IntB.ranges.begin())
      --BI;
    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
      if (BI->valno == BValNo)
        continue;
      if (BI->start <= AI->start && BI->end > AI->start)
        return true;
      if (BI->start > AI->start && BI->start < AI->end)
        return true;
    }
  }
  return false;
}

/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a commutable
/// instruction and its other operand is coalesced to the copy dest register,
/// see if we can transform the copy into a noop by commuting the definition. For
/// example,
///
///  A3 = op A2 B0<kill>
///    ...
///  B1 = A3      <- this copy
///    ...
///     = op A3   <- more uses
///
/// ==>
///
///  B2 = op B0 A2<kill>
///    ...
///  B1 = B2      <- now an identify copy
///    ...
///     = op B2   <- more uses
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
                                                        LiveInterval &IntB,
                                                        MachineInstr *CopyMI) {
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));

  // FIXME: For now, only eliminate the copy by commuting its def when the
  // source register is a virtual register. We want to guard against cases
  // where the copy is a back edge copy and commuting the def lengthen the
  // live interval of the source register to the entire loop.
  if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
    return false;

  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  if (BLR == IntB.end()) // Should never happen!
    return false;
  VNInfo *BValNo = BLR->valno;
  
  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
  // can't process it.
  if (!BValNo->copy) return false;
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
  
  // AValNo is the value number in A that defines the copy, A3 in the example.
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
  if (ALR == IntA.end()) // Should never happen!
    return false;
  VNInfo *AValNo = ALR->valno;
  // If other defs can reach uses of this def, then it's not safe to perform
  // the optimization.
  if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill)
    return false;
  MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
  const TargetInstrDesc &TID = DefMI->getDesc();
  unsigned NewDstIdx;
  if (!TID.isCommutable() ||
      !tii_->CommuteChangesDestination(DefMI, NewDstIdx))
    return false;

  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
  unsigned NewReg = NewDstMO.getReg();
  if (NewReg != IntB.reg || !NewDstMO.isKill())
    return false;

  // Make sure there are no other definitions of IntB that would reach the
  // uses which the new definition can reach.
  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    return false;

  // If some of the uses of IntA.reg is already coalesced away, return false.
  // It's not possible to determine whether it's safe to perform the coalescing.
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
         UE = mri_->use_end(); UI != UE; ++UI) {
    MachineInstr *UseMI = &*UI;
    unsigned UseIdx = li_->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    if (ULR == IntA.end())
      continue;
    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
      return false;
  }

  // At this point we have decided that it is legal to do this
  // transformation.  Start by commuting the instruction.
  MachineBasicBlock *MBB = DefMI->getParent();
  MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
  if (!NewMI)
    return false;
  if (NewMI != DefMI) {
    li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
    MBB->insert(DefMI, NewMI);
    MBB->erase(DefMI);
  }
  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
  NewMI->getOperand(OpIdx).setIsKill();

  bool BHasPHIKill = BValNo->hasPHIKill;
  SmallVector<VNInfo*, 4> BDeadValNos;
  SmallVector<unsigned, 4> BKills;
  std::map<unsigned, unsigned> BExtend;

  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
  // A = or A, B
  // ...
  // B = A
  // ...
  // C = A<kill>
  // ...
  //   = B
  //
  // then do not add kills of A to the newly created B interval.
  bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
  if (Extended)
    BExtend[ALR->end] = BLR->end;

  // Update uses of IntA of the specific Val# with IntB.
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
         UE = mri_->use_end(); UI != UE;) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = &*UI;
    ++UI;
    if (JoinedCopies.count(UseMI))
      continue;
    unsigned UseIdx = li_->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    if (ULR == IntA.end() || ULR->valno != AValNo)
      continue;
    UseMO.setReg(NewReg);
    if (UseMI == CopyMI)
      continue;
    if (UseMO.isKill()) {
      if (Extended)
        UseMO.setIsKill(false);
      else
        BKills.push_back(li_->getUseIndex(UseIdx)+1);
    }
    unsigned SrcReg, DstReg;
    if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg))
      continue;
    if (DstReg == IntB.reg) {
      // This copy will become a noop. If it's defining a new val#,
      // remove that val# as well. However this live range is being
      // extended to the end of the existing live range defined by the copy.
      unsigned DefIdx = li_->getDefIndex(UseIdx);
      const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
      BHasPHIKill |= DLR->valno->hasPHIKill;
      assert(DLR->valno->def == DefIdx);
      BDeadValNos.push_back(DLR->valno);
      BExtend[DLR->start] = DLR->end;
      JoinedCopies.insert(UseMI);
      // If this is a kill but it's going to be removed, the last use
      // of the same val# is the new kill.
      if (UseMO.isKill())
        BKills.pop_back();
    }
  }

  // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
  // simply extend BLR if CopyMI doesn't end the range.
  DOUT << "\nExtending: "; IntB.print(DOUT, tri_);

  IntB.removeValNo(BValNo);
  for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i)
    IntB.removeValNo(BDeadValNos[i]);
  VNInfo *ValNo = IntB.getNextValue(AValNo->def, 0, li_->getVNInfoAllocator());
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
       AI != AE; ++AI) {
    if (AI->valno != AValNo) continue;
    unsigned End = AI->end;
    std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
    if (EI != BExtend.end())
      End = EI->second;
    IntB.addRange(LiveRange(AI->start, End, ValNo));
  }
  IntB.addKills(ValNo, BKills);
  ValNo->hasPHIKill = BHasPHIKill;

  DOUT << "   result = "; IntB.print(DOUT, tri_);
  DOUT << "\n";

  DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
  IntA.removeValNo(AValNo);
  DOUT << "   result = "; IntA.print(DOUT, tri_);
  DOUT << "\n";

  ++numCommutes;
  return true;
}

/// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
///
bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
                                              unsigned DstReg) const {
  MachineBasicBlock *MBB = CopyMI->getParent();
  const MachineLoop *L = loopInfo->getLoopFor(MBB);
  if (!L)
    return false;
  if (MBB != L->getLoopLatch())
    return false;

  LiveInterval &LI = li_->getInterval(DstReg);
  unsigned DefIdx = li_->getInstructionIndex(CopyMI);
  LiveInterval::const_iterator DstLR =
    LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
  if (DstLR == LI.end())
    return false;
  unsigned KillIdx = li_->getInstructionIndex(&MBB->back()) + InstrSlots::NUM;
  if (DstLR->valno->kills.size() == 1 &&
      DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill)
    return true;
  return false;
}

/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
/// being updated is not zero, make sure to set it to the correct physical
/// subregister.
void
SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
                                            unsigned SubIdx) {
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
  if (DstIsPhys && SubIdx) {
    // Figure out the real physical register we are updating with.
    DstReg = tri_->getSubReg(DstReg, SubIdx);
    SubIdx = 0;
  }

  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
         E = mri_->reg_end(); I != E; ) {
    MachineOperand &O = I.getOperand();
    MachineInstr *UseMI = &*I;
    ++I;
    unsigned OldSubIdx = O.getSubReg();
    if (DstIsPhys) {
      unsigned UseDstReg = DstReg;
      if (OldSubIdx)
          UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
      O.setReg(UseDstReg);
      O.setSubReg(0);
    } else {
      // Sub-register indexes goes from small to large. e.g.
      // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
      // EAX: 1 -> AL, 2 -> AX
      // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
      // sub-register 2 is also AX.
      if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
        assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
      else if (SubIdx)
        O.setSubReg(SubIdx);
      // Remove would-be duplicated kill marker.
      if (O.isKill() && UseMI->killsRegister(DstReg))
        O.setIsKill(false);
      O.setReg(DstReg);
    }
  }
}

/// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
/// registers due to insert_subreg coalescing. e.g.
/// r1024 = op
/// r1025 = implicit_def
/// r1025 = insert_subreg r1025, r1024
///       = op r1025
/// =>
/// r1025 = op
/// r1025 = implicit_def
/// r1025 = insert_subreg r1025, r1025
///       = op r1025
void
SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) {
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
         E = mri_->reg_end(); I != E; ) {
    MachineOperand &O = I.getOperand();
    MachineInstr *DefMI = &*I;
    ++I;
    if (!O.isDef())
      continue;
    if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
      continue;
    if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI)))
      continue;
    li_->RemoveMachineInstrFromMaps(DefMI);
    DefMI->eraseFromParent();
  }
}

/// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
/// due to live range lengthening as the result of coalescing.
void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
                                                      LiveInterval &LI) {
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
         UE = mri_->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    if (UseMO.isKill()) {
      MachineInstr *UseMI = UseMO.getParent();
      unsigned SReg, DReg;
      if (!tii_->isMoveInstr(*UseMI, SReg, DReg))
        continue;
      unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
      if (JoinedCopies.count(UseMI))
        continue;
      const LiveRange *UI = LI.getLiveRangeContaining(UseIdx);
      if (!LI.isKill(UI->valno, UseIdx+1))
        UseMO.setIsKill(false);
    }
  }
}

/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
/// from a physical register live interval as well as from the live intervals
/// of its sub-registers.
static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
                        LiveIntervals *li_, const TargetRegisterInfo *tri_) {
  li.removeRange(Start, End, true);
  if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
      if (!li_->hasInterval(*SR))
        continue;
      LiveInterval &sli = li_->getInterval(*SR);
      unsigned RemoveEnd = Start;
      while (RemoveEnd != End) {
        LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
        if (LR == sli.end())
          break;
        RemoveEnd = (LR->end < End) ? LR->end : End;
        sli.removeRange(Start, RemoveEnd, true);
        Start = RemoveEnd;
      }
    }
  }
}

/// removeIntervalIfEmpty - Check if the live interval of a physical register
/// is empty, if so remove it and also remove the empty intervals of its
/// sub-registers. Return true if live interval is removed.
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
                                  const TargetRegisterInfo *tri_) {
  if (li.empty()) {
    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
      for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
        if (!li_->hasInterval(*SR))
          continue;
        LiveInterval &sli = li_->getInterval(*SR);
        if (sli.empty())
          li_->removeInterval(*SR);
      }
    li_->removeInterval(li.reg);
    return true;
  }
  return false;
}

/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
/// Return true if live interval is removed.
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
                                                        MachineInstr *CopyMI) {
  unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
  LiveInterval::iterator MLR =
    li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
  if (MLR == li.end())
    return false;  // Already removed by ShortenDeadCopySrcLiveRange.
  unsigned RemoveStart = MLR->start;
  unsigned RemoveEnd = MLR->end;
  // Remove the liverange that's defined by this.
  if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) {
    removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
    return removeIntervalIfEmpty(li, li_, tri_);
  }
  return false;
}

/// PropagateDeadness - Propagate the dead marker to the instruction which
/// defines the val#.
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
                              unsigned &LRStart, LiveIntervals *li_,
                              const TargetRegisterInfo* tri_) {
  MachineInstr *DefMI =
    li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
  if (DefMI && DefMI != CopyMI) {
    int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
    if (DeadIdx != -1) {
      DefMI->getOperand(DeadIdx).setIsDead();
      // A dead def should have a single cycle interval.
      ++LRStart;
    }
  }
}

/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
/// fallthoughs to SuccMBB.
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
                                  MachineBasicBlock *SuccMBB,
                                  const TargetInstrInfo *tii_) {
  if (MBB == SuccMBB)
    return true;
  MachineBasicBlock *TBB = 0, *FBB = 0;
  std::vector<MachineOperand> Cond;
  return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
    MBB->isSuccessor(SuccMBB);
}

/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
/// ends the live range there. If there isn't another use, then this live range
/// is dead. Return true if live interval is removed.
bool
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
                                                      MachineInstr *CopyMI) {
  unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
  if (CopyIdx == 0) {
    // FIXME: special case: function live in. It can be a general case if the
    // first instruction index starts at > 0 value.
    assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
    // Live-in to the function but dead. Remove it from entry live-in set.
    if (mf_->begin()->isLiveIn(li.reg))
      mf_->begin()->removeLiveIn(li.reg);
    const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
    removeRange(li, LR->start, LR->end, li_, tri_);
    return removeIntervalIfEmpty(li, li_, tri_);
  }

  LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
  if (LR == li.end())
    // Livein but defined by a phi.
    return false;

  unsigned RemoveStart = LR->start;
  unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
  if (LR->end > RemoveEnd)
    // More uses past this copy? Nothing to do.
    return false;

  MachineBasicBlock *CopyMBB = CopyMI->getParent();
  unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
  unsigned LastUseIdx;
  MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
                                            LastUseIdx);
  if (LastUse) {
    MachineInstr *LastUseMI = LastUse->getParent();
    if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
      // r1024 = op
      // ...
      // BB1:
      //       = r1024
      //
      // BB2:
      // r1025<dead> = r1024<kill>
      if (MBBStart < LR->end)
        removeRange(li, MBBStart, LR->end, li_, tri_);
      return false;
    }

    // There are uses before the copy, just shorten the live range to the end
    // of last use.
    LastUse->setIsKill();
    removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
    unsigned SrcReg, DstReg;
    if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg) &&
        DstReg == li.reg) {
      // Last use is itself an identity code.
      int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
      LastUseMI->getOperand(DeadIdx).setIsDead();
    }
    return false;
  }

  // Is it livein?
  if (LR->start <= MBBStart && LR->end > MBBStart) {
    if (LR->start == 0) {
      assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
      // Live-in to the function but dead. Remove it from entry live-in set.
      mf_->begin()->removeLiveIn(li.reg);
    }
    // FIXME: Shorten intervals in BBs that reaches this BB.
  }

  if (LR->valno->def == RemoveStart)
    // If the def MI defines the val#, propagate the dead marker.
    PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);

  removeRange(li, RemoveStart, LR->end, li_, tri_);
  return removeIntervalIfEmpty(li, li_, tri_);
}

/// CanCoalesceWithImpDef - Returns true if the specified copy instruction
/// from an implicit def to another register can be coalesced away.
bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
                                                     LiveInterval &li,
                                                     LiveInterval &ImpLi) const{
  if (!CopyMI->killsRegister(ImpLi.reg))
    return false;
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
  LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx);
  if (LR == li.end())
    return false;
  if (LR->valno->hasPHIKill)
    return false;
  if (LR->valno->def != CopyIdx)
    return false;
  // Make sure all of val# uses are copies.
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg),
         UE = mri_->use_end(); UI != UE;) {
    MachineInstr *UseMI = &*UI;
    ++UI;
    if (JoinedCopies.count(UseMI))
      continue;
    unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
    LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
    if (ULR == li.end() || ULR->valno != LR->valno)
      continue;
    // If the use is not a use, then it's not safe to coalesce the move.
    unsigned SrcReg, DstReg;
    if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg)) {
      if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG &&
          UseMI->getOperand(1).getReg() == li.reg)
        continue;
      return false;
    }
  }
  return true;
}


/// RemoveCopiesFromValNo - The specified value# is defined by an implicit
/// def and it is being removed. Turn all copies from this value# into
/// identity copies so they will be removed.
void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval &li,
                                                     VNInfo *VNI) {
  MachineInstr *ImpDef = NULL;
  MachineOperand *LastUse = NULL;
  unsigned LastUseIdx = li_->getUseIndex(VNI->def);
  for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg),
         RE = mri_->reg_end(); RI != RE;) {
    MachineOperand *MO = &RI.getOperand();
    MachineInstr *MI = &*RI;
    ++RI;
    if (MO->isDef()) {
      if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
        assert(!ImpDef && "Multiple implicit_def defining same register?");
        ImpDef = MI;
      }
      continue;
    }
    if (JoinedCopies.count(MI))
      continue;
    unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI));
    LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
    if (ULR == li.end() || ULR->valno != VNI)
      continue;
    // If the use is a copy, turn it into an identity copy.
    unsigned SrcReg, DstReg;
    if (tii_->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == li.reg) {
      // Each use MI may have multiple uses of this register. Change them all.
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.getReg() == li.reg)
          MO.setReg(DstReg);
      }
      JoinedCopies.insert(MI);
    } else if (UseIdx > LastUseIdx) {
      LastUseIdx = UseIdx;
      LastUse = MO;
    }
  }
  if (LastUse)
    LastUse->setIsKill();
  else {
    // Remove dead implicit_def.
    li_->RemoveMachineInstrFromMaps(ImpDef);
    ImpDef->eraseFromParent();
  }
}

static unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 
                                    const TargetRegisterClass *RC,
                                    const TargetRegisterInfo* TRI) {
  for (const unsigned *SRs = TRI->getSuperRegisters(Reg);
       unsigned SR = *SRs; ++SRs)
    if (Reg == TRI->getSubReg(SR, SubIdx) && RC->contains(SR))
      return SR;
  return 0;
}

/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI.  This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
/// things get coalesced, then it returns true by reference in 'Again'.
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
  MachineInstr *CopyMI = TheCopy.MI;

  Again = false;
  if (JoinedCopies.count(CopyMI))
    return false; // Already done.

  DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;

  unsigned SrcReg;
  unsigned DstReg;
  bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
  bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
  unsigned SubIdx = 0;
  if (isExtSubReg) {
    DstReg = CopyMI->getOperand(0).getReg();
    SrcReg = CopyMI->getOperand(1).getReg();
  } else if (isInsSubReg) {
    if (CopyMI->getOperand(2).getSubReg()) {
      DOUT << "\tSource of insert_subreg is already coalesced "
           << "to another register.\n";
      return false;  // Not coalescable.
    }
    DstReg = CopyMI->getOperand(0).getReg();
    SrcReg = CopyMI->getOperand(2).getReg();
  } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) {
    assert(0 && "Unrecognized copy instruction!");
    return false;
  }

  // If they are already joined we continue.
  if (SrcReg == DstReg) {
    DOUT << "\tCopy already coalesced.\n";
    return false;  // Not coalescable.
  }
  
  bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);

  // If they are both physical registers, we cannot join them.
  if (SrcIsPhys && DstIsPhys) {
    DOUT << "\tCan not coalesce physregs.\n";
    return false;  // Not coalescable.
  }
  
  // We only join virtual registers with allocatable physical registers.
  if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
    DOUT << "\tSrc reg is unallocatable physreg.\n";
    return false;  // Not coalescable.
  }
  if (DstIsPhys && !allocatableRegs_[DstReg]) {
    DOUT << "\tDst reg is unallocatable physreg.\n";
    return false;  // Not coalescable.
  }

  unsigned RealDstReg = 0;
  unsigned RealSrcReg = 0;
  if (isExtSubReg || isInsSubReg) {
    SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
    if (SrcIsPhys && isExtSubReg) {
      // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
      // coalesced with AX.
      unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
      if (DstSubIdx) {
        // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
        // coalesced to a larger register so the subreg indices cancel out.
        if (DstSubIdx != SubIdx) {
          DOUT << "\t Sub-register indices mismatch.\n";
          return false; // Not coalescable.
        }
      } else
        SrcReg = tri_->getSubReg(SrcReg, SubIdx);
      SubIdx = 0;
    } else if (DstIsPhys && isInsSubReg) {
      // EAX = INSERT_SUBREG EAX, r1024, 0
      unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
      if (SrcSubIdx) {
        // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
        // coalesced to a larger register so the subreg indices cancel out.
        if (SrcSubIdx != SubIdx) {
          DOUT << "\t Sub-register indices mismatch.\n";
          return false; // Not coalescable.
        }
      } else
        DstReg = tri_->getSubReg(DstReg, SubIdx);
      SubIdx = 0;
    } else if ((DstIsPhys && isExtSubReg) || (SrcIsPhys && isInsSubReg)) {
      // If this is a extract_subreg where dst is a physical register, e.g.
      // cl = EXTRACT_SUBREG reg1024, 1
      // then create and update the actual physical register allocated to RHS.
      // Ditto for
      // reg1024 = INSERT_SUBREG r1024, cl, 1
      if (CopyMI->getOperand(1).getSubReg()) {
        DOUT << "\tSrc of extract_ / insert_subreg already coalesced with reg"
             << " of a super-class.\n";
        return false; // Not coalescable.
      }
      const TargetRegisterClass *RC =
        mri_->getRegClass(isExtSubReg ? SrcReg : DstReg);
      if (isExtSubReg) {
        RealDstReg = getMatchingSuperReg(DstReg, SubIdx, RC, tri_);
        assert(RealDstReg && "Invalid extra_subreg instruction!");
      } else {
        RealSrcReg = getMatchingSuperReg(SrcReg, SubIdx, RC, tri_);
        assert(RealSrcReg && "Invalid extra_subreg instruction!");
      }

      // For this type of EXTRACT_SUBREG, conservatively
      // check if the live interval of the source register interfere with the
      // actual super physical register we are trying to coalesce with.
      unsigned PhysReg = isExtSubReg ? RealDstReg : RealSrcReg;
      LiveInterval &RHS = li_->getInterval(isExtSubReg ? SrcReg : DstReg);
      if (li_->hasInterval(PhysReg) &&
          RHS.overlaps(li_->getInterval(PhysReg))) {
        DOUT << "Interfere with register ";
        DEBUG(li_->getInterval(PhysReg).print(DOUT, tri_));
        return false; // Not coalescable
      }
      for (const unsigned* SR = tri_->getSubRegisters(PhysReg); *SR; ++SR)
        if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
          DOUT << "Interfere with sub-register ";
          DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
          return false; // Not coalescable
        }
      SubIdx = 0;
    } else {
      unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
        : CopyMI->getOperand(2).getSubReg();
      if (OldSubIdx) {
        if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
          // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
          // coalesced to a larger register so the subreg indices cancel out.
          // Also check if the other larger register is of the same register
          // class as the would be resulting register.
          SubIdx = 0;
        else {
          DOUT << "\t Sub-register indices mismatch.\n";
          return false; // Not coalescable.
        }
      }
      if (SubIdx) {
        unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
        unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
        unsigned LargeRegSize =
          li_->getInterval(LargeReg).getSize() / InstrSlots::NUM;
        unsigned SmallRegSize =
          li_->getInterval(SmallReg).getSize() / InstrSlots::NUM;
        const TargetRegisterClass *RC = mri_->getRegClass(SmallReg);
        unsigned Threshold = allocatableRCRegs_[RC].count();
        // Be conservative. If both sides are virtual registers, do not coalesce
        // if this will cause a high use density interval to target a smaller
        // set of registers.
        if (SmallRegSize > Threshold || LargeRegSize > Threshold) {
          LiveVariables::VarInfo &svi = lv_->getVarInfo(LargeReg);
          LiveVariables::VarInfo &dvi = lv_->getVarInfo(SmallReg);
          if ((float)dvi.NumUses / SmallRegSize <
              (float)svi.NumUses / LargeRegSize) {
            Again = true;  // May be possible to coalesce later.
            return false;
          }
        }
      }
    }
  } else if (differingRegisterClasses(SrcReg, DstReg)) {
    // FIXME: What if the resul of a EXTRACT_SUBREG is then coalesced
    // with another? If it's the resulting destination register, then
    // the subidx must be propagated to uses (but only those defined
    // by the EXTRACT_SUBREG). If it's being coalesced into another
    // register, it should be safe because register is assumed to have
    // the register class of the super-register.

    // If they are not of the same register class, we cannot join them.
    DOUT << "\tSrc/Dest are different register classes.\n";
    // Allow the coalescer to try again in case either side gets coalesced to
    // a physical register that's compatible with the other side. e.g.
    // r1024 = MOV32to32_ r1025
    // but later r1024 is assigned EAX then r1025 may be coalesced with EAX.
    Again = true;  // May be possible to coalesce later.
    return false;
  }
  
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
  LiveInterval &DstInt = li_->getInterval(DstReg);
  assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
         "Register mapping is horribly broken!");

  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
  DOUT << " and "; DstInt.print(DOUT, tri_);
  DOUT << ": ";

  // Check if it is necessary to propagate "isDead" property.
  if (!isExtSubReg && !isInsSubReg) {
    MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
    bool isDead = mopd->isDead();

    // We need to be careful about coalescing a source physical register with a
    // virtual register. Once the coalescing is done, it cannot be broken and
    // these are not spillable! If the destination interval uses are far away,
    // think twice about coalescing them!
    if (!isDead && (SrcIsPhys || DstIsPhys)) {
      LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
      unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
      unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
      const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
      unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
      if (TheCopy.isBackEdge)
        Threshold *= 2; // Favors back edge copies.

      // If the virtual register live interval is long but it has low use desity,
      // do not join them, instead mark the physical register as its allocation
      // preference.
      unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
      LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
      if (Length > Threshold &&
          (((float)vi.NumUses / Length) < (1.0 / Threshold))) {
        JoinVInt.preference = JoinPReg;
        ++numAborts;
        DOUT << "\tMay tie down a physical register, abort!\n";
        Again = true;  // May be possible to coalesce later.
        return false;
      }
    }
  }

  // Okay, attempt to join these two intervals.  On failure, this returns false.
  // Otherwise, if one of the intervals being joined is a physreg, this method
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
  // been modified, so we can use this information below to update aliases.
  bool Swapped = false;
  // If SrcInt is implicitly defined, it's safe to coalesce.
  bool isEmpty = SrcInt.empty();
  if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
    // Only coalesce an empty interval (defined by implicit_def) with
    // another interval which has a valno defined by the CopyMI and the CopyMI
    // is a kill of the implicit def.
    DOUT << "Not profitable!\n";
    return false;
  }

  if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
    // Coalescing failed.
    
    // If we can eliminate the copy without merging the live ranges, do so now.
    if (!isExtSubReg && !isInsSubReg &&
        (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
         RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
      JoinedCopies.insert(CopyMI);
      return true;
    }
    
    // Otherwise, we are unable to join the intervals.
    DOUT << "Interference!\n";
    Again = true;  // May be possible to coalesce later.
    return false;
  }

  LiveInterval *ResSrcInt = &SrcInt;
  LiveInterval *ResDstInt = &DstInt;
  if (Swapped) {
    std::swap(SrcReg, DstReg);
    std::swap(ResSrcInt, ResDstInt);
  }
  assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
         "LiveInterval::join didn't work right!");
                               
  // If we're about to merge live ranges into a physical register live range,
  // we have to update any aliased register's live ranges to indicate that they
  // have clobbered values for this range.
  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    // If this is a extract_subreg where dst is a physical register, e.g.
    // cl = EXTRACT_SUBREG reg1024, 1
    // then create and update the actual physical register allocated to RHS.
    if (RealDstReg || RealSrcReg) {
      LiveInterval &RealInt =
        li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
      SmallSet<const VNInfo*, 4> CopiedValNos;
      for (LiveInterval::Ranges::const_iterator I = ResSrcInt->ranges.begin(),
             E = ResSrcInt->ranges.end(); I != E; ++I) {
        const LiveRange *DstLR = ResDstInt->getLiveRangeContaining(I->start);
        assert(DstLR  && "Invalid joined interval!");
        const VNInfo *DstValNo = DstLR->valno;
        if (CopiedValNos.insert(DstValNo)) {
          VNInfo *ValNo = RealInt.getNextValue(DstValNo->def, DstValNo->copy,
                                               li_->getVNInfoAllocator());
          ValNo->hasPHIKill = DstValNo->hasPHIKill;
          RealInt.addKills(ValNo, DstValNo->kills);
          RealInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo);
        }
      }
      
      DstReg = RealDstReg ? RealDstReg : RealSrcReg;
    }

    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
      li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
                                                 li_->getVNInfoAllocator());
  } else {
    // Merge use info if the destination is a virtual register.
    LiveVariables::VarInfo& dVI = lv_->getVarInfo(DstReg);
    LiveVariables::VarInfo& sVI = lv_->getVarInfo(SrcReg);
    dVI.NumUses += sVI.NumUses;
  }

  // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
  // larger super-register.
  if ((isExtSubReg || isInsSubReg) && !SrcIsPhys && !DstIsPhys) {
    if ((isExtSubReg && !Swapped) || (isInsSubReg && Swapped)) {
      ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
      std::swap(SrcReg, DstReg);
      std::swap(ResSrcInt, ResDstInt);
    }
  }

  if (NewHeuristic) {
    // Add all copies that define val# in the source interval into the queue.
    for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
           e = ResSrcInt->vni_end(); i != e; ++i) {
      const VNInfo *vni = *i;
      if (!vni->def || vni->def == ~1U || vni->def == ~0U)
        continue;
      MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
      unsigned NewSrcReg, NewDstReg;
      if (CopyMI &&
          JoinedCopies.count(CopyMI) == 0 &&
          tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg)) {
        unsigned LoopDepth = loopInfo->getLoopDepth(CopyMI->getParent());
        JoinQueue->push(CopyRec(CopyMI, LoopDepth,
                                isBackEdgeCopy(CopyMI, DstReg)));
      }
    }
  }

  // Remember to delete the copy instruction.
  JoinedCopies.insert(CopyMI);

  // Some live range has been lengthened due to colaescing, eliminate the
  // unnecessary kills.
  RemoveUnnecessaryKills(SrcReg, *ResDstInt);
  if (TargetRegisterInfo::isVirtualRegister(DstReg))
    RemoveUnnecessaryKills(DstReg, *ResDstInt);

  // SrcReg is guarateed to be the register whose live interval that is
  // being merged.
  li_->removeInterval(SrcReg);
  if (isInsSubReg)
    // Avoid:
    // r1024 = op
    // r1024 = implicit_def
    // ...
    //       = r1024
    RemoveDeadImpDef(DstReg, *ResDstInt);
  UpdateRegDefsUses(SrcReg, DstReg, SubIdx);

  if (isEmpty) {
    // Now the copy is being coalesced away, the val# previously defined
    // by the copy is being defined by an IMPLICIT_DEF which defines a zero
    // length interval. Remove the val#.
    unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
    const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx);
    VNInfo *ImpVal = LR->valno;
    assert(ImpVal->def == CopyIdx);
    unsigned NextDef = LR->end;
    RemoveCopiesFromValNo(*ResDstInt, ImpVal);
    ResDstInt->removeValNo(ImpVal);
    LR = ResDstInt->FindLiveRangeContaining(NextDef);
    if (LR != ResDstInt->end() && LR->valno->def == NextDef) {
      // Special case: vr1024 = implicit_def
      //               vr1024 = insert_subreg vr1024, vr1025, c
      // The insert_subreg becomes a "copy" that defines a val# which can itself
      // be coalesced away.
      MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef);
      if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
        LR->valno->copy = DefMI;
    }
  }

  DOUT << "\n\t\tJoined.  Result = "; ResDstInt->print(DOUT, tri_);
  DOUT << "\n";

  ++numJoins;
  return true;
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments) {
  unsigned VN = VNI->id;

  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");

  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
  if (I == ThisFromOther.end()) {
    NewVNInfo.push_back(VNI);
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  VNInfo *OtherValNo = I->second;

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
  
  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments);
  return ThisValNoAssignments[VN] = UltimateVN;
}

static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
  return std::find(V.begin(), V.end(), Val) != V.end();
}

/// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
/// the specified live interval is defined by a copy from the specified
/// register.
bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
                                                           LiveRange *LR,
                                                           unsigned Reg) {
  unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
  if (SrcReg == Reg)
    return true;
  if (LR->valno->def == ~0U &&
      TargetRegisterInfo::isPhysicalRegister(li.reg) &&
      *tri_->getSuperRegisters(li.reg)) {
    // It's a sub-register live interval, we may not have precise information.
    // Re-compute it.
    MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
    unsigned SrcReg, DstReg;
    if (tii_->isMoveInstr(*DefMI, SrcReg, DstReg) &&
        DstReg == li.reg && SrcReg == Reg) {
      // Cache computed info.
      LR->valno->def  = LR->start;
      LR->valno->copy = DefMI;
      return true;
    }
  }
  return false;
}

/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval.  This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
  assert(RHS.containsOneValue());
  
  // Some number (potentially more than one) value numbers in the current
  // interval may be defined as copies from the RHS.  Scan the overlapping
  // portions of the LHS and RHS, keeping track of this and looking for
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
  // cannot coalesce.
  
  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
  
  if (LHSIt->start < RHSIt->start) {
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
    if (LHSIt != LHS.begin()) --LHSIt;
  } else if (RHSIt->start < LHSIt->start) {
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
    if (RHSIt != RHS.begin()) --RHSIt;
  }
  
  SmallVector<VNInfo*, 8> EliminatedLHSVals;
  
  while (1) {
    // Determine if these live intervals overlap.
    bool Overlaps = false;
    if (LHSIt->start <= RHSIt->start)
      Overlaps = LHSIt->end > RHSIt->start;
    else
      Overlaps = RHSIt->end > LHSIt->start;
    
    // If the live intervals overlap, there are two interesting cases: if the
    // LHS interval is defined by a copy from the RHS, it's ok and we record
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
    // coalesce these live ranges and we bail out.
    if (Overlaps) {
      // If we haven't already recorded that this value # is safe, check it.
      if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
        // Copy from the RHS?
        if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
          return false;    // Nope, bail out.
        
        EliminatedLHSVals.push_back(LHSIt->valno);
      }
      
      // We know this entire LHS live range is okay, so skip it now.
      if (++LHSIt == LHSEnd) break;
      continue;
    }
    
    if (LHSIt->end < RHSIt->end) {
      if (++LHSIt == LHSEnd) break;
    } else {
      // One interesting case to check here.  It's possible that we have
      // something like "X3 = Y" which defines a new value number in the LHS,
      // and is the last use of this liverange of the RHS.  In this case, we
      // want to notice this copy (so that it gets coalesced away) even though
      // the live ranges don't actually overlap.
      if (LHSIt->start == RHSIt->end) {
        if (InVector(LHSIt->valno, EliminatedLHSVals)) {
          // We already know that this value number is going to be merged in
          // if coalescing succeeds.  Just skip the liverange.
          if (++LHSIt == LHSEnd) break;
        } else {
          // Otherwise, if this is a copy from the RHS, mark it as being merged
          // in.
          if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
            EliminatedLHSVals.push_back(LHSIt->valno);

            // We know this entire LHS live range is okay, so skip it now.
            if (++LHSIt == LHSEnd) break;
          }
        }
      }
      
      if (++RHSIt == RHSEnd) break;
    }
  }
  
  // If we got here, we know that the coalescing will be successful and that
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
  // the most common case is that EliminatedLHSVals has a single number, we
  // optimize for it: if there is more than one value, we merge them all into
  // the lowest numbered one, then handle the interval as if we were merging
  // with one value number.
  VNInfo *LHSValNo;
  if (EliminatedLHSVals.size() > 1) {
    // Loop through all the equal value numbers merging them into the smallest
    // one.
    VNInfo *Smallest = EliminatedLHSVals[0];
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
      if (EliminatedLHSVals[i]->id < Smallest->id) {
        // Merge the current notion of the smallest into the smaller one.
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
        Smallest = EliminatedLHSVals[i];
      } else {
        // Merge into the smallest.
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
      }
    }
    LHSValNo = Smallest;
  } else if (EliminatedLHSVals.empty()) {
    if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
        *tri_->getSuperRegisters(LHS.reg))
      // Imprecise sub-register information. Can't handle it.
      return false;
    assert(0 && "No copies from the RHS?");
  } else {
    LHSValNo = EliminatedLHSVals[0];
  }
  
  // Okay, now that there is a single LHS value number that we're merging the
  // RHS into, update the value number info for the LHS to indicate that the
  // value number is defined where the RHS value number was.
  const VNInfo *VNI = RHS.getValNumInfo(0);
  LHSValNo->def  = VNI->def;
  LHSValNo->copy = VNI->copy;
  
  // Okay, the final step is to loop over the RHS live intervals, adding them to
  // the LHS.
  LHSValNo->hasPHIKill |= VNI->hasPHIKill;
  LHS.addKills(LHSValNo, VNI->kills);
  LHS.MergeRangesInAsValue(RHS, LHSValNo);
  LHS.weight += RHS.weight;
  if (RHS.preference && !LHS.preference)
    LHS.preference = RHS.preference;
  
  return true;
}

/// JoinIntervals - Attempt to join these two intervals.  On failure, this
/// returns false.  Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it.  The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS,
                                             LiveInterval &RHS, bool &Swapped) {
  // Compute the final value assignment, assuming that the live ranges can be
  // coalesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
  SmallVector<VNInfo*, 16> NewVNInfo;
                          
  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
      *tri_->getSubRegisters(LHS.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
        return false;
      }
  } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
             *tri_->getSubRegisters(RHS.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
        return false;
      }
  }
                          
  // Compute ultimate value numbers for the LHS and RHS values.
  if (RHS.containsOneValue()) {
    // Copies from a liveinterval with a single value are simple to handle and
    // very common, handle the special case here.  This is important, because
    // often RHS is small and LHS is large (e.g. a physreg).
    
    // Find out if the RHS is defined as a copy from some value in the LHS.
    int RHSVal0DefinedFromLHS = -1;
    int RHSValID = -1;
    VNInfo *RHSValNoInfo = NULL;
    VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
    unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
    if ((RHSSrcReg == 0 || RHSSrcReg != LHS.reg)) {
      // If RHS is not defined as a copy from the LHS, we can use simpler and
      // faster checks to see if the live ranges are coalescable.  This joiner
      // can't swap the LHS/RHS intervals though.
      if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
        return SimpleJoin(LHS, RHS);
      } else {
        RHSValNoInfo = RHSValNoInfo0;
      }
    } else {
      // It was defined as a copy from the LHS, find out what value # it is.
      RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
      RHSValID = RHSValNoInfo->id;
      RHSVal0DefinedFromLHS = RHSValID;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.resize(LHS.getNumValNums(), NULL);
    
    // Okay, *all* of the values in LHS that are defined as a copy from RHS
    // should now get updated.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
        if (LHSSrcReg != RHS.reg) {
          // If this is not a copy from the RHS, its value number will be
          // unmodified by the coalescing.
          NewVNInfo[VN] = VNI;
          LHSValNoAssignments[VN] = VN;
        } else if (RHSValID == -1) {
          // Otherwise, it is a copy from the RHS, and we don't already have a
          // value# for it.  Keep the current value number, but remember it.
          LHSValNoAssignments[VN] = RHSValID = VN;
          NewVNInfo[VN] = RHSValNoInfo;
          LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
        } else {
          // Otherwise, use the specified value #.
          LHSValNoAssignments[VN] = RHSValID;
          if (VN == (unsigned)RHSValID) {  // Else this val# is dead.
            NewVNInfo[VN] = RHSValNoInfo;
            LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
          }
        }
      } else {
        NewVNInfo[VN] = VNI;
        LHSValNoAssignments[VN] = VN;
      }
    }
    
    assert(RHSValID != -1 && "Didn't find value #?");
    RHSValNoAssignments[0] = RHSValID;
    if (RHSVal0DefinedFromLHS != -1) {
      // This path doesn't go through ComputeUltimateVN so just set
      // it to anything.
      RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
    }
  } else {
    // Loop over the value numbers of the LHS, seeing if any are defined from
    // the RHS.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      if (VNI->def == ~1U || VNI->copy == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the LHS interval.  If the src is
      // from the RHS interval, we can use its value #.
      if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
        continue;
      
      // Figure out the value # from the RHS.
      LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
    }
    
    // Loop over the value numbers of the RHS, seeing if any are defined from
    // the LHS.
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      if (VNI->def == ~1U || VNI->copy == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the RHS interval.  If the src is
      // from the LHS interval, we can use its value #.
      if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
        continue;
      
      // Figure out the value # from the LHS.
      RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
    
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) 
        continue;
      ComputeUltimateVN(VNI, NewVNInfo,
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
                        LHSValNoAssignments, RHSValNoAssignments);
    }
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
        continue;
      // If this value number isn't a copy from the LHS, it's a new number.
      if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
        NewVNInfo.push_back(VNI);
        RHSValNoAssignments[VN] = NewVNInfo.size()-1;
        continue;
      }
      
      ComputeUltimateVN(VNI, NewVNInfo,
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
                        RHSValNoAssignments, LHSValNoAssignments);
    }
  }
  
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
  // interval lists to see if these intervals are coalescable.
  LiveInterval::const_iterator I = LHS.begin();
  LiveInterval::const_iterator IE = LHS.end();
  LiveInterval::const_iterator J = RHS.begin();
  LiveInterval::const_iterator JE = RHS.end();
  
  // Skip ahead until the first place of potential sharing.
  if (I->start < J->start) {
    I = std::upper_bound(I, IE, J->start);
    if (I != LHS.begin()) --I;
  } else if (J->start < I->start) {
    J = std::upper_bound(J, JE, I->start);
    if (J != RHS.begin()) --J;
  }
  
  while (1) {
    // Determine if these two live ranges overlap.
    bool Overlaps;
    if (I->start < J->start) {
      Overlaps = I->end > J->start;
    } else {
      Overlaps = J->end > I->start;
    }

    // If so, check value # info to determine if they are really different.
    if (Overlaps) {
      // If the live range overlap will map to the same value number in the
      // result liverange, we can still coalesce them.  If not, we can't.
      if (LHSValNoAssignments[I->valno->id] !=
          RHSValNoAssignments[J->valno->id])
        return false;
    }
    
    if (I->end < J->end) {
      ++I;
      if (I == IE) break;
    } else {
      ++J;
      if (J == JE) break;
    }
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned LHSValID = LHSValNoAssignments[VNI->id];
    LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
    NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
    RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned RHSValID = RHSValNoAssignments[VNI->id];
    LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
    NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
    LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
  }

  // If we get here, we know that we can coalesce the live ranges.  Ask the
  // intervals to coalesce themselves now.
  if ((RHS.ranges.size() > LHS.ranges.size() &&
      TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
      TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
    RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
    Swapped = true;
  } else {
    LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
    Swapped = false;
  }
  return true;
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      if (LHS.first > RHS.first) return true;   // Deeper loops first
      return LHS.first == RHS.first &&
        LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

/// getRepIntervalSize - Returns the size of the interval that represents the
/// specified register.
template<class SF>
unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
  return Rc->getRepIntervalSize(Reg);
}

/// CopyRecSort::operator - Join priority queue sorting function.
///
bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
  // Inner loops first.
  if (left.LoopDepth > right.LoopDepth)
    return false;
  else if (left.LoopDepth == right.LoopDepth)
    if (left.isBackEdge && !right.isBackEdge)
      return false;
  return true;
}

void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
                                               std::vector<CopyRec> &TryAgain) {
  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";

  std::vector<CopyRec> VirtCopies;
  std::vector<CopyRec> PhysCopies;
  std::vector<CopyRec> ImpDefCopies;
  unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E;) {
    MachineInstr *Inst = MII++;
    
    // If this isn't a copy nor a extract_subreg, we can't join intervals.
    unsigned SrcReg, DstReg;
    if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(1).getReg();
    } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(2).getReg();
    } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg))
      continue;

    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    if (NewHeuristic) {
      JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
    } else {
      if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
        ImpDefCopies.push_back(CopyRec(Inst, 0, false));
      else if (SrcIsPhys || DstIsPhys)
        PhysCopies.push_back(CopyRec(Inst, 0, false));
      else
        VirtCopies.push_back(CopyRec(Inst, 0, false));
    }
  }

  if (NewHeuristic)
    return;

  // Try coalescing implicit copies first, followed by copies to / from
  // physical registers, then finally copies from virtual registers to
  // virtual registers.
  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = ImpDefCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = PhysCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = VirtCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
}

void SimpleRegisterCoalescing::joinIntervals() {
  DOUT << "********** JOINING INTERVALS ***********\n";

  if (NewHeuristic)
    JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);

  std::vector<CopyRec> TryAgainList;
  if (loopInfo->begin() == loopInfo->end()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      CopyCoalesceInMBB(I, TryAgainList);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.

    // Join intervals in the function prolog first. We want to join physical
    // registers with virtual registers before the intervals got too long.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
      MachineBasicBlock *MBB = I;
      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
    }

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
  }
  
  // Joining intervals can allow other intervals to be joined.  Iteratively join
  // until we make no progress.
  if (NewHeuristic) {
    SmallVector<CopyRec, 16> TryAgain;
    bool ProgressMade = true;
    while (ProgressMade) {
      ProgressMade = false;
      while (!JoinQueue->empty()) {
        CopyRec R = JoinQueue->pop();
        bool Again = false;
        bool Success = JoinCopy(R, Again);
        if (Success)
          ProgressMade = true;
        else if (Again)
          TryAgain.push_back(R);
      }

      if (ProgressMade) {
        while (!TryAgain.empty()) {
          JoinQueue->push(TryAgain.back());
          TryAgain.pop_back();
        }
      }
    }
  } else {
    bool ProgressMade = true;
    while (ProgressMade) {
      ProgressMade = false;

      for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
        CopyRec &TheCopy = TryAgainList[i];
        if (TheCopy.MI) {
          bool Again = false;
          bool Success = JoinCopy(TheCopy, Again);
          if (Success || !Again) {
            TheCopy.MI = 0;   // Mark this one as done.
            ProgressMade = true;
          }
        }
      }
    }
  }

  if (NewHeuristic)
    delete JoinQueue;  
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
                                                        unsigned RegB) const {

  // Get the register classes for the first reg.
  if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return !mri_->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClass = mri_->getRegClass(RegA);
  if (TargetRegisterInfo::isVirtualRegister(RegB))
    return RegClass != mri_->getRegClass(RegB);
  else
    return !RegClass->contains(RegB);
}

/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End or NULL if there are no uses.
MachineOperand *
SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
                                          unsigned Reg, unsigned &UseIdx) const{
  UseIdx = 0;
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    MachineOperand *LastUse = NULL;
    for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
           E = mri_->use_end(); I != E; ++I) {
      MachineOperand &Use = I.getOperand();
      MachineInstr *UseMI = Use.getParent();
      unsigned SrcReg, DstReg;
      if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg) && SrcReg == DstReg)
        // Ignore identity copies.
        continue;
      unsigned Idx = li_->getInstructionIndex(UseMI);
      if (Idx >= Start && Idx < End && Idx >= UseIdx) {
        LastUse = &Use;
        UseIdx = Idx;
      }
    }
    return LastUse;
  }

  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
  int s = Start;
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while ((e - InstrSlots::NUM) >= s && !MI) {
      e -= InstrSlots::NUM;
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return NULL;

    // Ignore identity copies.
    unsigned SrcReg, DstReg;
    if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg))
      for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
        MachineOperand &Use = MI->getOperand(i);
        if (Use.isRegister() && Use.isUse() && Use.getReg() &&
            tri_->regsOverlap(Use.getReg(), Reg)) {
          UseIdx = e;
          return &Use;
        }
      }

    e -= InstrSlots::NUM;
  }

  return NULL;
}


void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
  if (TargetRegisterInfo::isPhysicalRegister(reg))
    cerr << tri_->getName(reg);
  else
    cerr << "%reg" << reg;
}

void SimpleRegisterCoalescing::releaseMemory() {
  JoinedCopies.clear();
}

static bool isZeroLengthInterval(LiveInterval *li) {
  for (LiveInterval::Ranges::const_iterator
         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
      return false;
  return true;
}

/// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
/// turn the copy into an implicit def.
bool
SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
                                             MachineBasicBlock *MBB,
                                             unsigned DstReg, unsigned SrcReg) {
  MachineInstr *CopyMI = &*I;
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
  if (!li_->hasInterval(SrcReg))
    return false;
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
  if (!SrcInt.empty())
    return false;
  if (!li_->hasInterval(DstReg))
    return false;
  LiveInterval &DstInt = li_->getInterval(DstReg);
  const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx);
  DstInt.removeValNo(DstLR->valno);
  CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
  for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i)
    CopyMI->RemoveOperand(i);
  bool NoUse = mri_->use_begin(SrcReg) == mri_->use_end();
  if (NoUse) {
    for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
           E = mri_->reg_end(); I != E; ) {
      assert(I.getOperand().isDef());
      MachineInstr *DefMI = &*I;
      ++I;
      // The implicit_def source has no other uses, delete it.
      assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF);
      li_->RemoveMachineInstrFromMaps(DefMI);
      DefMI->eraseFromParent();
    }
  }
  ++I;
  return true;
}


bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  mri_ = &fn.getRegInfo();
  tm_ = &fn.getTarget();
  tri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  li_ = &getAnalysis<LiveIntervals>();
  lv_ = &getAnalysis<LiveVariables>();
  loopInfo = &getAnalysis<MachineLoopInfo>();

  DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
       << "********** Function: "
       << ((Value*)mf_->getFunction())->getName() << '\n';

  allocatableRegs_ = tri_->getAllocatableSet(fn);
  for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
         E = tri_->regclass_end(); I != E; ++I)
    allocatableRCRegs_.insert(std::make_pair(*I,
                                             tri_->getAllocatableSet(fn, *I)));

  // Join (coalesce) intervals if requested.
  if (EnableJoining) {
    joinIntervals();
    DOUT << "********** INTERVALS POST JOINING **********\n";
    for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
      I->second.print(DOUT, tri_);
      DOUT << "\n";
    }
  }

  // Perform a final pass over the instructions and compute spill weights
  // and remove identity moves.
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    unsigned loopDepth = loopInfo->getLoopDepth(mbb);

    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      MachineInstr *MI = mii;
      unsigned SrcReg, DstReg;
      if (JoinedCopies.count(MI)) {
        // Delete all coalesced copies.
        if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) {
          assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
                  MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG) &&
                 "Unrecognized copy instruction");
          DstReg = MI->getOperand(0).getReg();
        }
        if (MI->registerDefIsDead(DstReg)) {
          LiveInterval &li = li_->getInterval(DstReg);
          if (!ShortenDeadCopySrcLiveRange(li, MI))
            ShortenDeadCopyLiveRange(li, MI);
        }
        li_->RemoveMachineInstrFromMaps(MI);
        mii = mbbi->erase(mii);
        ++numPeep;
        continue;
      }

      // If the move will be an identity move delete it
      bool isMove = tii_->isMoveInstr(*mii, SrcReg, DstReg);
      if (isMove && SrcReg == DstReg) {
        if (li_->hasInterval(SrcReg)) {
          LiveInterval &RegInt = li_->getInterval(SrcReg);
          // If def of this move instruction is dead, remove its live range
          // from the dstination register's live interval.
          if (mii->registerDefIsDead(DstReg)) {
            if (!ShortenDeadCopySrcLiveRange(RegInt, mii))
              ShortenDeadCopyLiveRange(RegInt, mii);
          }
        }
        li_->RemoveMachineInstrFromMaps(mii);
        mii = mbbi->erase(mii);
        ++numPeep;
      } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) {
        SmallSet<unsigned, 4> UniqueUses;
        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
          const MachineOperand &mop = mii->getOperand(i);
          if (mop.isRegister() && mop.getReg() &&
              TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
            unsigned reg = mop.getReg();
            // Multiple uses of reg by the same instruction. It should not
            // contribute to spill weight again.
            if (UniqueUses.count(reg) != 0)
              continue;
            LiveInterval &RegInt = li_->getInterval(reg);
            RegInt.weight +=
              li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
            UniqueUses.insert(reg);
          }
        }
        ++mii;
      }
    }
  }

  for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
    LiveInterval &LI = I->second;
    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
      // If the live interval length is essentially zero, i.e. in every live
      // range the use follows def immediately, it doesn't make sense to spill
      // it and hope it will be easier to allocate for this li.
      if (isZeroLengthInterval(&LI))
        LI.weight = HUGE_VALF;
      else {
        bool isLoad = false;
        if (li_->isReMaterializable(LI, isLoad)) {
          // If all of the definitions of the interval are re-materializable,
          // it is a preferred candidate for spilling. If non of the defs are
          // loads, then it's potentially very cheap to re-materialize.
          // FIXME: this gets much more complicated once we support non-trivial
          // re-materialization.
          if (isLoad)
            LI.weight *= 0.9F;
          else
            LI.weight *= 0.5F;
        }
      }

      // Slightly prefer live interval that has been assigned a preferred reg.
      if (LI.preference)
        LI.weight *= 1.01F;

      // Divide the weight of the interval by its size.  This encourages 
      // spilling of intervals that are large and have few uses, and
      // discourages spilling of small intervals with many uses.
      LI.weight /= LI.getSize();
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
   li_->print(O, m);
}

RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
  return new SimpleRegisterCoalescing();
}

// Make sure that anything that uses RegisterCoalescer pulls in this file...
DEFINING_FILE_FOR(SimpleRegisterCoalescing)