llvm.org GIT mirror llvm / release_23 lib / CodeGen / SelectionDAG / LegalizeTypesSplit.cpp
release_23

Tree @release_23 (Download .tar.gz)

LegalizeTypesSplit.cpp @release_23raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
//===-- LegalizeTypesSplit.cpp - Vector Splitting for LegalizeTypes -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements vector splitting support for LegalizeTypes.  Vector
// splitting is the act of changing a computation in an invalid vector type to
// be a computation in multiple vectors of a smaller type.  For example,
// implementing <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//

#include "LegalizeTypes.h"
using namespace llvm;

/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a vector
/// type that needs to be split.  This handles non-power of two vectors.
static void GetSplitDestVTs(MVT::ValueType InVT,
                            MVT::ValueType &Lo, MVT::ValueType &Hi) {
  MVT::ValueType NewEltVT = MVT::getVectorElementType(InVT);
  unsigned NumElements = MVT::getVectorNumElements(InVT);
  if ((NumElements & (NumElements-1)) == 0) {  // Simple power of two vector.
    NumElements >>= 1;
    Lo = Hi =  MVT::getVectorType(NewEltVT, NumElements);
  } else {                                     // Non-power-of-two vectors.
    unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
    unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
    Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo);
    Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi);
  }
}


//===----------------------------------------------------------------------===//
//  Result Vector Splitting
//===----------------------------------------------------------------------===//

/// SplitResult - This method is called when the specified result of the
/// specified node is found to need vector splitting.  At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitResult(SDNode *N, unsigned ResNo) {
  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
  SDOperand Lo, Hi;
  
#if 0
  // See if the target wants to custom expand this node.
  if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) == 
      TargetLowering::Custom) {
    // If the target wants to, allow it to lower this itself.
    if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
      // Everything that once used N now uses P.  We are guaranteed that the
      // result value types of N and the result value types of P match.
      ReplaceNodeWith(N, P);
      return;
    }
  }
#endif
  
  switch (N->getOpcode()) {
  default:
#ifndef NDEBUG
    cerr << "SplitResult #" << ResNo << ": ";
    N->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to split the result of this operator!");
    abort();
    
  case ISD::UNDEF:            SplitRes_UNDEF(N, Lo, Hi); break;
  case ISD::LOAD:             SplitRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
  case ISD::BUILD_PAIR:       SplitRes_BUILD_PAIR(N, Lo, Hi); break;
  case ISD::INSERT_VECTOR_ELT:SplitRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
  case ISD::VECTOR_SHUFFLE:   SplitRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
  case ISD::BUILD_VECTOR:     SplitRes_BUILD_VECTOR(N, Lo, Hi); break;
  case ISD::CONCAT_VECTORS:   SplitRes_CONCAT_VECTORS(N, Lo, Hi); break;
  case ISD::BIT_CONVERT:      SplitRes_BIT_CONVERT(N, Lo, Hi); break;
  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:       SplitRes_UnOp(N, Lo, Hi); break;
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::FDIV:
  case ISD::FPOW:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::UREM:
  case ISD::SREM:
  case ISD::FREM:             SplitRes_BinOp(N, Lo, Hi); break;
  case ISD::FPOWI:            SplitRes_FPOWI(N, Lo, Hi); break;
  case ISD::SELECT:           SplitRes_SELECT(N, Lo, Hi); break;
  }
  
  // If Lo/Hi is null, the sub-method took care of registering results etc.
  if (Lo.Val)
    SetSplitOp(SDOperand(N, ResNo), Lo, Hi);
}

void DAGTypeLegalizer::SplitRes_UNDEF(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  Lo = DAG.getNode(ISD::UNDEF, LoVT);
  Hi = DAG.getNode(ISD::UNDEF, HiVT);
}

void DAGTypeLegalizer::SplitRes_LOAD(LoadSDNode *LD, 
                                     SDOperand &Lo, SDOperand &Hi) {
  // FIXME: Add support for indexed loads.
  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
  
  SDOperand Ch = LD->getChain();
  SDOperand Ptr = LD->getBasePtr();
  const Value *SV = LD->getSrcValue();
  int SVOffset = LD->getSrcValueOffset();
  unsigned Alignment = LD->getAlignment();
  bool isVolatile = LD->isVolatile();
  
  Lo = DAG.getLoad(LoVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment);
  unsigned IncrementSize = MVT::getSizeInBits(LoVT)/8;
  Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                    DAG.getIntPtrConstant(IncrementSize));
  SVOffset += IncrementSize;
  Alignment = MinAlign(Alignment, IncrementSize);
  Hi = DAG.getLoad(HiVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment);
  
  // Build a factor node to remember that this load is independent of the
  // other one.
  SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                             Hi.getValue(1));
  
  // Legalized the chain result - switch anything that used the old chain to
  // use the new one.
  ReplaceValueWith(SDOperand(LD, 1), TF);
}

void DAGTypeLegalizer::SplitRes_BUILD_PAIR(SDNode *N, SDOperand &Lo,
                                           SDOperand &Hi) {
  Lo = N->getOperand(0);
  Hi = N->getOperand(1);
}

void DAGTypeLegalizer::SplitRes_INSERT_VECTOR_ELT(SDNode *N, SDOperand &Lo,
                                                  SDOperand &Hi) {
  GetSplitOp(N->getOperand(0), Lo, Hi);
  unsigned Index = cast<ConstantSDNode>(N->getOperand(2))->getValue();
  SDOperand ScalarOp = N->getOperand(1);
  unsigned LoNumElts = MVT::getVectorNumElements(Lo.getValueType());
  if (Index < LoNumElts)
    Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, Lo.getValueType(), Lo, ScalarOp,
                     N->getOperand(2));
  else
    Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, Hi.getValueType(), Hi, ScalarOp,
                     DAG.getIntPtrConstant(Index - LoNumElts));
}

void DAGTypeLegalizer::SplitRes_VECTOR_SHUFFLE(SDNode *N, 
                                               SDOperand &Lo, SDOperand &Hi) {
  // Build the low part.
  SDOperand Mask = N->getOperand(2);
  SmallVector<SDOperand, 16> Ops;
  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  MVT::ValueType EltVT = MVT::getVectorElementType(LoVT);
  unsigned LoNumElts = MVT::getVectorNumElements(LoVT);
  unsigned NumElements = Mask.getNumOperands();

  // Insert all of the elements from the input that are needed.  We use 
  // buildvector of extractelement here because the input vectors will have
  // to be legalized, so this makes the code simpler.
  for (unsigned i = 0; i != LoNumElts; ++i) {
    unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
    SDOperand InVec = N->getOperand(0);
    if (Idx >= NumElements) {
      InVec = N->getOperand(1);
      Idx -= NumElements;
    }
    Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, InVec,
                              DAG.getIntPtrConstant(Idx)));
  }
  Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &Ops[0], Ops.size());
  Ops.clear();
  
  for (unsigned i = LoNumElts; i != NumElements; ++i) {
    unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
    SDOperand InVec = N->getOperand(0);
    if (Idx >= NumElements) {
      InVec = N->getOperand(1);
      Idx -= NumElements;
    }
    Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, InVec,
                              DAG.getIntPtrConstant(Idx)));
  }
  Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &Ops[0], Ops.size());
}

void DAGTypeLegalizer::SplitRes_BUILD_VECTOR(SDNode *N, SDOperand &Lo, 
                                             SDOperand &Hi) {
  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
  unsigned LoNumElts = MVT::getVectorNumElements(LoVT);
  SmallVector<SDOperand, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
  Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &LoOps[0], LoOps.size());
  
  SmallVector<SDOperand, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
  Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &HiOps[0], HiOps.size());
}

void DAGTypeLegalizer::SplitRes_CONCAT_VECTORS(SDNode *N, 
                                               SDOperand &Lo, SDOperand &Hi) {
  // FIXME: Handle non-power-of-two vectors?
  unsigned NumSubvectors = N->getNumOperands() / 2;
  if (NumSubvectors == 1) {
    Lo = N->getOperand(0);
    Hi = N->getOperand(1);
    return;
  }

  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SmallVector<SDOperand, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
  Lo = DAG.getNode(ISD::CONCAT_VECTORS, LoVT, &LoOps[0], LoOps.size());
    
  SmallVector<SDOperand, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
  Hi = DAG.getNode(ISD::CONCAT_VECTORS, HiVT, &HiOps[0], HiOps.size());
}

void DAGTypeLegalizer::SplitRes_BIT_CONVERT(SDNode *N, 
                                            SDOperand &Lo, SDOperand &Hi) {
  // We know the result is a vector.  The input may be either a vector or a
  // scalar value.
  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  SDOperand InOp = N->getOperand(0);
  MVT::ValueType InVT = InOp.getValueType();

  // Handle some special cases efficiently.
  switch (getTypeAction(InVT)) {
  default:
    assert(false && "Unknown type action!");
  case Legal:
  case FloatToInt:
  case Promote:
  case Scalarize:
    break;
  case Expand:
    // A scalar to vector conversion, where the scalar needs expansion.
    // If the vector is being split in two then we can just convert the
    // expanded pieces.
    if (LoVT == HiVT) {
      GetExpandedOp(InOp, Lo, Hi);
      if (TLI.isBigEndian())
        std::swap(Lo, Hi);
      Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
      Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
      return;
    }
    break;
  case Split:
    // If the input is a vector that needs to be split, convert each split
    // piece of the input now.
    GetSplitOp(InOp, Lo, Hi);
    Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
    Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
    return;
  }

  // In the general case, convert the input to an integer and split it by hand.
  MVT::ValueType LoIntVT = MVT::getIntegerType(MVT::getSizeInBits(LoVT));
  MVT::ValueType HiIntVT = MVT::getIntegerType(MVT::getSizeInBits(HiVT));
  if (TLI.isBigEndian())
    std::swap(LoIntVT, HiIntVT);

  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);

  if (TLI.isBigEndian())
    std::swap(Lo, Hi);
  Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
  Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
}

void DAGTypeLegalizer::SplitRes_BinOp(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
  SDOperand LHSLo, LHSHi;
  GetSplitOp(N->getOperand(0), LHSLo, LHSHi);
  SDOperand RHSLo, RHSHi;
  GetSplitOp(N->getOperand(1), RHSLo, RHSHi);
  
  Lo = DAG.getNode(N->getOpcode(), LHSLo.getValueType(), LHSLo, RHSLo);
  Hi = DAG.getNode(N->getOpcode(), LHSHi.getValueType(), LHSHi, RHSHi);
}

void DAGTypeLegalizer::SplitRes_UnOp(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
  // Get the dest types.  This doesn't always match input types, e.g. int_to_fp.
  MVT::ValueType LoVT, HiVT;
  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);

  GetSplitOp(N->getOperand(0), Lo, Hi);
  Lo = DAG.getNode(N->getOpcode(), LoVT, Lo);
  Hi = DAG.getNode(N->getOpcode(), HiVT, Hi);
}

void DAGTypeLegalizer::SplitRes_FPOWI(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
  GetSplitOp(N->getOperand(0), Lo, Hi);
  Lo = DAG.getNode(ISD::FPOWI, Lo.getValueType(), Lo, N->getOperand(1));
  Hi = DAG.getNode(ISD::FPOWI, Lo.getValueType(), Hi, N->getOperand(1));
}


void DAGTypeLegalizer::SplitRes_SELECT(SDNode *N, SDOperand &Lo, SDOperand &Hi){
  SDOperand LL, LH, RL, RH;
  GetSplitOp(N->getOperand(1), LL, LH);
  GetSplitOp(N->getOperand(2), RL, RH);
  
  SDOperand Cond = N->getOperand(0);
  Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), Cond, LL, RL);
  Hi = DAG.getNode(ISD::SELECT, LH.getValueType(), Cond, LH, RH);
}


//===----------------------------------------------------------------------===//
//  Operand Vector Splitting
//===----------------------------------------------------------------------===//

/// SplitOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting.  At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitOperand(SDNode *N, unsigned OpNo) {
  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
  SDOperand Res(0, 0);
  
#if 0
  if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) == 
      TargetLowering::Custom)
    Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
#endif
  
  if (Res.Val == 0) {
    switch (N->getOpcode()) {
    default:
#ifndef NDEBUG
      cerr << "SplitOperand Op #" << OpNo << ": ";
      N->dump(&DAG); cerr << "\n";
#endif
      assert(0 && "Do not know how to split this operator's operand!");
      abort();
    case ISD::STORE: Res = SplitOp_STORE(cast<StoreSDNode>(N), OpNo); break;
    case ISD::RET:   Res = SplitOp_RET(N, OpNo); break;

    case ISD::BIT_CONVERT: Res = SplitOp_BIT_CONVERT(N); break;

    case ISD::EXTRACT_VECTOR_ELT: Res = SplitOp_EXTRACT_VECTOR_ELT(N); break;
    case ISD::EXTRACT_SUBVECTOR:  Res = SplitOp_EXTRACT_SUBVECTOR(N); break;
    case ISD::VECTOR_SHUFFLE:     Res = SplitOp_VECTOR_SHUFFLE(N, OpNo); break;
    }
  }
  
  // If the result is null, the sub-method took care of registering results etc.
  if (!Res.Val) return false;
  
  // If the result is N, the sub-method updated N in place.  Check to see if any
  // operands are new, and if so, mark them.
  if (Res.Val == N) {
    // Mark N as new and remark N and its operands.  This allows us to correctly
    // revisit N if it needs another step of promotion and allows us to visit
    // any new operands to N.
    ReanalyzeNode(N);
    return true;
  }

  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
         "Invalid operand expansion");
  
  ReplaceValueWith(SDOperand(N, 0), Res);
  return false;
}

SDOperand DAGTypeLegalizer::SplitOp_STORE(StoreSDNode *N, unsigned OpNo) {
  // FIXME: Add support for indexed stores.
  assert(OpNo == 1 && "Can only split the stored value");
  
  SDOperand Ch  = N->getChain();
  SDOperand Ptr = N->getBasePtr();
  int SVOffset = N->getSrcValueOffset();
  unsigned Alignment = N->getAlignment();
  bool isVol = N->isVolatile();
  SDOperand Lo, Hi;
  GetSplitOp(N->getOperand(1), Lo, Hi);

  unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8;

  Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, isVol, Alignment);
  
  // Increment the pointer to the other half.
  Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                    DAG.getIntPtrConstant(IncrementSize));
  
  Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
                    isVol, MinAlign(Alignment, IncrementSize));
  return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}

SDOperand DAGTypeLegalizer::SplitOp_RET(SDNode *N, unsigned OpNo) {
  assert(N->getNumOperands() == 3 &&"Can only handle ret of one vector so far");
  // FIXME: Returns of gcc generic vectors larger than a legal vector
  // type should be returned by reference!
  SDOperand Lo, Hi;
  GetSplitOp(N->getOperand(1), Lo, Hi);

  SDOperand Chain = N->getOperand(0);  // The chain.
  SDOperand Sign = N->getOperand(2);  // Signness
  
  return DAG.getNode(ISD::RET, MVT::Other, Chain, Lo, Sign, Hi, Sign);
}

SDOperand DAGTypeLegalizer::SplitOp_BIT_CONVERT(SDNode *N) {
  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
  // end up being split all the way down to individual components.  Convert the
  // split pieces into integers and reassemble.
  SDOperand Lo, Hi;
  GetSplitOp(N->getOperand(0), Lo, Hi);
  Lo = BitConvertToInteger(Lo);
  Hi = BitConvertToInteger(Hi);

  if (TLI.isBigEndian())
    std::swap(Lo, Hi);

  return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
                     JoinIntegers(Lo, Hi));
}

SDOperand DAGTypeLegalizer::SplitOp_EXTRACT_VECTOR_ELT(SDNode *N) {
  SDOperand Vec = N->getOperand(0);
  SDOperand Idx = N->getOperand(1);
  MVT::ValueType VecVT = Vec.getValueType();

  if (isa<ConstantSDNode>(Idx)) {
    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getValue();
    assert(IdxVal < MVT::getVectorNumElements(VecVT) &&
           "Invalid vector index!");

    SDOperand Lo, Hi;
    GetSplitOp(Vec, Lo, Hi);

    uint64_t LoElts = MVT::getVectorNumElements(Lo.getValueType());

    if (IdxVal < LoElts)
      return DAG.UpdateNodeOperands(SDOperand(N, 0), Lo, Idx);
    else
      return DAG.UpdateNodeOperands(SDOperand(N, 0), Hi,
                                    DAG.getConstant(IdxVal - LoElts,
                                                    Idx.getValueType()));
  }

  // Store the vector to the stack and load back the required element.
  SDOperand StackPtr = DAG.CreateStackTemporary(VecVT);
  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);

  // Add the offset to the index.
  MVT::ValueType EltVT = MVT::getVectorElementType(VecVT);
  unsigned EltSize = MVT::getSizeInBits(EltVT)/8; // FIXME: should be ABI size.
  Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx,
                    DAG.getConstant(EltSize, Idx.getValueType()));

  if (MVT::getSizeInBits(Idx.getValueType()) >
      MVT::getSizeInBits(TLI.getPointerTy()))
    Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx);
  else
    Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx);

  StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr);
  return DAG.getLoad(EltVT, Store, StackPtr, NULL, 0);
}

SDOperand DAGTypeLegalizer::SplitOp_EXTRACT_SUBVECTOR(SDNode *N) {
  // We know that the extracted result type is legal.  For now, assume the index
  // is a constant.
  MVT::ValueType SubVT = N->getValueType(0);
  SDOperand Idx = N->getOperand(1);
  SDOperand Lo, Hi;
  GetSplitOp(N->getOperand(0), Lo, Hi);

  uint64_t LoElts = MVT::getVectorNumElements(Lo.getValueType());
  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getValue();

  if (IdxVal < LoElts) {
    assert(IdxVal + MVT::getVectorNumElements(SubVT) <= LoElts &&
           "Extracted subvector crosses vector split!");
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Lo, Idx);
  } else {
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Hi,
                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
  }
}

SDOperand DAGTypeLegalizer::SplitOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo) {
  assert(OpNo == 2 && "Shuffle source type differs from result type?");
  SDOperand Mask = N->getOperand(2);
  unsigned MaskLength = MVT::getVectorNumElements(Mask.getValueType());
  unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
  unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);

  // Look for a legal vector type to place the mask values in.
  // Note that there may not be *any* legal vector-of-integer
  // type for which the element type is legal!
  for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
       EltVT <= MVT::LAST_INTEGER_VALUETYPE;
       // Integer values types are consecutively numbered.  Exploit this.
       EltVT = MVT::SimpleValueType(EltVT + 1)) {

    // Is the element type big enough to hold the values?
    if (MVT::getSizeInBits(EltVT) < MinimumBitWidth)
      // Nope.
      continue;

    // Is the vector type legal?
    MVT::ValueType VecVT = MVT::getVectorType(EltVT, MaskLength);
    if (!isTypeLegal(VecVT))
      // Nope.
      continue;

    // If the element type is not legal, find a larger legal type to use for
    // the BUILD_VECTOR operands.  This is an ugly hack, but seems to work!
    // FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
    // node where the shuffle mask is a list of integer operands, #2 .. #2+n.
    for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
         // Integer values types are consecutively numbered.  Exploit this.
         OpVT = MVT::SimpleValueType(OpVT + 1)) {
      if (!isTypeLegal(OpVT))
        continue;

      // Success!  Rebuild the vector using the legal types.
      SmallVector<SDOperand, 16> Ops(MaskLength);
      for (unsigned i = 0; i < MaskLength; ++i) {
        uint64_t Idx =
          cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
        Ops[i] = DAG.getConstant(Idx, OpVT);
      }
      return DAG.UpdateNodeOperands(SDOperand(N,0),
                                    N->getOperand(0), N->getOperand(1),
                                    DAG.getNode(ISD::BUILD_VECTOR,
                                                VecVT, &Ops[0], Ops.size()));
    }

    // Continuing is pointless - failure is certain.
    break;
  }
  assert(false && "Failed to find an appropriate mask type!");
  return SDOperand(N, 0);
}