llvm.org GIT mirror llvm / release_23 lib / Analysis / LoadValueNumbering.cpp
release_23

Tree @release_23 (Download .tar.gz)

LoadValueNumbering.cpp @release_23raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a value numbering pass that value numbers load and call
// instructions.  To do this, it finds lexically identical load instructions,
// and uses alias analysis to determine which loads are guaranteed to produce
// the same value.  To value number call instructions, it looks for calls to
// functions that do not write to memory which do not have intervening
// instructions that clobber the memory that is read from.
//
// This pass builds off of another value numbering pass to implement value
// numbering for non-load and non-call instructions.  It uses Alias Analysis so
// that it can disambiguate the load instructions.  The more powerful these base
// analyses are, the more powerful the resultant value numbering will be.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoadValueNumbering.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ValueNumbering.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetData.h"
#include <set>
#include <algorithm>
using namespace llvm;

namespace {
  // FIXME: This should not be a FunctionPass.
  struct VISIBILITY_HIDDEN LoadVN : public FunctionPass, public ValueNumbering {
    static char ID; // Class identification, replacement for typeinfo
    LoadVN() : FunctionPass((intptr_t)&ID) {}

    /// Pass Implementation stuff.  This doesn't do any analysis.
    ///
    bool runOnFunction(Function &) { return false; }

    /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering
    /// and Alias Analysis.
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;

    /// getEqualNumberNodes - Return nodes with the same value number as the
    /// specified Value.  This fills in the argument vector with any equal
    /// values.
    ///
    virtual void getEqualNumberNodes(Value *V1,
                                     std::vector<Value*> &RetVals) const;

    /// deleteValue - This method should be called whenever an LLVM Value is
    /// deleted from the program, for example when an instruction is found to be
    /// redundant and is eliminated.
    ///
    virtual void deleteValue(Value *V) {
      getAnalysis<AliasAnalysis>().deleteValue(V);
    }

    /// copyValue - This method should be used whenever a preexisting value in
    /// the program is copied or cloned, introducing a new value.  Note that
    /// analysis implementations should tolerate clients that use this method to
    /// introduce the same value multiple times: if the analysis already knows
    /// about a value, it should ignore the request.
    ///
    virtual void copyValue(Value *From, Value *To) {
      getAnalysis<AliasAnalysis>().copyValue(From, To);
    }

    /// getCallEqualNumberNodes - Given a call instruction, find other calls
    /// that have the same value number.
    void getCallEqualNumberNodes(CallInst *CI,
                                 std::vector<Value*> &RetVals) const;
  };

  char LoadVN::ID = 0;
  // Register this pass...
  RegisterPass<LoadVN> X("load-vn", "Load Value Numbering", false, true);

  // Declare that we implement the ValueNumbering interface
  RegisterAnalysisGroup<ValueNumbering> Y(X);
}

FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); }


/// getAnalysisUsage - Does not modify anything.  It uses Value Numbering and
/// Alias Analysis.
///
void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AliasAnalysis>();
  AU.addRequired<ValueNumbering>();
  AU.addRequiredTransitive<DominatorTree>();
  AU.addRequiredTransitive<TargetData>();
}

static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom,
                                Value *Ptr, unsigned Size, AliasAnalysis &AA,
                                std::set<BasicBlock*> &Visited,
                                std::map<BasicBlock*, bool> &TransparentBlocks){
  // If we have already checked out this path, or if we reached our destination,
  // stop searching, returning success.
  if (CurBlock == Dom || !Visited.insert(CurBlock).second)
    return true;

  // Check whether this block is known transparent or not.
  std::map<BasicBlock*, bool>::iterator TBI =
    TransparentBlocks.lower_bound(CurBlock);

  if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) {
    // If this basic block can modify the memory location, then the path is not
    // transparent!
    if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) {
      TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false));
      return false;
    }
    TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true));
  } else if (!TBI->second)
    // This block is known non-transparent, so that path can't be either.
    return false;

  // The current block is known to be transparent.  The entire path is
  // transparent if all of the predecessors paths to the parent is also
  // transparent to the memory location.
  for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock);
       PI != E; ++PI)
    if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited,
                             TransparentBlocks))
      return false;
  return true;
}

/// getCallEqualNumberNodes - Given a call instruction, find other calls that
/// have the same value number.
void LoadVN::getCallEqualNumberNodes(CallInst *CI,
                                     std::vector<Value*> &RetVals) const {
  Function *CF = CI->getCalledFunction();
  if (CF == 0) return;  // Indirect call.
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
  AliasAnalysis::ModRefBehavior MRB = AA.getModRefBehavior(CI);
  if (MRB != AliasAnalysis::DoesNotAccessMemory &&
      MRB != AliasAnalysis::OnlyReadsMemory)
    return;  // Nothing we can do for now.

  // Scan all of the arguments of the function, looking for one that is not
  // global.  In particular, we would prefer to have an argument or instruction
  // operand to chase the def-use chains of.
  Value *Op = CF;
  for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
    if (isa<Argument>(CI->getOperand(i)) ||
        isa<Instruction>(CI->getOperand(i))) {
      Op = CI->getOperand(i);
      break;
    }

  // Identify all lexically identical calls in this function.
  std::vector<CallInst*> IdenticalCalls;

  Function *CIFunc = CI->getParent()->getParent();
  for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E;
       ++UI)
    if (CallInst *C = dyn_cast<CallInst>(*UI))
      if (C->getNumOperands() == CI->getNumOperands() &&
          C->getOperand(0) == CI->getOperand(0) &&
          C->getParent()->getParent() == CIFunc && C != CI) {
        bool AllOperandsEqual = true;
        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
          if (C->getOperand(i) != CI->getOperand(i)) {
            AllOperandsEqual = false;
            break;
          }

        if (AllOperandsEqual)
          IdenticalCalls.push_back(C);
      }

  if (IdenticalCalls.empty()) return;

  // Eliminate duplicates, which could occur if we chose a value that is passed
  // into a call site multiple times.
  std::sort(IdenticalCalls.begin(), IdenticalCalls.end());
  IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()),
                       IdenticalCalls.end());

  // If the call reads memory, we must make sure that there are no stores
  // between the calls in question.
  //
  // FIXME: This should use mod/ref information.  What we really care about it
  // whether an intervening instruction could modify memory that is read, not
  // ANY memory.
  //
  if (MRB == AliasAnalysis::OnlyReadsMemory) {
    DominatorTree &DT = getAnalysis<DominatorTree>();
    BasicBlock *CIBB = CI->getParent();
    for (unsigned i = 0; i != IdenticalCalls.size(); ++i) {
      CallInst *C = IdenticalCalls[i];
      bool CantEqual = false;

      if (DT.dominates(CIBB, C->getParent())) {
        // FIXME: we currently only handle the case where both calls are in the
        // same basic block.
        if (CIBB != C->getParent()) {
          CantEqual = true;
        } else {
          Instruction *First = CI, *Second = C;
          if (!DT.dominates(CI, C))
            std::swap(First, Second);

          // Scan the instructions between the calls, checking for stores or
          // calls to dangerous functions.
          BasicBlock::iterator I = First;
          for (++First; I != BasicBlock::iterator(Second); ++I) {
            if (isa<StoreInst>(I)) {
              // FIXME: We could use mod/ref information to make this much
              // better!
              CantEqual = true;
              break;
            } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
              if (!AA.onlyReadsMemory(CI)) {
                CantEqual = true;
                break;
              }
            } else if (I->mayWriteToMemory()) {
              CantEqual = true;
              break;
            }
          }
        }

      } else if (DT.dominates(C->getParent(), CIBB)) {
        // FIXME: We could implement this, but we don't for now.
        CantEqual = true;
      } else {
        // FIXME: if one doesn't dominate the other, we can't tell yet.
        CantEqual = true;
      }


      if (CantEqual) {
        // This call does not produce the same value as the one in the query.
        std::swap(IdenticalCalls[i--], IdenticalCalls.back());
        IdenticalCalls.pop_back();
      }
    }
  }

  // Any calls that are identical and not destroyed will produce equal values!
  for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i)
    RetVals.push_back(IdenticalCalls[i]);
}

// getEqualNumberNodes - Return nodes with the same value number as the
// specified Value.  This fills in the argument vector with any equal values.
//
void LoadVN::getEqualNumberNodes(Value *V,
                                 std::vector<Value*> &RetVals) const {
  // If the alias analysis has any must alias information to share with us, we
  // can definitely use it.
  if (isa<PointerType>(V->getType()))
    getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals);

  if (!isa<LoadInst>(V)) {
    if (CallInst *CI = dyn_cast<CallInst>(V))
      getCallEqualNumberNodes(CI, RetVals);

    // Not a load instruction?  Just chain to the base value numbering
    // implementation to satisfy the request...
    assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
           "getAnalysis() returned this!");

    return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
  }

  // Volatile loads cannot be replaced with the value of other loads.
  LoadInst *LI = cast<LoadInst>(V);
  if (LI->isVolatile())
    return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);

  Value *LoadPtr = LI->getOperand(0);
  BasicBlock *LoadBB = LI->getParent();
  Function *F = LoadBB->getParent();

  // Find out how many bytes of memory are loaded by the load instruction...
  unsigned LoadSize = getAnalysis<TargetData>().getTypeStoreSize(LI->getType());
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();

  // Figure out if the load is invalidated from the entry of the block it is in
  // until the actual instruction.  This scans the block backwards from LI.  If
  // we see any candidate load or store instructions, then we know that the
  // candidates have the same value # as LI.
  bool LoadInvalidatedInBBBefore = false;
  for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) {
    --I;
    if (I == LoadPtr) {
      // If we run into an allocation of the value being loaded, then the
      // contents are not initialized.
      if (isa<AllocationInst>(I))
        RetVals.push_back(UndefValue::get(LI->getType()));

      // Otherwise, since this is the definition of what we are loading, this
      // loaded value cannot occur before this block.
      LoadInvalidatedInBBBefore = true;
      break;
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      // If this instruction is a candidate load before LI, we know there are no
      // invalidating instructions between it and LI, so they have the same
      // value number.
      if (LI->getOperand(0) == LoadPtr && !LI->isVolatile())
        RetVals.push_back(I);
    }

    if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
      // If the invalidating instruction is a store, and its in our candidate
      // set, then we can do store-load forwarding: the load has the same value
      // # as the stored value.
      if (StoreInst *SI = dyn_cast<StoreInst>(I))
        if (SI->getOperand(1) == LoadPtr)
          RetVals.push_back(I->getOperand(0));

      LoadInvalidatedInBBBefore = true;
      break;
    }
  }

  // Figure out if the load is invalidated between the load and the exit of the
  // block it is defined in.  While we are scanning the current basic block, if
  // we see any candidate loads, then we know they have the same value # as LI.
  //
  bool LoadInvalidatedInBBAfter = false;
  {
    BasicBlock::iterator I = LI;
    for (++I; I != LoadBB->end(); ++I) {
      // If this instruction is a load, then this instruction returns the same
      // value as LI.
      if (isa<LoadInst>(I) && cast<LoadInst>(I)->getOperand(0) == LoadPtr)
        RetVals.push_back(I);

      if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
        LoadInvalidatedInBBAfter = true;
        break;
      }
    }
  }

  // If the pointer is clobbered on entry and on exit to the function, there is
  // no need to do any global analysis at all.
  if (LoadInvalidatedInBBBefore && LoadInvalidatedInBBAfter)
    return;

  // Now that we know the value is not neccesarily killed on entry or exit to
  // the BB, find out how many load and store instructions (to this location)
  // live in each BB in the function.
  //
  std::map<BasicBlock*, unsigned>  CandidateLoads;
  std::set<BasicBlock*> CandidateStores;

  for (Value::use_iterator UI = LoadPtr->use_begin(), UE = LoadPtr->use_end();
       UI != UE; ++UI)
    if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source?
      if (Cand->getParent()->getParent() == F &&   // In the same function?
          // Not in LI's block?
          Cand->getParent() != LoadBB && !Cand->isVolatile())
        ++CandidateLoads[Cand->getParent()];       // Got one.
    } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) {
      if (Cand->getParent()->getParent() == F && !Cand->isVolatile() &&
          Cand->getOperand(1) == LoadPtr) // It's a store THROUGH the ptr.
        CandidateStores.insert(Cand->getParent());
    }

  // Get dominators.
  DominatorTree &DT = getAnalysis<DominatorTree>();

  // TransparentBlocks - For each basic block the load/store is alive across,
  // figure out if the pointer is invalidated or not.  If it is invalidated, the
  // boolean is set to false, if it's not it is set to true.  If we don't know
  // yet, the entry is not in the map.
  std::map<BasicBlock*, bool> TransparentBlocks;

  // Loop over all of the basic blocks that also load the value.  If the value
  // is live across the CFG from the source to destination blocks, and if the
  // value is not invalidated in either the source or destination blocks, add it
  // to the equivalence sets.
  for (std::map<BasicBlock*, unsigned>::iterator
         I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) {
    bool CantEqual = false;

    // Right now we only can handle cases where one load dominates the other.
    // FIXME: generalize this!
    BasicBlock *BB1 = I->first, *BB2 = LoadBB;
    if (DT.dominates(BB1, BB2)) {
      // The other load dominates LI.  If the loaded value is killed entering
      // the LoadBB block, we know the load is not live.
      if (LoadInvalidatedInBBBefore)
        CantEqual = true;
    } else if (DT.dominates(BB2, BB1)) {
      std::swap(BB1, BB2);          // Canonicalize
      // LI dominates the other load.  If the loaded value is killed exiting
      // the LoadBB block, we know the load is not live.
      if (LoadInvalidatedInBBAfter)
        CantEqual = true;
    } else {
      // None of these loads can VN the same.
      CantEqual = true;
    }

    if (!CantEqual) {
      // Ok, at this point, we know that BB1 dominates BB2, and that there is
      // nothing in the LI block that kills the loaded value.  Check to see if
      // the value is live across the CFG.
      std::set<BasicBlock*> Visited;
      for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI)
        if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA,
                                 Visited, TransparentBlocks)) {
          // None of these loads can VN the same.
          CantEqual = true;
          break;
        }
    }

    // If the loads can equal so far, scan the basic block that contains the
    // loads under consideration to see if they are invalidated in the block.
    // For any loads that are not invalidated, add them to the equivalence
    // set!
    if (!CantEqual) {
      unsigned NumLoads = I->second;
      if (BB1 == LoadBB) {
        // If LI dominates the block in question, check to see if any of the
        // loads in this block are invalidated before they are reached.
        for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) {
          if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
            if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
              // The load is in the set!
              RetVals.push_back(BBI);
              if (--NumLoads == 0) break;  // Found last load to check.
            }
          } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
                                & AliasAnalysis::Mod) {
            // If there is a modifying instruction, nothing below it will value
            // # the same.
            break;
          }
        }
      } else {
        // If the block dominates LI, make sure that the loads in the block are
        // not invalidated before the block ends.
        BasicBlock::iterator BBI = I->first->end();
        while (1) {
          --BBI;
          if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
            if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
              // The load is the same as this load!
              RetVals.push_back(BBI);
              if (--NumLoads == 0) break;  // Found all of the laods.
            }
          } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
                             & AliasAnalysis::Mod) {
            // If there is a modifying instruction, nothing above it will value
            // # the same.
            break;
          }
        }
      }
    }
  }

  // Handle candidate stores.  If the loaded location is clobbered on entrance
  // to the LoadBB, no store outside of the LoadBB can value number equal, so
  // quick exit.
  if (LoadInvalidatedInBBBefore)
    return;

  // Stores in the load-bb are handled above.
  CandidateStores.erase(LoadBB);

  for (std::set<BasicBlock*>::iterator I = CandidateStores.begin(),
         E = CandidateStores.end(); I != E; ++I)
    if (DT.dominates(*I, LoadBB)) {
      BasicBlock *StoreBB = *I;

      // Check to see if the path from the store to the load is transparent
      // w.r.t. the memory location.
      bool CantEqual = false;
      std::set<BasicBlock*> Visited;
      for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
           PI != E; ++PI)
        if (!isPathTransparentTo(*PI, StoreBB, LoadPtr, LoadSize, AA,
                                 Visited, TransparentBlocks)) {
          // None of these stores can VN the same.
          CantEqual = true;
          break;
        }
      Visited.clear();
      if (!CantEqual) {
        // Okay, the path from the store block to the load block is clear, and
        // we know that there are no invalidating instructions from the start
        // of the load block to the load itself.  Now we just scan the store
        // block.

        BasicBlock::iterator BBI = StoreBB->end();
        while (1) {
          assert(BBI != StoreBB->begin() &&
                 "There is a store in this block of the pointer, but the store"
                 " doesn't mod the address being stored to??  Must be a bug in"
                 " the alias analysis implementation!");
          --BBI;
          if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
            // If the invalidating instruction is one of the candidates,
            // then it provides the value the load loads.
            if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
              if (SI->getOperand(1) == LoadPtr)
                RetVals.push_back(SI->getOperand(0));
            break;
          }
        }
      }
    }
}