llvm.org GIT mirror llvm / release_22 lib / Analysis / MemoryDependenceAnalysis.cpp
release_22

Tree @release_22 (Download .tar.gz)

MemoryDependenceAnalysis.cpp @release_22raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on.  It builds on 
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/Statistic.h"

#define DEBUG_TYPE "memdep"

using namespace llvm;

STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");

char MemoryDependenceAnalysis::ID = 0;
  
Instruction* const MemoryDependenceAnalysis::NonLocal = (Instruction*)-3;
Instruction* const MemoryDependenceAnalysis::None = (Instruction*)-4;
Instruction* const MemoryDependenceAnalysis::Dirty = (Instruction*)-5;
  
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
                                                "Memory Dependence Analysis");

void MemoryDependenceAnalysis::ping(Instruction *D) {
  for (depMapType::iterator I = depGraphLocal.begin(), E = depGraphLocal.end();
       I != E; ++I) {
    assert(I->first != D);
    assert(I->second.first != D);
  }

  for (nonLocalDepMapType::iterator I = depGraphNonLocal.begin(), E = depGraphNonLocal.end();
       I != E; ++I) {
    assert(I->first != D);
  }

  for (reverseDepMapType::iterator I = reverseDep.begin(), E = reverseDep.end();
       I != E; ++I)
    for (SmallPtrSet<Instruction*, 4>::iterator II = I->second.begin(), EE = I->second.end();
         II != EE; ++II)
      assert(*II != D);

  for (reverseDepMapType::iterator I = reverseDepNonLocal.begin(), E = reverseDepNonLocal.end();
       I != E; ++I)
    for (SmallPtrSet<Instruction*, 4>::iterator II = I->second.begin(), EE = I->second.end();
         II != EE; ++II)
      assert(*II != D);
}

/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AliasAnalysis>();
  AU.addRequiredTransitive<TargetData>();
}

/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
Instruction* MemoryDependenceAnalysis::getCallSiteDependency(CallSite C,
                                                           Instruction* start,
                                                            BasicBlock* block) {
  
  std::pair<Instruction*, bool>& cachedResult =
                                              depGraphLocal[C.getInstruction()];
  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
  TargetData& TD = getAnalysis<TargetData>();
  BasicBlock::iterator blockBegin = C.getInstruction()->getParent()->begin();
  BasicBlock::iterator QI = C.getInstruction();
  
  // If the starting point was specifiy, use it
  if (start) {
    QI = start;
    blockBegin = start->getParent()->end();
  // If the starting point wasn't specified, but the block was, use it
  } else if (!start && block) {
    QI = block->end();
    blockBegin = block->end();
  }
  
  // Walk backwards through the block, looking for dependencies
  while (QI != blockBegin) {
    --QI;
    
    // If this inst is a memory op, get the pointer it accessed
    Value* pointer = 0;
    uint64_t pointerSize = 0;
    if (StoreInst* S = dyn_cast<StoreInst>(QI)) {
      pointer = S->getPointerOperand();
      pointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
    } else if (AllocationInst* AI = dyn_cast<AllocationInst>(QI)) {
      pointer = AI;
      if (ConstantInt* C = dyn_cast<ConstantInt>(AI->getArraySize()))
        pointerSize = C->getZExtValue() * \
                      TD.getABITypeSize(AI->getAllocatedType());
      else
        pointerSize = ~0UL;
    } else if (VAArgInst* V = dyn_cast<VAArgInst>(QI)) {
      pointer = V->getOperand(0);
      pointerSize = TD.getTypeStoreSize(V->getType());
    } else if (FreeInst* F = dyn_cast<FreeInst>(QI)) {
      pointer = F->getPointerOperand();
      
      // FreeInsts erase the entire structure
      pointerSize = ~0UL;
    } else if (isa<CallInst>(QI)) {
      AliasAnalysis::ModRefBehavior result =
                   AA.getModRefBehavior(CallSite::get(QI));
      if (result != AliasAnalysis::DoesNotAccessMemory &&
          result != AliasAnalysis::OnlyReadsMemory) {
        if (!start && !block) {
          cachedResult.first = QI;
          cachedResult.second = true;
          reverseDep[QI].insert(C.getInstruction());
        }
        return QI;
      } else {
        continue;
      }
    } else
      continue;
    
    if (AA.getModRefInfo(C, pointer, pointerSize) != AliasAnalysis::NoModRef) {
      if (!start && !block) {
        cachedResult.first = QI;
        cachedResult.second = true;
        reverseDep[QI].insert(C.getInstruction());
      }
      return QI;
    }
  }
  
  // No dependence found
  cachedResult.first = NonLocal;
  cachedResult.second = true;
  reverseDep[NonLocal].insert(C.getInstruction());
  return NonLocal;
}

/// nonLocalHelper - Private helper used to calculate non-local dependencies
/// by doing DFS on the predecessors of a block to find its dependencies
void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query,
                                              BasicBlock* block,
                                         DenseMap<BasicBlock*, Value*>& resp) {
  // Set of blocks that we've already visited in our DFS
  SmallPtrSet<BasicBlock*, 4> visited;
  // If we're updating a dirtied cache entry, we don't need to reprocess
  // already computed entries.
  for (DenseMap<BasicBlock*, Value*>::iterator I = resp.begin(), 
       E = resp.end(); I != E; ++I)
    if (I->second != Dirty)
      visited.insert(I->first);
  
  // Current stack of the DFS
  SmallVector<BasicBlock*, 4> stack;
  stack.push_back(block);
  
  // Do a basic DFS
  while (!stack.empty()) {
    BasicBlock* BB = stack.back();
    
    // If we've already visited this block, no need to revist
    if (visited.count(BB)) {
      stack.pop_back();
      continue;
    }
    
    // If we find a new block with a local dependency for query,
    // then we insert the new dependency and backtrack.
    if (BB != block) {
      visited.insert(BB);
      
      Instruction* localDep = getDependency(query, 0, BB);
      if (localDep != NonLocal) {
        resp.insert(std::make_pair(BB, localDep));
        stack.pop_back();
        
        continue;
      }
    // If we re-encounter the starting block, we still need to search it
    // because there might be a dependency in the starting block AFTER
    // the position of the query.  This is necessary to get loops right.
    } else if (BB == block && stack.size() > 1) {
      visited.insert(BB);
      
      Instruction* localDep = getDependency(query, 0, BB);
      if (localDep != query)
        resp.insert(std::make_pair(BB, localDep));
      
      stack.pop_back();
      
      continue;
    }
    
    // If we didn't find anything, recurse on the precessors of this block
    bool predOnStack = false;
    bool inserted = false;
    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
         PI != PE; ++PI)
      if (!visited.count(*PI)) {
        stack.push_back(*PI);
        inserted = true;
      } else
        predOnStack = true;
    
    // If we inserted a new predecessor, then we'll come back to this block
    if (inserted)
      continue;
    // If we didn't insert because we have no predecessors, then this
    // query has no dependency at all.
    else if (!inserted && !predOnStack) {
      resp.insert(std::make_pair(BB, None));
    // If we didn't insert because our predecessors are already on the stack,
    // then we might still have a dependency, but it will be discovered during
    // backtracking.
    } else if (!inserted && predOnStack){
      resp.insert(std::make_pair(BB, NonLocal));
    }
    
    stack.pop_back();
  }
}

/// getNonLocalDependency - Fills the passed-in map with the non-local 
/// dependencies of the queries.  The map will contain NonLocal for
/// blocks between the query and its dependencies.
void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,
                                         DenseMap<BasicBlock*, Value*>& resp) {
  if (depGraphNonLocal.count(query)) {
    DenseMap<BasicBlock*, Value*>& cached = depGraphNonLocal[query];
    NumCacheNonlocal++;
    
    SmallVector<BasicBlock*, 4> dirtied;
    for (DenseMap<BasicBlock*, Value*>::iterator I = cached.begin(),
         E = cached.end(); I != E; ++I)
      if (I->second == Dirty)
        dirtied.push_back(I->first);
    
    for (SmallVector<BasicBlock*, 4>::iterator I = dirtied.begin(),
         E = dirtied.end(); I != E; ++I) {
      Instruction* localDep = getDependency(query, 0, *I);
      if (localDep != NonLocal)
        cached[*I] = localDep;
      else {
        cached.erase(*I);
        nonLocalHelper(query, *I, cached);
      }
    }
    
    resp = cached;
    
    return;
  } else
    NumUncacheNonlocal++;
  
  // If not, go ahead and search for non-local deps.
  nonLocalHelper(query, query->getParent(), resp);
  
  // Update the non-local dependency cache
  for (DenseMap<BasicBlock*, Value*>::iterator I = resp.begin(), E = resp.end();
       I != E; ++I) {
    depGraphNonLocal[query].insert(*I);
    reverseDepNonLocal[I->second].insert(query);
  }
}

/// getDependency - Return the instruction on which a memory operation
/// depends.  The local paramter indicates if the query should only
/// evaluate dependencies within the same basic block.
Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query,
                                                     Instruction* start,
                                                     BasicBlock* block) {
  // Start looking for dependencies with the queried inst
  BasicBlock::iterator QI = query;
  
  // Check for a cached result
  std::pair<Instruction*, bool>& cachedResult = depGraphLocal[query];
  // If we have a _confirmed_ cached entry, return it
  if (!block && !start) {
    if (cachedResult.second)
      return cachedResult.first;
    else if (cachedResult.first && cachedResult.first != NonLocal)
      // If we have an unconfirmed cached entry, we can start our search from there
      QI = cachedResult.first;
  }
  
  if (start)
    QI = start;
  else if (!start && block)
    QI = block->end();
  
  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
  TargetData& TD = getAnalysis<TargetData>();
  
  // Get the pointer value for which dependence will be determined
  Value* dependee = 0;
  uint64_t dependeeSize = 0;
  bool queryIsVolatile = false;
  if (StoreInst* S = dyn_cast<StoreInst>(query)) {
    dependee = S->getPointerOperand();
    dependeeSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
    queryIsVolatile = S->isVolatile();
  } else if (LoadInst* L = dyn_cast<LoadInst>(query)) {
    dependee = L->getPointerOperand();
    dependeeSize = TD.getTypeStoreSize(L->getType());
    queryIsVolatile = L->isVolatile();
  } else if (VAArgInst* V = dyn_cast<VAArgInst>(query)) {
    dependee = V->getOperand(0);
    dependeeSize = TD.getTypeStoreSize(V->getType());
  } else if (FreeInst* F = dyn_cast<FreeInst>(query)) {
    dependee = F->getPointerOperand();
    
    // FreeInsts erase the entire structure, not just a field
    dependeeSize = ~0UL;
  } else if (CallSite::get(query).getInstruction() != 0)
    return getCallSiteDependency(CallSite::get(query), start, block);
  else if (isa<AllocationInst>(query))
    return None;
  else
    return None;
  
  BasicBlock::iterator blockBegin = block ? block->begin()
                                          : query->getParent()->begin();
  
  // Walk backwards through the basic block, looking for dependencies
  while (QI != blockBegin) {
    --QI;
    
    // If this inst is a memory op, get the pointer it accessed
    Value* pointer = 0;
    uint64_t pointerSize = 0;
    if (StoreInst* S = dyn_cast<StoreInst>(QI)) {
      // All volatile loads/stores depend on each other
      if (queryIsVolatile && S->isVolatile()) {
        if (!start && !block) {
          cachedResult.first = S;
          cachedResult.second = true;
          reverseDep[S].insert(query);
        }
        
        return S;
      }
      
      pointer = S->getPointerOperand();
      pointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
    } else if (LoadInst* L = dyn_cast<LoadInst>(QI)) {
      // All volatile loads/stores depend on each other
      if (queryIsVolatile && L->isVolatile()) {
        if (!start && !block) {
          cachedResult.first = L;
          cachedResult.second = true;
          reverseDep[L].insert(query);
        }
        
        return L;
      }
      
      pointer = L->getPointerOperand();
      pointerSize = TD.getTypeStoreSize(L->getType());
    } else if (AllocationInst* AI = dyn_cast<AllocationInst>(QI)) {
      pointer = AI;
      if (ConstantInt* C = dyn_cast<ConstantInt>(AI->getArraySize()))
        pointerSize = C->getZExtValue() * \
                      TD.getABITypeSize(AI->getAllocatedType());
      else
        pointerSize = ~0UL;
    } else if (VAArgInst* V = dyn_cast<VAArgInst>(QI)) {
      pointer = V->getOperand(0);
      pointerSize = TD.getTypeStoreSize(V->getType());
    } else if (FreeInst* F = dyn_cast<FreeInst>(QI)) {
      pointer = F->getPointerOperand();
      
      // FreeInsts erase the entire structure
      pointerSize = ~0UL;
    } else if (CallSite::get(QI).getInstruction() != 0) {
      // Call insts need special handling. Check if they can modify our pointer
      AliasAnalysis::ModRefResult MR = AA.getModRefInfo(CallSite::get(QI),
                                                      dependee, dependeeSize);
      
      if (MR != AliasAnalysis::NoModRef) {
        // Loads don't depend on read-only calls
        if (isa<LoadInst>(query) && MR == AliasAnalysis::Ref)
          continue;
        
        if (!start && !block) {
          cachedResult.first = QI;
          cachedResult.second = true;
          reverseDep[QI].insert(query);
        }
        
        return QI;
      } else {
        continue;
      }
    }
    
    // If we found a pointer, check if it could be the same as our pointer
    if (pointer) {
      AliasAnalysis::AliasResult R = AA.alias(pointer, pointerSize,
                                              dependee, dependeeSize);
      
      if (R != AliasAnalysis::NoAlias) {
        // May-alias loads don't depend on each other
        if (isa<LoadInst>(query) && isa<LoadInst>(QI) &&
            R == AliasAnalysis::MayAlias)
          continue;
        
        if (!start && !block) {
          cachedResult.first = QI;
          cachedResult.second = true;
          reverseDep[QI].insert(query);
        }
        
        return QI;
      }
    }
  }
  
  // If we found nothing, return the non-local flag
  if (!start && !block) {
    cachedResult.first = NonLocal;
    cachedResult.second = true;
    reverseDep[NonLocal].insert(query);
  }
  
  return NonLocal;
}

/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction* rem) {
  // Figure out the new dep for things that currently depend on rem
  Instruction* newDep = NonLocal;

  reverseDep[depGraphLocal[rem].first].erase(rem);

  for (DenseMap<BasicBlock*, Value*>::iterator DI =
       depGraphNonLocal[rem].begin(), DE = depGraphNonLocal[rem].end();
       DI != DE; ++DI)
    if (DI->second != None)
      reverseDepNonLocal[DI->second].erase(rem);

  depMapType::iterator depGraphEntry = depGraphLocal.find(rem);

  if (depGraphEntry != depGraphLocal.end()) {
    if (depGraphEntry->second.first != NonLocal &&
        depGraphEntry->second.second) {
      // If we have dep info for rem, set them to it
      BasicBlock::iterator RI = depGraphEntry->second.first;
      RI++;
      newDep = RI;
    } else if (depGraphEntry->second.first == NonLocal &&
               depGraphEntry->second.second ) {
      // If we have a confirmed non-local flag, use it
      newDep = NonLocal;
    } else {
      // Otherwise, use the immediate successor of rem
      // NOTE: This is because, when getDependence is called, it will first
      // check the immediate predecessor of what is in the cache.
      BasicBlock::iterator RI = rem;
      RI++;
      newDep = RI;
    }
    
    SmallPtrSet<Instruction*, 4>& set = reverseDep[rem];
    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
         I != E; ++I) {
      // Insert the new dependencies
      // Mark it as unconfirmed as long as it is not the non-local flag
      depGraphLocal[*I] = std::make_pair(newDep, !newDep);
    }
  }
  
  depGraphLocal.erase(rem);
  reverseDep.erase(rem);
  
  if (reverseDepNonLocal.count(rem)) {
    SmallPtrSet<Instruction*, 4>& set = reverseDepNonLocal[rem];
    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
         I != E; ++I)
      for (DenseMap<BasicBlock*, Value*>::iterator DI =
           depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end();
           DI != DE; ++DI)
        if (DI->second == rem)
          DI->second = Dirty;
    
  }
  
  reverseDepNonLocal.erase(rem);
  nonLocalDepMapType::iterator I = depGraphNonLocal.find(rem);
  if (I != depGraphNonLocal.end())
    depGraphNonLocal.erase(I);

  getAnalysis<AliasAnalysis>().deleteValue(rem);
}