llvm.org GIT mirror llvm / release_22 docs / LinkTimeOptimization.html
release_22

Tree @release_22 (Download .tar.gz)

LinkTimeOptimization.html @release_22raw · history · blame

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>LLVM Link Time Optimization: Design and Implementation</title>
  <link rel="stylesheet" href="llvm.css" type="text/css">
</head>

<div class="doc_title">
  LLVM Link Time Optimization: Design and Implementation
</div>

<ul>
  <li><a href="#desc">Description</a></li>
  <li><a href="#design">Design Philosophy</a>
  <ul>
    <li><a href="#example1">Example of link time optimization</a></li>
    <li><a href="#alternative_approaches">Alternative Approaches</a></li>
  </ul></li>
  <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
  <ul>
    <li><a href="#phase1">Phase 1 : Read LLVM Bytecode Files</a></li>
    <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
    <li><a href="#phase3">Phase 3 : Optimize Bytecode Files</a></li>
    <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
  </ul></li>
  <li><a href="#lto">LLVMlto</a>
  <ul>
    <li><a href="#llvmsymbol">LLVMSymbol</a></li>
    <li><a href="#readllvmobjectfile">readLLVMObjectFile()</a></li>
    <li><a href="#optimizemodules">optimizeModules()</a></li>
    <li><a href="#gettargettriple">getTargetTriple()</a></li>
    <li><a href="#removemodule">removeModule()</a></li>
    <li><a href="#getalignment">getAlignment()</a></li>
  </ul></li>
  <li><a href="#debug">Debugging Information</a></li>
</ul>

<div class="doc_author">
<p>Written by Devang Patel</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
<a name="desc">Description</a>
</div>
<!-- *********************************************************************** -->

<div class="doc_text">
<p>
LLVM features powerful intermodular optimizations which can be used at link 
time.  Link Time Optimization is another name for intermodular optimization 
when performed during the link stage. This document describes the interface 
and design between the LLVM intermodular optimizer and the linker.</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
<a name="design">Design Philosophy</a>
</div>
<!-- *********************************************************************** -->

<div class="doc_text">
<p>
The LLVM Link Time Optimizer provides complete transparency, while doing 
intermodular optimization, in the compiler tool chain. Its main goal is to let 
the developer take advantage of intermodular optimizations without making any 
significant changes to the developer's makefiles or build system. This is 
achieved through tight integration with the linker. In this model, the linker 
treates LLVM bitcode files like native object files and allows mixing and 
matching among them. The linker uses <a href="#lto">LLVMlto</a>, a dynamically 
loaded library, to handle LLVM bitcode files. This tight integration between 
the linker and LLVM optimizer helps to do optimizations that are not possible 
in other models. The linker input allows the optimizer to avoid relying on 
conservative escape analysis.
</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="example1">Example of link time optimization</a>
</div>

<div class="doc_text">
  <p>The following example illustrates the advantages of LTO's integrated
  approach and clean interface. This example requires a system linker which
  supports LTO through the interface described in this document.  Here,
  llvm-gcc transparently invokes system linker. </p>
  <ul>
    <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
    <li> Input source file <tt>main.c</tt> is compiled into native object code.
  </ul>
<div class="doc_code"><pre>
--- a.h ---
extern int foo1(void);
extern void foo2(void);
extern void foo4(void);
--- a.c ---
#include "a.h"

static signed int i = 0;

void foo2(void) {
 i = -1;
}

static int foo3() {
foo4();
return 10;
}

int foo1(void) {
int data = 0;

if (i &lt; 0) { data = foo3(); }

data = data + 42;
return data;
}

--- main.c ---
#include &lt;stdio.h&gt;
#include "a.h"

void foo4(void) {
 printf ("Hi\n");
}

int main() {
 return foo1();
}

--- command lines ---
$ llvm-gcc --emit-llvm -c a.c -o a.o  # &lt;-- a.o is LLVM bitcode file
$ llvm-gcc -c main.c -o main.o # &lt;-- main.o is native object file
$ llvm-gcc a.o main.o -o main # &lt;-- standard link command without any modifications
</pre></div>
  <p>In this example, the linker recognizes that <tt>foo2()</tt> is an 
  externally visible symbol defined in LLVM bitcode file. This information 
  is collected using <a href="#readllvmobjectfile"> readLLVMObjectFile()</a>. 
  Based on this information, the linker completes its usual symbol resolution 
  pass and finds that <tt>foo2()</tt> is not used anywhere. This information 
  is used by the LLVM optimizer and it removes <tt>foo2()</tt>. As soon as 
  <tt>foo2()</tt> is removed, the optimizer recognizes that condition 
  <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never 
  used. Hence, the optimizer removes <tt>foo3()</tt>, also.  And this in turn, 
  enables linker to remove <tt>foo4()</tt>.  This example illustrates the 
  advantage of tight integration with the linker. Here, the optimizer can not 
  remove <tt>foo3()</tt> without the linker's input.
  </p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="alternative_approaches">Alternative Approaches</a>
</div>

<div class="doc_text">
  <dl>
    <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
    <dd>In this model the link time optimizer is not able to take advantage of 
    information collected during the linker's normal symbol resolution phase. 
    In the above example, the optimizer can not remove <tt>foo2()</tt> without 
    the linker's input because it is externally visible. This in turn prohibits
    the optimizer from removing <tt>foo3()</tt>.</dd>
    <dt><b>Use separate tool to collect symbol information from all object
    files.</b></dt>
    <dd>In this model, a new, separate, tool or library replicates the linker's
    capability to collect information for link time optimization. Not only is
    this code duplication difficult to justify, but it also has several other 
    disadvantages.  For example, the linking semantics and the features 
    provided by the linker on various platform are not unique. This means, 
    this new tool needs to support all such features and platforms in one 
    super tool or a separate tool per platform is required. This increases 
    maintance cost for link time optimizer significantly, which is not 
    necessary. This approach also requires staying synchronized with linker 
    developements on various platforms, which is not the main focus of the link 
    time optimizer. Finally, this approach increases end user's build time due 
    to the duplication of work done by this separate tool and the linker itself.
    </dd>
  </dl>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="multiphase">Multi-phase communication between LLVM and linker</a>
</div>

<div class="doc_text">
  <p>The linker collects information about symbol defininitions and uses in 
  various link objects which is more accurate than any information collected 
  by other tools during typical build cycles.  The linker collects this 
  information by looking at the definitions and uses of symbols in native .o 
  files and using symbol visibility information. The linker also uses 
  user-supplied information, such as a list of exported symbols. LLVM 
  optimizer collects control flow information, data flow information and knows 
  much more about program structure from the optimizer's point of view. 
  Our goal is to take advantage of tight intergration between the linker and 
  the optimizer by sharing this information during various linking phases.
</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
</div>

<div class="doc_text">
  <p>The linker first reads all object files in natural order and collects 
  symbol information. This includes native object files as well as LLVM bitcode 
  files.  In this phase, the linker uses 
  <a href="#readllvmobjectfile"> readLLVMObjectFile() </a>  to collect symbol
  information from each LLVM bitcode files and updates its internal global 
  symbol table accordingly. The intent of this interface is to avoid overhead 
  in the non LLVM case, where all input object files are native object files, 
  by putting this code in the error path of the linker. When the linker sees 
  the first llvm .o file, it <tt>dlopen()</tt>s the dynamic library. This is
  to allow changes to the LLVM LTO code without relinking the linker.
</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="phase2">Phase 2 : Symbol Resolution</a>
</div>

<div class="doc_text">
  <p>In this stage, the linker resolves symbols using global symbol table 
  information to report undefined symbol errors, read archive members, resolve 
  weak symbols, etc. The linker is able to do this seamlessly even though it 
  does not know the exact content of input LLVM bitcode files because it uses 
  symbol information provided by 
  <a href="#readllvmobjectfile">readLLVMObjectFile()</a>.  If dead code 
  stripping is enabled then the linker collects the list of live symbols.
  </p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
</div>
<div class="doc_text">
  <p>After symbol resolution, the linker updates symbol information supplied 
  by LLVM bitcode files appropriately. For example, whether certain LLVM 
  bitcode supplied symbols are used or not. In the example above, the linker 
  reports that <tt>foo2()</tt> is not used anywhere in the program, including 
  native <tt>.o</tt> files. This information is used by the LLVM interprocedural
  optimizer. The linker uses <a href="#optimizemodules">optimizeModules()</a> 
  and requests an optimized native object file of the LLVM portion of the 
  program. 
</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
</div>

<div class="doc_text">
  <p>In this phase, the linker reads optimized a native object file and 
  updates the internal global symbol table to reflect any changes. The linker 
  also collects information about any changes in use of external symbols by 
  LLVM bitcode files. In the examle above, the linker notes that 
  <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 
  the linker refreshes the live symbol information appropriately and performs 
  dead code stripping.</p>
  <p>After this phase, the linker continues linking as if it never saw LLVM 
  bitcode files.</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
<a name="lto">LLVMlto</a>
</div>

<div class="doc_text">
  <p><tt>LLVMlto</tt> is a dynamic library that is part of the LLVM tools, and 
  is intended for use by a linker. <tt>LLVMlto</tt> provides an abstract C++ 
  interface to use the LLVM interprocedural optimizer without exposing details 
  of LLVM's internals. The intention is to keep the interface as stable as 
  possible even when the LLVM optimizer continues to evolve.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="llvmsymbol">LLVMSymbol</a>
</div>

<div class="doc_text">
  <p>The <tt>LLVMSymbol</tt> class is used to describe the externally visible 
  functions and global variables, defined in LLVM bitcode files, to the linker.
  This includes symbol visibility information. This information is used by 
  the linker to do symbol resolution. For example: function <tt>foo2()</tt> is 
  defined inside an LLVM bitcode module and it is an externally visible symbol.
  This helps the linker connect the use of <tt>foo2()</tt> in native object 
  files with a future definition of the symbol <tt>foo2()</tt>. The linker 
  will see the actual definition of <tt>foo2()</tt> when it receives the 
  optimized native object file in 
  <a href="#phase4">Symbol Resolution after optimization</a> phase. If the 
  linker does not find any uses of <tt>foo2()</tt>, it updates LLVMSymbol 
  visibility information to notify LLVM intermodular optimizer that it is dead.
  The LLVM intermodular optimizer takes advantage of such information to 
  generate better code.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="readllvmobjectfile">readLLVMObjectFile()</a>
</div>

<div class="doc_text">
  <p>The <tt>readLLVMObjectFile()</tt> function is used by the linker to read 
  LLVM bitcode files and collect LLVMSymbol information. This routine also
  supplies a list of externally defined symbols that are used by LLVM bitcode
  files. The linker uses this symbol information to do symbol resolution. 
  Internally, <a href="#lto">LLVMlto</a> maintains LLVM bitcode modules in 
  memory. This function also provides a list of external references used by 
  bitcode files.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="optimizemodules">optimizeModules()</a>
</div>

<div class="doc_text">
  <p>The linker invokes <tt>optimizeModules</tt> to optimize already read 
  LLVM bitcode files by applying LLVM intermodular optimization techniques. 
  This function runs the LLVM intermodular optimizer and generates native 
  object code as <tt>.o</tt> files at the name and location provided by the 
  linker.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="gettargettriple">getTargetTriple()</a>
</div>

<div class="doc_text">
  <p>The linker may use <tt>getTargetTriple()</tt> to query target architecture
  while validating LLVM bitcode file.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="removemodule">removeModule()</a>
</div>

<div class="doc_text">
  <p>Internally, <a href="#lto">LLVMlto</a> maintains LLVM bitcode modules in 
  memory. The linker may use <tt>removeModule()</tt> method to remove desired
  modules from memory. </p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="getalignment">getAlignment()</a>
</div>

<div class="doc_text">
  <p>The linker may use <a href="#llvmsymbol">LLVMSymbol</a> method 
  <tt>getAlignment()</tt> to query symbol alignment information.</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="debug">Debugging Information</a>
</div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p><tt> ... To be completed ... </tt></p>

</div>

<!-- *********************************************************************** -->

<hr>
<address>
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
  <a href="http://validator.w3.org/check/referer"><img
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>

  Devang Patel<br>
  <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
  Last modified: $Date$
</address>

</body>
</html>