llvm.org GIT mirror llvm / release_21 lib / Target / TargetData.cpp
release_21

Tree @release_21 (Download .tar.gz)

TargetData.cpp @release_21raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
//===-- TargetData.cpp - Data size & alignment routines --------------------==//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines target properties related to datatype size/offset/alignment
// information.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&.  None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetData.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <cstdlib>
#include <sstream>
using namespace llvm;

// Handle the Pass registration stuff necessary to use TargetData's.
namespace {
  // Register the default SparcV9 implementation...
  RegisterPass<TargetData> X("targetdata", "Target Data Layout");
}
char TargetData::ID = 0;

//===----------------------------------------------------------------------===//
// Support for StructLayout
//===----------------------------------------------------------------------===//

StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
  StructAlignment = 0;
  StructSize = 0;
  NumElements = ST->getNumElements();

  // Loop over each of the elements, placing them in memory...
  for (unsigned i = 0, e = NumElements; i != e; ++i) {
    const Type *Ty = ST->getElementType(i);
    unsigned TyAlign;
    uint64_t TySize;
    TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty));
    TySize = TD.getTypeSize(Ty);

    // Add padding if necessary to make the data element aligned properly...
    if (StructSize % TyAlign != 0)
      StructSize = (StructSize/TyAlign + 1) * TyAlign;   // Add padding...

    // Keep track of maximum alignment constraint
    StructAlignment = std::max(TyAlign, StructAlignment);

    MemberOffsets[i] = StructSize;
    StructSize += TySize;                 // Consume space for this data item
  }

  // Empty structures have alignment of 1 byte.
  if (StructAlignment == 0) StructAlignment = 1;

  // Add padding to the end of the struct so that it could be put in an array
  // and all array elements would be aligned correctly.
  if (StructSize % StructAlignment != 0)
    StructSize = (StructSize/StructAlignment + 1) * StructAlignment;
}


/// getElementContainingOffset - Given a valid offset into the structure,
/// return the structure index that contains it.
unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
  const uint64_t *SI =
    std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
  assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
  --SI;
  assert(*SI <= Offset && "upper_bound didn't work");
  assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) &&
         (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
         "Upper bound didn't work!");
  return SI-&MemberOffsets[0];
}

//===----------------------------------------------------------------------===//
// TargetAlignElem, TargetAlign support
//===----------------------------------------------------------------------===//

TargetAlignElem
TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
                     unsigned char pref_align, uint32_t bit_width) {
  TargetAlignElem retval;
  retval.AlignType = align_type;
  retval.ABIAlign = abi_align;
  retval.PrefAlign = pref_align;
  retval.TypeBitWidth = bit_width;
  return retval;
}

bool
TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
  return (AlignType == rhs.AlignType
          && ABIAlign == rhs.ABIAlign
          && PrefAlign == rhs.PrefAlign
          && TypeBitWidth == rhs.TypeBitWidth);
}

std::ostream &
TargetAlignElem::dump(std::ostream &os) const {
  return os << AlignType
            << TypeBitWidth
            << ":" << (int) (ABIAlign * 8)
            << ":" << (int) (PrefAlign * 8);
}

const TargetAlignElem TargetData::InvalidAlignmentElem =
                TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);

//===----------------------------------------------------------------------===//
//                       TargetData Class Implementation
//===----------------------------------------------------------------------===//

/*!
 A TargetDescription string consists of a sequence of hyphen-delimited
 specifiers for target endianness, pointer size and alignments, and various
 primitive type sizes and alignments. A typical string looks something like:
 <br><br>
 "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
 <br><br>
 (note: this string is not fully specified and is only an example.)
 \p
 Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
 below) dictates how a type will be aligned within an aggregate and when used
 as an argument.  Preferred alignment (pref_align, below) determines a type's
 alignment when emitted as a global.
 \p
 Specifier string details:
 <br><br>
 <i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
 specifies a little-endian target data model.
 <br><br>
 <i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size, 
 ABI and preferred alignment.
 <br><br>
 <i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type alignment. Type is
 one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka
 packed) or aggregate.  Size indicates the size, e.g., 32 or 64 bits.
 \p
 The default string, fully specified is:
 <br><br>
 "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64"
 "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64"
 "-v64:64:64-v128:128:128"
 <br><br>
 Note that in the case of aggregates, 0 is the default ABI and preferred
 alignment. This is a special case, where the aggregate's computed worst-case
 alignment will be used.
 */ 
void TargetData::init(const std::string &TargetDescription) {
  std::string temp = TargetDescription;
  
  LittleEndian = false;
  PointerMemSize = 8;
  PointerABIAlign   = 8;
  PointerPrefAlign = PointerABIAlign;

  // Default alignments
  setAlignment(INTEGER_ALIGN,   1,  1, 1);   // Bool
  setAlignment(INTEGER_ALIGN,   1,  1, 8);   // Byte
  setAlignment(INTEGER_ALIGN,   2,  2, 16);  // short
  setAlignment(INTEGER_ALIGN,   4,  4, 32);  // int
  setAlignment(INTEGER_ALIGN,   4,  8, 64);  // long
  setAlignment(FLOAT_ALIGN,     4,  4, 32);  // float
  setAlignment(FLOAT_ALIGN,     8,  8, 64);  // double
  setAlignment(VECTOR_ALIGN,    8,  8, 64);  // v2i32
  setAlignment(VECTOR_ALIGN,   16, 16, 128); // v16i8, v8i16, v4i32, ...
  setAlignment(AGGREGATE_ALIGN, 0,  8,  0);  // struct, union, class, ...
  setAlignment(STACK_ALIGN,     0,  8,  0);  // objects on the stack

  while (!temp.empty()) {
    std::string token = getToken(temp, "-");
    std::string arg0 = getToken(token, ":");
    const char *p = arg0.c_str();
    switch(*p) {
    case 'E':
      LittleEndian = false;
      break;
    case 'e':
      LittleEndian = true;
      break;
    case 'p':
      PointerMemSize = atoi(getToken(token,":").c_str()) / 8;
      PointerABIAlign = atoi(getToken(token,":").c_str()) / 8;
      PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8;
      if (PointerPrefAlign == 0)
        PointerPrefAlign = PointerABIAlign;
      break;
    case 'i':
    case 'v':
    case 'f':
    case 'a':
    case 's': {
      AlignTypeEnum align_type;
      switch(*p) {
        case 'i': align_type = INTEGER_ALIGN; break;
        case 'v': align_type = VECTOR_ALIGN; break;
        case 'f': align_type = FLOAT_ALIGN; break;
        case 'a': align_type = AGGREGATE_ALIGN; break;
        case 's': align_type = STACK_ALIGN; break;
      }
      uint32_t size = (uint32_t) atoi(++p);
      unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8;
      unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8;
      if (pref_align == 0)
        pref_align = abi_align;
      setAlignment(align_type, abi_align, pref_align, size);
      break;
    }
    default:
      break;
    }
  }
}

TargetData::TargetData(const Module *M) 
  : ImmutablePass((intptr_t)&ID) {
  init(M->getDataLayout());
}

void
TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
                         unsigned char pref_align, uint32_t bit_width) {
  for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
    if (Alignments[i].AlignType == align_type &&
        Alignments[i].TypeBitWidth == bit_width) {
      // Update the abi, preferred alignments.
      Alignments[i].ABIAlign = abi_align;
      Alignments[i].PrefAlign = pref_align;
      return;
    }
  }
  
  Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
                                            pref_align, bit_width));
}

/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or 
/// preferred if ABIInfo = false) the target wants for the specified datatype.
unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, 
                                      uint32_t BitWidth, bool ABIInfo) const {
  // Check to see if we have an exact match and remember the best match we see.
  int BestMatchIdx = -1;
  int LargestInt = -1;
  for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
    if (Alignments[i].AlignType == AlignType &&
        Alignments[i].TypeBitWidth == BitWidth)
      return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
    
    // The best match so far depends on what we're looking for.
    if (AlignType == VECTOR_ALIGN) {
      // If this is a specification for a smaller vector type, we will fall back
      // to it.  This happens because <128 x double> can be implemented in terms
      // of 64 <2 x double>.
      if (Alignments[i].AlignType == VECTOR_ALIGN && 
          Alignments[i].TypeBitWidth < BitWidth) {
        // Verify that we pick the biggest of the fallbacks.
        if (BestMatchIdx == -1 ||
            Alignments[BestMatchIdx].TypeBitWidth < BitWidth)
          BestMatchIdx = i;
      }
    } else if (AlignType == INTEGER_ALIGN && 
               Alignments[i].AlignType == INTEGER_ALIGN) {
      // The "best match" for integers is the smallest size that is larger than
      // the BitWidth requested.
      if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || 
           Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
        BestMatchIdx = i;
      // However, if there isn't one that's larger, then we must use the
      // largest one we have (see below)
      if (LargestInt == -1 || 
          Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
        LargestInt = i;
    }
  }

  // For integers, if we didn't find a best match, use the largest one found.
  if (BestMatchIdx == -1)
    BestMatchIdx = LargestInt;

  // Okay, we didn't find an exact solution.  Fall back here depending on what
  // is being looked for.
  assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!");

  // Since we got a "best match" index, just return it.
  return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
                 : Alignments[BestMatchIdx].PrefAlign;
}

/// LayoutInfo - The lazy cache of structure layout information maintained by
/// TargetData.  Note that the struct types must have been free'd before
/// llvm_shutdown is called (and thus this is deallocated) because all the
/// targets with cached elements should have been destroyed.
///
typedef std::pair<const TargetData*,const StructType*> LayoutKey;

struct DenseMapLayoutKeyInfo {
  static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); }
  static inline LayoutKey getTombstoneKey() {
    return LayoutKey((TargetData*)(intptr_t)-1, 0);
  }
  static unsigned getHashValue(const LayoutKey &Val) {
    return DenseMapKeyInfo<void*>::getHashValue(Val.first) ^
           DenseMapKeyInfo<void*>::getHashValue(Val.second);
  }
  static bool isPod() { return true; }
};

typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy;
static ManagedStatic<LayoutInfoTy> LayoutInfo;


TargetData::~TargetData() {
  if (LayoutInfo.isConstructed()) {
    // Remove any layouts for this TD.
    LayoutInfoTy &TheMap = *LayoutInfo;
    for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end();
         I != E; ) {
      if (I->first.first == this) {
        I->second->~StructLayout();
        free(I->second);
        TheMap.erase(I++);
      } else {
        ++I;
      }
    }
  }
}

const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
  LayoutInfoTy &TheMap = *LayoutInfo;
  
  StructLayout *&SL = TheMap[LayoutKey(this, Ty)];
  if (SL) return SL;

  // Otherwise, create the struct layout.  Because it is variable length, we 
  // malloc it, then use placement new.
  int NumElts = Ty->getNumElements();
  StructLayout *L =
    (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t));
  
  // Set SL before calling StructLayout's ctor.  The ctor could cause other
  // entries to be added to TheMap, invalidating our reference.
  SL = L;
  
  new (L) StructLayout(Ty, *this);
  return L;
}

/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
/// objects.  If a TargetData object is alive when types are being refined and
/// removed, this method must be called whenever a StructType is removed to
/// avoid a dangling pointer in this cache.
void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
  if (!LayoutInfo.isConstructed()) return;  // No cache.
  
  LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty));
  if (I != LayoutInfo->end()) {
    I->second->~StructLayout();
    free(I->second);
    LayoutInfo->erase(I);
  }
}


std::string TargetData::getStringRepresentation() const {
  std::string repr;
  repr.append(LittleEndian ? "e" : "E");
  repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))).
      append(":").append(itostr((int64_t) (PointerABIAlign * 8))).
      append(":").append(itostr((int64_t) (PointerPrefAlign * 8)));
  for (align_const_iterator I = Alignments.begin();
       I != Alignments.end();
       ++I) {
    repr.append("-").append(1, (char) I->AlignType).
      append(utostr((int64_t) I->TypeBitWidth)).
      append(":").append(utostr((uint64_t) (I->ABIAlign * 8))).
      append(":").append(utostr((uint64_t) (I->PrefAlign * 8)));
  }
  return repr;
}


uint64_t TargetData::getTypeSize(const Type *Ty) const {
  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
  switch (Ty->getTypeID()) {
  case Type::LabelTyID:
  case Type::PointerTyID:
    return getPointerSize();
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    uint64_t Size;
    unsigned char Alignment;
    Size = getTypeSize(ATy->getElementType());
    Alignment = getABITypeAlignment(ATy->getElementType());
    uint64_t AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
    return AlignedSize*ATy->getNumElements();
  }
  case Type::StructTyID: {
    // Get the layout annotation... which is lazily created on demand.
    const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
    return Layout->getSizeInBytes();
  }
  case Type::IntegerTyID: {
    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    if (BitWidth <= 8) {
      return 1;
    } else if (BitWidth <= 16) {
      return 2;
    } else if (BitWidth <= 32) {
      return 4;
    } else if (BitWidth <= 64) {
      return 8;
    } else {
      // The size of this > 64 bit type is chosen as a multiple of the
      // preferred alignment of the largest "native" size the target supports. 
      // We first obtain the the alignment info for this type and then compute
      // the next largest multiple of that size.
      uint64_t size = getAlignmentInfo(INTEGER_ALIGN, BitWidth, false) * 8;
      return (((BitWidth / (size)) + (BitWidth % size != 0)) * size) / 8;
    }
    break;
  }
  case Type::VoidTyID:
    return 1;
  case Type::FloatTyID:
    return 4;
  case Type::DoubleTyID:
    return 8;
  case Type::PPC_FP128TyID:
  case Type::FP128TyID:
    return 16;
  // In memory objects this is always aligned to a higher boundary, but
  // only 10 bytes contain information.
  case Type::X86_FP80TyID:
    return 10;
  case Type::VectorTyID: {
    const VectorType *PTy = cast<VectorType>(Ty);
    return PTy->getBitWidth() / 8;
  }
  default:
    assert(0 && "TargetData::getTypeSize(): Unsupported type");
    break;
  }
  return 0;
}

uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
  if (Ty->isInteger())
    return cast<IntegerType>(Ty)->getBitWidth();
  else
    return getTypeSize(Ty) * 8;
}


/*!
  \param abi_or_pref Flag that determines which alignment is returned. true
  returns the ABI alignment, false returns the preferred alignment.
  \param Ty The underlying type for which alignment is determined.

  Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
  == false) for the requested type \a Ty.
 */
unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
  int AlignType = -1;

  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
  switch (Ty->getTypeID()) {
  /* Early escape for the non-numeric types */
  case Type::LabelTyID:
  case Type::PointerTyID:
    return (abi_or_pref
            ? getPointerABIAlignment()
            : getPointerPrefAlignment());
  case Type::ArrayTyID:
    return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
    
  case Type::StructTyID: {
    // Packed structure types always have an ABI alignment of one.
    if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
      return 1;
    
    // Get the layout annotation... which is lazily created on demand.
    const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
    unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref);
    return std::max(Align, (unsigned)Layout->getAlignment());
  }
  case Type::IntegerTyID:
  case Type::VoidTyID:
    AlignType = INTEGER_ALIGN;
    break;
  case Type::FloatTyID:
  case Type::DoubleTyID:
  // PPC_FP128TyID and FP128TyID have different data contents, but the
  // same size and alignment, so they look the same here.
  case Type::PPC_FP128TyID:
  case Type::FP128TyID:
  case Type::X86_FP80TyID:
    AlignType = FLOAT_ALIGN;
    break;
  case Type::VectorTyID: {
    const VectorType *VTy = cast<VectorType>(Ty);
    // Degenerate vectors are assumed to be scalar-ized
    if (VTy->getNumElements() == 1)
      return getAlignment(VTy->getElementType(), abi_or_pref);
    else
      AlignType = VECTOR_ALIGN;
    break;
  }
  default:
    assert(0 && "Bad type for getAlignment!!!");
    break;
  }

  return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSize(Ty) * 8,
                          abi_or_pref);
}

unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
  return getAlignment(Ty, true);
}

unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const {
  for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
    if (Alignments[i].AlignType == STACK_ALIGN)
      return Alignments[i].ABIAlign;

  return getABITypeAlignment(Ty);
}

unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
  return getAlignment(Ty, false);
}

unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
  unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
  assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
  return Log2_32(Align);
}

/// getIntPtrType - Return an unsigned integer type that is the same size or
/// greater to the host pointer size.
const Type *TargetData::getIntPtrType() const {
  switch (getPointerSize()) {
  default: assert(0 && "Unknown pointer size!");
  case 2: return Type::Int16Ty;
  case 4: return Type::Int32Ty;
  case 8: return Type::Int64Ty;
  }
}


uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
                                      unsigned NumIndices) const {
  const Type *Ty = ptrTy;
  assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()");
  uint64_t Result = 0;

  generic_gep_type_iterator<Value* const*>
    TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
  for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
    if (const StructType *STy = dyn_cast<StructType>(*TI)) {
      assert(Indices[CurIDX]->getType() == Type::Int32Ty &&
             "Illegal struct idx");
      unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();

      // Get structure layout information...
      const StructLayout *Layout = getStructLayout(STy);

      // Add in the offset, as calculated by the structure layout info...
      Result += Layout->getElementOffset(FieldNo);

      // Update Ty to refer to current element
      Ty = STy->getElementType(FieldNo);
    } else {
      // Update Ty to refer to current element
      Ty = cast<SequentialType>(Ty)->getElementType();

      // Get the array index and the size of each array element.
      int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
      Result += arrayIdx * (int64_t)getTypeSize(Ty);
    }
  }

  return Result;
}

/// getPreferredAlignmentLog - Return the preferred alignment of the
/// specified global, returned in log form.  This includes an explicitly
/// requested alignment (if the global has one).
unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
  const Type *ElemType = GV->getType()->getElementType();
  unsigned Alignment = getPreferredTypeAlignmentShift(ElemType);
  if (GV->getAlignment() > (1U << Alignment))
    Alignment = Log2_32(GV->getAlignment());
  
  if (GV->hasInitializer()) {
    if (Alignment < 4) {
      // If the global is not external, see if it is large.  If so, give it a
      // larger alignment.
      if (getTypeSize(ElemType) > 128)
        Alignment = 4;    // 16-byte alignment.
    }
  }
  return Alignment;
}