llvm.org GIT mirror llvm / release_21 lib / Target / PowerPC / PPCISelDAGToDAG.cpp
release_21

Tree @release_21 (Download .tar.gz)

PPCISelDAGToDAG.cpp @release_21raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for PowerPC,
// converting from a legalized dag to a PPC dag.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "ppc-codegen"
#include "PPC.h"
#include "PPCPredicates.h"
#include "PPCTargetMachine.h"
#include "PPCISelLowering.h"
#include "PPCHazardRecognizers.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <queue>
#include <set>
using namespace llvm;

namespace {
  //===--------------------------------------------------------------------===//
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
  /// instructions for SelectionDAG operations.
  ///
  class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
    PPCTargetMachine &TM;
    PPCTargetLowering PPCLowering;
    unsigned GlobalBaseReg;
  public:
    PPCDAGToDAGISel(PPCTargetMachine &tm)
      : SelectionDAGISel(PPCLowering), TM(tm),
        PPCLowering(*TM.getTargetLowering()) {}
    
    virtual bool runOnFunction(Function &Fn) {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      SelectionDAGISel::runOnFunction(Fn);
      
      InsertVRSaveCode(Fn);
      return true;
    }
   
    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDOperand getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getI64Imm - Return a target constant with the specified value, of type
    /// i64.
    inline SDOperand getI64Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i64);
    }
    
    /// getSmallIPtrImm - Return a target constant of pointer type.
    inline SDOperand getSmallIPtrImm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
    }
    
    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 
    /// with any number of 0s on either side.  The 1s are allowed to wrap from
    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
    /// 0x0F0F0000 is not, since all 1s are not contiguous.
    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);


    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
    /// rotate and mask opcode and mask operation.
    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
                                unsigned &SH, unsigned &MB, unsigned &ME);
    
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    SDNode *getGlobalBaseReg();
    
    // Select - Convert the specified operand from a target-independent to a
    // target-specific node if it hasn't already been changed.
    SDNode *Select(SDOperand Op);
    
    SDNode *SelectBitfieldInsert(SDNode *N);

    /// SelectCC - Select a comparison of the specified values with the
    /// specified condition code, returning the CR# of the expression.
    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);

    /// SelectAddrImm - Returns true if the address N can be represented by
    /// a base register plus a signed 16-bit displacement [r+imm].
    bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
                       SDOperand &Base) {
      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
    }
    
    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    /// immediate field.  Because preinc imms have already been validated, just
    /// accept it.
    bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
      Out = N;
      return true;
    }
      
    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    /// represented as an indexed [r+r] operation.  Returns false if it can
    /// be represented by [r+imm], which are preferred.
    bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
                       SDOperand &Index) {
      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
    }
    
    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
                           SDOperand &Index) {
      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    }

    /// SelectAddrImmShift - Returns true if the address N can be represented by
    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
    /// for use by STD and friends.
    bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
                            SDOperand &Base) {
      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
    }
      
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    /// inline asm expressions.
    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
                                              char ConstraintCode,
                                              std::vector<SDOperand> &OutOps,
                                              SelectionDAG &DAG) {
      SDOperand Op0, Op1;
      switch (ConstraintCode) {
      default: return true;
      case 'm':   // memory
        if (!SelectAddrIdx(Op, Op, Op0, Op1))
          SelectAddrImm(Op, Op, Op0, Op1);
        break;
      case 'o':   // offsetable
        if (!SelectAddrImm(Op, Op, Op0, Op1)) {
          Op0 = Op;
          AddToISelQueue(Op0);     // r+0.
          Op1 = getSmallIPtrImm(0);
        }
        break;
      case 'v':   // not offsetable
        SelectAddrIdxOnly(Op, Op, Op0, Op1);
        break;
      }
      
      OutOps.push_back(Op0);
      OutOps.push_back(Op1);
      return false;
    }
    
    SDOperand BuildSDIVSequence(SDNode *N);
    SDOperand BuildUDIVSequence(SDNode *N);
    
    /// InstructionSelectBasicBlock - This callback is invoked by
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
    
    void InsertVRSaveCode(Function &Fn);

    virtual const char *getPassName() const {
      return "PowerPC DAG->DAG Pattern Instruction Selection";
    } 
    
    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
    /// this target when scheduling the DAG.
    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
      // Should use subtarget info to pick the right hazard recognizer.  For
      // now, always return a PPC970 recognizer.
      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
      assert(II && "No InstrInfo?");
      return new PPCHazardRecognizer970(*II); 
    }

// Include the pieces autogenerated from the target description.
#include "PPCGenDAGISel.inc"
    
private:
    SDNode *SelectSETCC(SDOperand Op);
  };
}

/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
  DEBUG(BB->dump());

  // Select target instructions for the DAG.
  DAG.setRoot(SelectRoot(DAG.getRoot()));
  DAG.RemoveDeadNodes();
  
  // Emit machine code to BB.
  ScheduleAndEmitDAG(DAG);
}

/// InsertVRSaveCode - Once the entire function has been instruction selected,
/// all virtual registers are created and all machine instructions are built,
/// check to see if we need to save/restore VRSAVE.  If so, do it.
void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
  // Check to see if this function uses vector registers, which means we have to
  // save and restore the VRSAVE register and update it with the regs we use.  
  //
  // In this case, there will be virtual registers of vector type type created
  // by the scheduler.  Detect them now.
  MachineFunction &Fn = MachineFunction::get(&F);
  SSARegMap *RegMap = Fn.getSSARegMap();
  bool HasVectorVReg = false;
  for (unsigned i = MRegisterInfo::FirstVirtualRegister, 
       e = RegMap->getLastVirtReg()+1; i != e; ++i)
    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
      HasVectorVReg = true;
      break;
    }
  if (!HasVectorVReg) return;  // nothing to do.
      
  // If we have a vector register, we want to emit code into the entry and exit
  // blocks to save and restore the VRSAVE register.  We do this here (instead
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
  //
  // 1. This (trivially) reduces the load on the register allocator, by not
  //    having to represent the live range of the VRSAVE register.
  // 2. This (more significantly) allows us to create a temporary virtual
  //    register to hold the saved VRSAVE value, allowing this temporary to be
  //    register allocated, instead of forcing it to be spilled to the stack.

  // Create two vregs - one to hold the VRSAVE register that is live-in to the
  // function and one for the value after having bits or'd into it.
  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
  
  const TargetInstrInfo &TII = *TM.getInstrInfo();
  MachineBasicBlock &EntryBB = *Fn.begin();
  // Emit the following code into the entry block:
  // InVRSAVE = MFVRSAVE
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
  // MTVRSAVE UpdatedVRSAVE
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
  BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
  BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE);
  BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
  
  // Find all return blocks, outputting a restore in each epilog.
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
      IP = BB->end(); --IP;
      
      // Skip over all terminator instructions, which are part of the return
      // sequence.
      MachineBasicBlock::iterator I2 = IP;
      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
        IP = I2;
      
      // Emit: MTVRSAVE InVRSave
      BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    }        
  }
}


/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
  if (!GlobalBaseReg) {
    const TargetInstrInfo &TII = *TM.getInstrInfo();
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();

    if (PPCLowering.getPointerTy() == MVT::i32) {
      GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
    } else {
      GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
    }
  }
  return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
}

/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value.  If so, this returns true and the
/// immediate.
static bool isIntS16Immediate(SDNode *N, short &Imm) {
  if (N->getOpcode() != ISD::Constant)
    return false;

  Imm = (short)cast<ConstantSDNode>(N)->getValue();
  if (N->getValueType(0) == MVT::i32)
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
  else
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
}

static bool isIntS16Immediate(SDOperand Op, short &Imm) {
  return isIntS16Immediate(Op.Val, Imm);
}


/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
/// operand. If so Imm will receive the 32-bit value.
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    Imm = cast<ConstantSDNode>(N)->getValue();
    return true;
  }
  return false;
}

/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
/// operand.  If so Imm will receive the 64-bit value.
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    Imm = cast<ConstantSDNode>(N)->getValue();
    return true;
  }
  return false;
}

// isInt32Immediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
  return isInt32Immediate(N.Val, Imm);
}


// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
  return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
}

bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
  if (isShiftedMask_32(Val)) {
    // look for the first non-zero bit
    MB = CountLeadingZeros_32(Val);
    // look for the first zero bit after the run of ones
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
    return true;
  } else {
    Val = ~Val; // invert mask
    if (isShiftedMask_32(Val)) {
      // effectively look for the first zero bit
      ME = CountLeadingZeros_32(Val) - 1;
      // effectively look for the first one bit after the run of zeros
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
      return true;
    }
  }
  // no run present
  return false;
}

bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 
                                      bool IsShiftMask, unsigned &SH, 
                                      unsigned &MB, unsigned &ME) {
  // Don't even go down this path for i64, since different logic will be
  // necessary for rldicl/rldicr/rldimi.
  if (N->getValueType(0) != MVT::i32)
    return false;

  unsigned Shift  = 32;
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
  unsigned Opcode = N->getOpcode();
  if (N->getNumOperands() != 2 ||
      !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
    return false;
  
  if (Opcode == ISD::SHL) {
    // apply shift left to mask if it comes first
    if (IsShiftMask) Mask = Mask << Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu << Shift);
  } else if (Opcode == ISD::SRL) { 
    // apply shift right to mask if it comes first
    if (IsShiftMask) Mask = Mask >> Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
    // adjust for the left rotate
    Shift = 32 - Shift;
  } else if (Opcode == ISD::ROTL) {
    Indeterminant = 0;
  } else {
    return false;
  }
  
  // if the mask doesn't intersect any Indeterminant bits
  if (Mask && !(Mask & Indeterminant)) {
    SH = Shift & 31;
    // make sure the mask is still a mask (wrap arounds may not be)
    return isRunOfOnes(Mask, MB, ME);
  }
  return false;
}

/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
  SDOperand Op0 = N->getOperand(0);
  SDOperand Op1 = N->getOperand(1);
  
  uint64_t LKZ, LKO, RKZ, RKO;
  CurDAG->ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
  CurDAG->ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
  
  unsigned TargetMask = LKZ;
  unsigned InsertMask = RKZ;
  
  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    unsigned Op0Opc = Op0.getOpcode();
    unsigned Op1Opc = Op1.getOpcode();
    unsigned Value, SH = 0;
    TargetMask = ~TargetMask;
    InsertMask = ~InsertMask;

    // If the LHS has a foldable shift and the RHS does not, then swap it to the
    // RHS so that we can fold the shift into the insert.
    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
          Op0.getOperand(0).getOpcode() == ISD::SRL) {
        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
            Op1.getOperand(0).getOpcode() != ISD::SRL) {
          std::swap(Op0, Op1);
          std::swap(Op0Opc, Op1Opc);
          std::swap(TargetMask, InsertMask);
        }
      }
    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
          Op1.getOperand(0).getOpcode() != ISD::SRL) {
        std::swap(Op0, Op1);
        std::swap(Op0Opc, Op1Opc);
        std::swap(TargetMask, InsertMask);
      }
    }
    
    unsigned MB, ME;
    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
      SDOperand Tmp1, Tmp2, Tmp3;
      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;

      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
          isInt32Immediate(Op1.getOperand(1), Value)) {
        Op1 = Op1.getOperand(0);
        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
      }
      if (Op1Opc == ISD::AND) {
        unsigned SHOpc = Op1.getOperand(0).getOpcode();
        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
          Op1 = Op1.getOperand(0).getOperand(0);
          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
        } else {
          Op1 = Op1.getOperand(0);
        }
      }
      
      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
      AddToISelQueue(Tmp3);
      AddToISelQueue(Op1);
      SH &= 31;
      SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
                          getI32Imm(ME) };
      return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
    }
  }
  return 0;
}

/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
                                    ISD::CondCode CC) {
  // Always select the LHS.
  AddToISelQueue(LHS);
  unsigned Opc;
  
  if (LHS.getValueType() == MVT::i32) {
    unsigned Imm;
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
      if (isInt32Immediate(RHS, Imm)) {
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
        if (isUInt16(Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        // If this is a 16-bit signed immediate, fold it.
        if (isInt16((int)Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        
        // For non-equality comparisons, the default code would materialize the
        // constant, then compare against it, like this:
        //   lis r2, 4660
        //   ori r2, r2, 22136 
        //   cmpw cr0, r3, r2
        // Since we are just comparing for equality, we can emit this instead:
        //   xoris r0,r3,0x1234
        //   cmplwi cr0,r0,0x5678
        //   beq cr0,L6
        SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
                                            getI32Imm(Imm >> 16)), 0);
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
                                               getI32Imm(Imm & 0xFFFF)), 0);
      }
      Opc = PPC::CMPLW;
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
                                               getI32Imm(Imm & 0xFFFF)), 0);
      Opc = PPC::CMPLW;
    } else {
      short SImm;
      if (isIntS16Immediate(RHS, SImm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
                                               getI32Imm((int)SImm & 0xFFFF)),
                         0);
      Opc = PPC::CMPW;
    }
  } else if (LHS.getValueType() == MVT::i64) {
    uint64_t Imm;
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
      if (isInt64Immediate(RHS.Val, Imm)) {
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
        if (isUInt16(Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        // If this is a 16-bit signed immediate, fold it.
        if (isInt16(Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        
        // For non-equality comparisons, the default code would materialize the
        // constant, then compare against it, like this:
        //   lis r2, 4660
        //   ori r2, r2, 22136 
        //   cmpd cr0, r3, r2
        // Since we are just comparing for equality, we can emit this instead:
        //   xoris r0,r3,0x1234
        //   cmpldi cr0,r0,0x5678
        //   beq cr0,L6
        if (isUInt32(Imm)) {
          SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
                                              getI64Imm(Imm >> 16)), 0);
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
                                                 getI64Imm(Imm & 0xFFFF)), 0);
        }
      }
      Opc = PPC::CMPLD;
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
                                               getI64Imm(Imm & 0xFFFF)), 0);
      Opc = PPC::CMPLD;
    } else {
      short SImm;
      if (isIntS16Immediate(RHS, SImm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
                                               getI64Imm(SImm & 0xFFFF)),
                         0);
      Opc = PPC::CMPD;
    }
  } else if (LHS.getValueType() == MVT::f32) {
    Opc = PPC::FCMPUS;
  } else {
    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
    Opc = PPC::FCMPUD;
  }
  AddToISelQueue(RHS);
  return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
}

static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
  switch (CC) {
  default: assert(0 && "Unknown condition!"); abort();
  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
  case ISD::SETUEQ:
  case ISD::SETEQ:  return PPC::PRED_EQ;
  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
  case ISD::SETUNE:
  case ISD::SETNE:  return PPC::PRED_NE;
  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
  case ISD::SETULT:
  case ISD::SETLT:  return PPC::PRED_LT;
  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
  case ISD::SETULE:
  case ISD::SETLE:  return PPC::PRED_LE;
  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
  case ISD::SETUGT:
  case ISD::SETGT:  return PPC::PRED_GT;
  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
  case ISD::SETUGE:
  case ISD::SETGE:  return PPC::PRED_GE;
    
  case ISD::SETO:   return PPC::PRED_NU;
  case ISD::SETUO:  return PPC::PRED_UN;
  }
}

/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
  switch (CC) {
  default: assert(0 && "Unknown condition!"); abort();
  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
  case ISD::SETULT:
  case ISD::SETLT:  Inv = false;  return 0;
  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
  case ISD::SETUGE:
  case ISD::SETGE:  Inv = true;   return 0;
  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
  case ISD::SETUGT:
  case ISD::SETGT:  Inv = false;  return 1;
  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
  case ISD::SETULE:
  case ISD::SETLE:  Inv = true;   return 1;
  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
  case ISD::SETUEQ:
  case ISD::SETEQ:  Inv = false;  return 2;
  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
  case ISD::SETUNE:
  case ISD::SETNE:  Inv = true;   return 2;
  case ISD::SETO:   Inv = true;   return 3;
  case ISD::SETUO:  Inv = false;  return 3;
  }
  return 0;
}

SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
  SDNode *N = Op.Val;
  unsigned Imm;
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  if (isInt32Immediate(N->getOperand(1), Imm)) {
    // We can codegen setcc op, imm very efficiently compared to a brcond.
    // Check for those cases here.
    // setcc op, 0
    if (Imm == 0) {
      SDOperand Op = N->getOperand(0);
      AddToISelQueue(Op);
      switch (CC) {
      default: break;
      case ISD::SETEQ: {
        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
        SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      case ISD::SETNE: {
        SDOperand AD =
          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                          Op, getI32Imm(~0U)), 0);
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
                                    AD.getValue(1));
      }
      case ISD::SETLT: {
        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      case ISD::SETGT: {
        SDOperand T =
          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
        SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      }
    } else if (Imm == ~0U) {        // setcc op, -1
      SDOperand Op = N->getOperand(0);
      AddToISelQueue(Op);
      switch (CC) {
      default: break;
      case ISD::SETEQ:
        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                             Op, getI32Imm(1)), 0);
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
                                                              getI32Imm(0)), 0),
                                    Op.getValue(1));
      case ISD::SETNE: {
        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                           Op, getI32Imm(~0U));
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
                                    Op, SDOperand(AD, 1));
      }
      case ISD::SETLT: {
        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
                                                       getI32Imm(1)), 0);
        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
                                                       Op), 0);
        SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      case ISD::SETGT: {
        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 
                                    getI32Imm(1));
      }
      }
    }
  }
  
  bool Inv;
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
  SDOperand IntCR;
  
  // Force the ccreg into CR7.
  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
  
  SDOperand InFlag(0, 0);  // Null incoming flag value.
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
                               InFlag).getValue(1);
  
  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
                                            CCReg), 0);
  else
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
  
  SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
                      getI32Imm(31), getI32Imm(31) };
  if (!Inv) {
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
  } else {
    SDOperand Tmp =
      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
  }
}


// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
  SDNode *N = Op.Val;
  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
      N->getOpcode() < PPCISD::FIRST_NUMBER)
    return NULL;   // Already selected.

  switch (N->getOpcode()) {
  default: break;
  
  case ISD::Constant: {
    if (N->getValueType(0) == MVT::i64) {
      // Get 64 bit value.
      int64_t Imm = cast<ConstantSDNode>(N)->getValue();
      // Assume no remaining bits.
      unsigned Remainder = 0;
      // Assume no shift required.
      unsigned Shift = 0;
      
      // If it can't be represented as a 32 bit value.
      if (!isInt32(Imm)) {
        Shift = CountTrailingZeros_64(Imm);
        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
        
        // If the shifted value fits 32 bits.
        if (isInt32(ImmSh)) {
          // Go with the shifted value.
          Imm = ImmSh;
        } else {
          // Still stuck with a 64 bit value.
          Remainder = Imm;
          Shift = 32;
          Imm >>= 32;
        }
      }
      
      // Intermediate operand.
      SDNode *Result;

      // Handle first 32 bits.
      unsigned Lo = Imm & 0xFFFF;
      unsigned Hi = (Imm >> 16) & 0xFFFF;
      
      // Simple value.
      if (isInt16(Imm)) {
       // Just the Lo bits.
        Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
      } else if (Lo) {
        // Handle the Hi bits.
        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
        Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
        // And Lo bits.
        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
                                       SDOperand(Result, 0), getI32Imm(Lo));
      } else {
       // Just the Hi bits.
        Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
      }
      
      // If no shift, we're done.
      if (!Shift) return Result;

      // Shift for next step if the upper 32-bits were not zero.
      if (Imm) {
        Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
                                       SDOperand(Result, 0),
                                       getI32Imm(Shift), getI32Imm(63 - Shift));
      }

      // Add in the last bits as required.
      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
        Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
                                       SDOperand(Result, 0), getI32Imm(Hi));
      } 
      if ((Lo = Remainder & 0xFFFF)) {
        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
                                       SDOperand(Result, 0), getI32Imm(Lo));
      }
      
      return Result;
    }
    break;
  }
  
  case ISD::SETCC:
    return SelectSETCC(Op);
  case PPCISD::GlobalBaseReg:
    return getGlobalBaseReg();
    
  case ISD::FrameIndex: {
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
    SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
    unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
    if (N->hasOneUse())
      return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
                                  getSmallIPtrImm(0));
    return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
                                 getSmallIPtrImm(0));
  }

  case PPCISD::MFCR: {
    SDOperand InFlag = N->getOperand(1);
    AddToISelQueue(InFlag);
    // Use MFOCRF if supported.
    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
      return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
                                   N->getOperand(0), InFlag);
    else
      return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
  }
    
  case ISD::SDIV: {
    // FIXME: since this depends on the setting of the carry flag from the srawi
    //        we should really be making notes about that for the scheduler.
    // FIXME: It sure would be nice if we could cheaply recognize the 
    //        srl/add/sra pattern the dag combiner will generate for this as
    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
    unsigned Imm;
    if (isInt32Immediate(N->getOperand(1), Imm)) {
      SDOperand N0 = N->getOperand(0);
      AddToISelQueue(N0);
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
        SDNode *Op =
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
                                N0, getI32Imm(Log2_32(Imm)));
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
                                    SDOperand(Op, 0), SDOperand(Op, 1));
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
        SDNode *Op =
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
                                N0, getI32Imm(Log2_32(-Imm)));
        SDOperand PT =
          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
                                          SDOperand(Op, 0), SDOperand(Op, 1)),
                    0);
        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
      }
    }
    
    // Other cases are autogenerated.
    break;
  }
    
  case ISD::LOAD: {
    // Handle preincrement loads.
    LoadSDNode *LD = cast<LoadSDNode>(Op);
    MVT::ValueType LoadedVT = LD->getLoadedVT();
    
    // Normal loads are handled by code generated from the .td file.
    if (LD->getAddressingMode() != ISD::PRE_INC)
      break;
    
    SDOperand Offset = LD->getOffset();
    if (isa<ConstantSDNode>(Offset) ||
        Offset.getOpcode() == ISD::TargetGlobalAddress) {
      
      unsigned Opcode;
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
      if (LD->getValueType(0) != MVT::i64) {
        // Handle PPC32 integer and normal FP loads.
        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
        switch (LoadedVT) {
          default: assert(0 && "Invalid PPC load type!");
          case MVT::f64: Opcode = PPC::LFDU; break;
          case MVT::f32: Opcode = PPC::LFSU; break;
          case MVT::i32: Opcode = PPC::LWZU; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZU; break;
        }
      } else {
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
        switch (LoadedVT) {
          default: assert(0 && "Invalid PPC load type!");
          case MVT::i64: Opcode = PPC::LDU; break;
          case MVT::i32: Opcode = PPC::LWZU8; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZU8; break;
        }
      }
      
      SDOperand Chain = LD->getChain();
      SDOperand Base = LD->getBasePtr();
      AddToISelQueue(Chain);
      AddToISelQueue(Base);
      AddToISelQueue(Offset);
      SDOperand Ops[] = { Offset, Base, Chain };
      // FIXME: PPC64
      return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
                                   MVT::Other, Ops, 3);
    } else {
      assert(0 && "R+R preindex loads not supported yet!");
    }
  }
    
  case ISD::AND: {
    unsigned Imm, Imm2, SH, MB, ME;

    // If this is an and of a value rotated between 0 and 31 bits and then and'd
    // with a mask, emit rlwinm
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
      SDOperand Val = N->getOperand(0).getOperand(0);
      AddToISelQueue(Val);
      SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    // If this is just a masked value where the input is not handled above, and
    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        isRunOfOnes(Imm, MB, ME) && 
        N->getOperand(0).getOpcode() != ISD::ROTL) {
      SDOperand Val = N->getOperand(0);
      AddToISelQueue(Val);
      SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    // AND X, 0 -> 0, not "rlwinm 32".
    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
      AddToISelQueue(N->getOperand(1));
      ReplaceUses(SDOperand(N, 0), N->getOperand(1));
      return NULL;
    }
    // ISD::OR doesn't get all the bitfield insertion fun.
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
    if (isInt32Immediate(N->getOperand(1), Imm) && 
        N->getOperand(0).getOpcode() == ISD::OR &&
        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
      unsigned MB, ME;
      Imm = ~(Imm^Imm2);
      if (isRunOfOnes(Imm, MB, ME)) {
        AddToISelQueue(N->getOperand(0).getOperand(0));
        AddToISelQueue(N->getOperand(0).getOperand(1));
        SDOperand Ops[] = { N->getOperand(0).getOperand(0),
                            N->getOperand(0).getOperand(1),
                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
        return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
      }
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::OR:
    if (N->getValueType(0) == MVT::i32)
      if (SDNode *I = SelectBitfieldInsert(N))
        return I;
      
    // Other cases are autogenerated.
    break;
  case ISD::SHL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
      AddToISelQueue(N->getOperand(0).getOperand(0));
      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::SRL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
      AddToISelQueue(N->getOperand(0).getOperand(0));
      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::SELECT_CC: {
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
    
    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
          if (N1C->isNullValue() && N3C->isNullValue() &&
              N2C->getValue() == 1ULL && CC == ISD::SETNE &&
              // FIXME: Implement this optzn for PPC64.
              N->getValueType(0) == MVT::i32) {
            AddToISelQueue(N->getOperand(0));
            SDNode *Tmp =
              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                    N->getOperand(0), getI32Imm(~0U));
            return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
                                        SDOperand(Tmp, 0), N->getOperand(0),
                                        SDOperand(Tmp, 1));
          }

    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
    unsigned BROpc = getPredicateForSetCC(CC);

    unsigned SelectCCOp;
    if (N->getValueType(0) == MVT::i32)
      SelectCCOp = PPC::SELECT_CC_I4;
    else if (N->getValueType(0) == MVT::i64)
      SelectCCOp = PPC::SELECT_CC_I8;
    else if (N->getValueType(0) == MVT::f32)
      SelectCCOp = PPC::SELECT_CC_F4;
    else if (N->getValueType(0) == MVT::f64)
      SelectCCOp = PPC::SELECT_CC_F8;
    else
      SelectCCOp = PPC::SELECT_CC_VRRC;

    AddToISelQueue(N->getOperand(2));
    AddToISelQueue(N->getOperand(3));
    SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
                        getI32Imm(BROpc) };
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
  }
  case PPCISD::COND_BRANCH: {
    AddToISelQueue(N->getOperand(0));  // Op #0 is the Chain.
    // Op #1 is the PPC::PRED_* number.
    // Op #2 is the CR#
    // Op #3 is the Dest MBB
    AddToISelQueue(N->getOperand(4));  // Op #4 is the Flag.
    // Prevent PPC::PRED_* from being selected into LI.
    SDOperand Pred =
      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
    SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
      N->getOperand(0), N->getOperand(4) };
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
  }
  case ISD::BR_CC: {
    AddToISelQueue(N->getOperand(0));
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
    SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 
                        N->getOperand(4), N->getOperand(0) };
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
  }
  case ISD::BRIND: {
    // FIXME: Should custom lower this.
    SDOperand Chain = N->getOperand(0);
    SDOperand Target = N->getOperand(1);
    AddToISelQueue(Chain);
    AddToISelQueue(Target);
    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
    Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
                                            Chain), 0);
    return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
  }
  }
  
  return SelectCode(Op);
}



/// createPPCISelDag - This pass converts a legalized DAG into a 
/// PowerPC-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
  return new PPCDAGToDAGISel(TM);
}