llvm.org GIT mirror llvm / release_21 lib / Target / ARM / ARMCodeEmitter.cpp
release_21

Tree @release_21 (Download .tar.gz)

ARMCodeEmitter.cpp @release_21raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the Raul Herbster and is distributed under the 
// University of Illinois Open Source License.  See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "arm-emitter"
#include "ARMInstrInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "ARMRelocations.h"
#include "ARMAddressingModes.h"
#include "ARM.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;

STATISTIC(NumEmitted, "Number of machine instructions emitted");

namespace {
  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
    const ARMInstrInfo  *II;
    const TargetData    *TD;
    TargetMachine       &TM;
    MachineCodeEmitter  &MCE;
  public:
    static char ID;
    explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
      : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm), 
      MCE(mce) {}
    Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
            const ARMInstrInfo &ii, const TargetData &td)
      : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm), 
      MCE(mce) {}

    bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const {
      return "ARM Machine Code Emitter";
    }

    void emitInstruction(const MachineInstr &MI);
    int getMachineOpValue(const MachineInstr &MI, unsigned OpIndex);
    unsigned getBaseOpcodeFor(const TargetInstrDescriptor *TID);
    unsigned getBinaryCodeForInstr(const MachineInstr &MI);

    void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                              int Disp = 0, unsigned PCAdj = 0 );
    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
                              unsigned PCAdj = 0);
    void emitGlobalConstant(const Constant *CV);
    void emitMachineBasicBlock(MachineBasicBlock *BB);

  private:
    int getShiftOp(const MachineOperand &MO);

  };
  char Emitter::ID = 0;
}

/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
/// to the specified MCE object.
FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
                                             MachineCodeEmitter &MCE) {
  return new Emitter(TM, MCE);
}

bool Emitter::runOnMachineFunction(MachineFunction &MF) {
  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
          MF.getTarget().getRelocationModel() != Reloc::Static) &&
         "JIT relocation model must be set to static or default!");
  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();

  do {
    MCE.startFunction(MF);
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
         MBB != E; ++MBB) {
      MCE.StartMachineBasicBlock(MBB);
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
           I != E; ++I)
        emitInstruction(*I);
    }
  } while (MCE.finishFunction(MF));

  return false;
}

/// getBaseOpcodeFor - Return the opcode value
unsigned Emitter::getBaseOpcodeFor(const TargetInstrDescriptor *TID) {
  return (TID->TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
}

/// getShiftOp - Verify which is the shift opcode (bit[6:5]) of the
/// machine operand.
int Emitter::getShiftOp(const MachineOperand &MO) {
  unsigned ShiftOp = 0x0;
  switch(ARM_AM::getAM2ShiftOpc(MO.getImmedValue())) {
  default: assert(0 && "Unknown shift opc!");
  case ARM_AM::asr:
    ShiftOp = 0X2;
    break;
  case ARM_AM::lsl:
    ShiftOp = 0X0;
    break;
  case ARM_AM::lsr:
    ShiftOp = 0X1;
    break;
  case ARM_AM::ror:
  case ARM_AM::rrx:
    ShiftOp = 0X3;
    break;
  }
  return ShiftOp;
}

int Emitter::getMachineOpValue(const MachineInstr &MI, unsigned OpIndex) {
  intptr_t rv = 0;
  const MachineOperand &MO = MI.getOperand(OpIndex);
  if (MO.isRegister()) {
    assert(MRegisterInfo::isPhysicalRegister(MO.getReg()));
    rv = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
  } else if (MO.isImmediate()) {
    rv = MO.getImmedValue();
  } else if (MO.isGlobalAddress()) {
    emitGlobalAddressForCall(MO.getGlobal(), false);
  } else if (MO.isExternalSymbol()) {
    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
  } else if (MO.isConstantPoolIndex()) {
    emitConstPoolAddress(MO.getConstantPoolIndex(), ARM::reloc_arm_relative);
  } else if (MO.isJumpTableIndex()) {
    emitJumpTableAddress(MO.getJumpTableIndex(), ARM::reloc_arm_relative);
  } else if (MO.isMachineBasicBlock()) {
    emitMachineBasicBlock(MO.getMachineBasicBlock());
  }

  return rv;
}

/// emitGlobalAddressForCall - Emit the specified address to the code stream
/// assuming this is part of a function call, which is PC relative.
///
void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
                                      ARM::reloc_arm_branch, GV, 0,
                                      DoesntNeedStub));
}

/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
                                                 Reloc, ES));
}

/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                                   int Disp /* = 0 */,
                                   unsigned PCAdj /* = 0 */) {
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
                                                    Reloc, CPI, PCAdj));
}

/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
                                   unsigned PCAdj /* = 0 */) {
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
                                                    Reloc, JTI, PCAdj));
}

/// emitMachineBasicBlock - Emit the specified address basic block.
void Emitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
                                      ARM::reloc_arm_branch, BB));
}

void Emitter::emitInstruction(const MachineInstr &MI) {
  NumEmitted++;  // Keep track of the # of mi's emitted
  MCE.emitWordLE(getBinaryCodeForInstr(MI));
}

unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
  const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
  const unsigned opcode = MI.getOpcode();
  // initial instruction mask
  unsigned Value = 0xE0000000;
  unsigned op;

  switch (Desc->TSFlags & ARMII::AddrModeMask) {
  case ARMII::AddrModeNone: {
    switch(Desc->TSFlags & ARMII::FormMask) {
    default: {
      assert(0 && "Unknown instruction subtype!");
      // treat special instruction CLZ
      if(opcode == ARM::CLZ) {
        // set first operand
        op = getMachineOpValue(MI,0);
        Value |= op << ARMII::RegRdShift;

        // set second operand
        op = getMachineOpValue(MI,1);
        Value |= op;
      }
      break;
    }
    case ARMII::MulSMLAW:
    case ARMII::MulSMULW:
      // set bit W(21)
      Value |= 1 << 21;
    case ARMII::MulSMLA:
    case ARMII::MulSMUL: {
      // set bit W(21)
      Value |= 1 << 24;

      // set opcode (bit[7:4]). For more information, see ARM-ARM page A3-31
      // SMLA<x><y>  - 1yx0
      // SMLAW<y>    - 1y00
      // SMULW<y>    - 1y10
      // SMUL<x><y>  - 1yx0
      unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
      Value |= BaseOpcode << 4;

      unsigned Format = (Desc->TSFlags & ARMII::FormMask);
      if (Format == ARMII::MulSMUL)
        Value |= 1 << 22;

      // set first operand
      op = getMachineOpValue(MI,0);
      Value |= op << ARMII::RegRnShift;

      // set second operand
      op = getMachineOpValue(MI,1);
      Value |= op;

      // set third operand
      op = getMachineOpValue(MI,2);
      Value |= op << ARMII::RegRsShift;

      // instructions SMLA and SMLAW have a fourth operand
      if (Format != ARMII::MulSMULW && Format != ARMII::MulSMUL) {
        op = getMachineOpValue(MI,3);
        Value |= op << ARMII::RegRdShift;
      }

      break;
    }
    case ARMII::MulFrm: {
      // bit[7:4] is always 9
      Value |= 9 << 4;
      // set opcode (bit[23:20])
      unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
      Value |= BaseOpcode << 20;

      bool isMUL = opcode == ARM::MUL;
      bool isMLA = opcode == ARM::MLA;

      // set first operand
      op = getMachineOpValue(MI,0);
      Value |= op << (isMUL || isMLA ? ARMII::RegRnShift : ARMII::RegRdShift);

      // set second operand
      op = getMachineOpValue(MI,1);
      Value |= op << (isMUL || isMLA ? 0 : ARMII::RegRnShift);

      // set third operand
      op = getMachineOpValue(MI,2);
      Value |= op << (isMUL || isMLA ? ARMII::RegRsShift : 0);

      // multiply instructions (except MUL), have a fourth operand
      if (!isMUL) {
        op = getMachineOpValue(MI,3);
        Value |= op << (isMLA ? ARMII::RegRdShift : ARMII::RegRsShift);
      }

      break;
    }
    case ARMII::Branch: {
      // set opcode (bit[27:24])
      unsigned BaseOpcode = getBaseOpcodeFor(Desc);
      Value |= BaseOpcode << 24;

      // set signed_immed_24 field
      op = getMachineOpValue(MI,0);
      Value |= op;

      // if it is a conditional branch, set cond field
      if (opcode == ARM::Bcc) {
        op = getMachineOpValue(MI,1);
        Value &= 0x0FFFFFFF; // clear conditional field
        Value |= op << 28;   // set conditional field
      }

      break;
    }
    case ARMII::BranchMisc: {
      // set opcode (bit[7:4])
      unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
      Value |= BaseOpcode << 4;
      // set bit[27:24] to 1, set bit[23:20] to 2 and set bit[19:8] to 0xFFF
      Value |= 0x12fff << 8;

      if (opcode == ARM::BX_RET)
        op = 0xe; // the return register is LR
      else 
        // otherwise, set the return register
        op = getMachineOpValue(MI,0);
      Value |= op;

      break;
    }
    case ARMII::Pseudo:
      break;
    }

    break;
  }
  case ARMII::AddrMode1: {
    // set opcode (bit[24:21]) of data-processing instructions
    unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
    Value |= BaseOpcode << 21;

    // treat 3 special instructions: MOVsra_flag, MOVsrl_flag and
    // MOVrx.
    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
    if (Format == ARMII::DPRdMisc) {
      Value |= getMachineOpValue(MI,0) << ARMII::RegRdShift;
      Value |= getMachineOpValue(MI,1);
      switch(opcode) {
      case ARM::MOVsra_flag: {
        Value |= 0x1 << 6;
        Value |= 0x1 << 7;
        break;
      }
      case ARM::MOVsrl_flag: {
        Value |= 0x1 << 5;
        Value |= 0x1 << 7;
        break;
      }
      case ARM::MOVrx: {
        Value |= 0x3 << 5;
        break;
      }
      }
      break;
    }

    // Data processing operand instructions has 3 possible encodings (for more
    // information, see ARM-ARM page A3-10):
    // 1. <instr> <Rd>,<shifter_operand>
    // 2. <instr> <Rn>,<shifter_operand>
    // 3. <instr> <Rd>,<Rn>,<shifter_operand>
    bool IsDataProcessing1 = Format == ARMII::DPRdIm    ||
                             Format == ARMII::DPRdReg   ||
                             Format == ARMII::DPRdSoReg;
    bool IsDataProcessing2 = Format == ARMII::DPRnIm    ||
                             Format == ARMII::DPRnReg   ||
                             Format == ARMII::DPRnSoReg;
    bool IsDataProcessing3 = false;

    // set bit S(20)
    if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS ||
        Format == ARMII::DPRSoRegS || IsDataProcessing2) {
      Value |= 1 << ARMII::S_BitShift;
      IsDataProcessing3 = !IsDataProcessing2;
    }

    IsDataProcessing3 = Format == ARMII::DPRIm     ||
                        Format == ARMII::DPRReg    ||
                        Format == ARMII::DPRSoReg  ||
                        IsDataProcessing3;

    // set first operand
    op = getMachineOpValue(MI,0);
    if (IsDataProcessing1 || IsDataProcessing3) {
      Value |= op << ARMII::RegRdShift;
    } else if (IsDataProcessing2) {
      Value |= op << ARMII::RegRnShift;
    }

    // set second operand of data processing #3 instructions
    if (IsDataProcessing3) {
      op = getMachineOpValue(MI,1);
      Value |= op << ARMII::RegRnShift;
    }

    unsigned OperandIndex = IsDataProcessing3 ? 2 : 1;
    switch (Format) {
    case ARMII::DPRdIm: case ARMII::DPRnIm:
    case ARMII::DPRIm:  case ARMII::DPRImS: {
      // set bit I(25) to identify this is the immediate form of <shifter_op>
      Value |= 1 << ARMII::I_BitShift;
      // set immed_8 field
      const MachineOperand &MO = MI.getOperand(OperandIndex);
      op = ARM_AM::getSOImmVal(MO.getImmedValue());
      Value |= op;

      break;
    }
    case ARMII::DPRdReg: case ARMII::DPRnReg:
    case ARMII::DPRReg:  case ARMII::DPRRegS: {
      // set last operand (register Rm)
      op = getMachineOpValue(MI,OperandIndex);
      Value |= op;

      break;
    }
    case ARMII::DPRdSoReg: case ARMII::DPRnSoReg:
    case ARMII::DPRSoReg:  case ARMII::DPRSoRegS: {
      // set last operand (register Rm)
      op = getMachineOpValue(MI,OperandIndex);
      Value |= op;

      const MachineOperand &MO1 = MI.getOperand(OperandIndex + 1);
      const MachineOperand &MO2 = MI.getOperand(OperandIndex + 2);
      // identify it the instr is in immed or register shifts encoding
      bool IsShiftByRegister = MO1.getReg() > 0;
      // set shift operand (bit[6:4]).
      // ASR - 101 if it is in register shifts encoding; 100, otherwise.
      // LSL - 001 if it is in register shifts encoding; 000, otherwise.
      // LSR - 011 if it is in register shifts encoding; 010, otherwise.
      // ROR - 111 if it is in register shifts encoding; 110, otherwise.
      // RRX - 110 and bit[11:7] clear.
      switch(ARM_AM::getSORegShOp(MO2.getImmedValue())) {
        default: assert(0 && "Unknown shift opc!");
        case ARM_AM::asr: {
          if(IsShiftByRegister)
            Value |= 0x5 << 4;
          else
            Value |= 0x1 << 6;
          break;
        }
        case ARM_AM::lsl: {
          if(IsShiftByRegister)
            Value |= 0x1 << 4;
          break;
        }
        case ARM_AM::lsr: {
          if(IsShiftByRegister)
            Value |= 0x3 << 4;
          else
            Value |= 0x1 << 5;
          break;
        }
        case ARM_AM::ror: {
          if(IsShiftByRegister)
            Value |= 0x7 << 4;
          else
            Value |= 0x3 << 5;
          break;
        }
        case ARM_AM::rrx: {
          Value |= 0x3 << 5;
          break;
        }
      }
      // set the field related to shift operations (except rrx).
      if(ARM_AM::getSORegShOp(MO2.getImmedValue()) != ARM_AM::rrx)
        if(IsShiftByRegister) {
          // set the value of bit[11:8] (register Rs).
          assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
          op = ARMRegisterInfo::getRegisterNumbering(MO1.getReg());
          assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
          Value |= op << ARMII::RegRsShift;
        } else {
          // set the value of bit [11:7] (shift_immed field).
          op = ARM_AM::getSORegOffset(MO2.getImm());
          Value |= op << 7;
        }
      break;
    }
    default: assert(false && "Unknown operand type!");
      break;
    }

    break;
  }
  case ARMII::AddrMode2: {
    // bit 26 is always 1
    Value |= 1 << 26;

    unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask);
    // if the instruction uses offset addressing or pre-indexed addressing,
    // set bit P(24) to 1
    if (Index == ARMII::IndexModePre || Index == 0)
      Value |= 1 << ARMII::IndexShift;
    // if the instruction uses post-indexed addressing, set bit W(21) to 1
    if (Index == ARMII::IndexModePre)
      Value |= 1 << 21;

    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
    // If it is a load instruction (except LDRD), set bit L(20) to 1
    if (Format == ARMII::LdFrm)
      Value |= 1 << ARMII::L_BitShift;

    // set bit B(22)
    unsigned BitByte = getBaseOpcodeFor(Desc);
    Value |= BitByte << 22;

    // set first operand
    op = getMachineOpValue(MI,0);
    Value |= op << ARMII::RegRdShift;

    // set second operand
    op = getMachineOpValue(MI,1);
    Value |= op << ARMII::RegRnShift;

    const MachineOperand &MO2 = MI.getOperand(2);
    const MachineOperand &MO3 = MI.getOperand(3);

    // set bit U(23) according to signal of immed value (positive or negative)
    Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
                                                ARMII::U_BitShift;
    if (!MO2.getReg()) { // is immediate
      if (ARM_AM::getAM2Offset(MO3.getImm()))
        // set the value of offset_12 field
        Value |= ARM_AM::getAM2Offset(MO3.getImm());
      break;
    }

    // set bit I(25), because this is not in immediate enconding.
    Value |= 1 << ARMII::I_BitShift;
    assert(MRegisterInfo::isPhysicalRegister(MO2.getReg()));
    // set bit[3:0] to the corresponding Rm register
    Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());

    // if this instr is in scaled register offset/index instruction, set
    // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
    if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
      unsigned ShiftOp = getShiftOp(MO3);
      Value |= ShiftOp << 5; // shift
      Value |= ShImm << 7;   // shift_immed
    }

    break;
  }
  case ARMII::AddrMode3: {

    unsigned Index = (Desc->TSFlags & ARMII::IndexModeMask);
    // if the instruction uses offset addressing or pre-indexed addressing,
    // set bit P(24) to 1
    if (Index == ARMII::IndexModePre || Index == 0)
      Value |= 1 << ARMII::IndexShift;

    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
    // If it is a load instruction (except LDRD), set bit L(20) to 1
    if (Format == ARMII::LdFrm && opcode != ARM::LDRD)
      Value |= 1 << ARMII::L_BitShift;

    // bit[7:4] is the opcode of this instruction class (bits S and H).
    unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
    Value |= BaseOpcode << 4;

    // set first operand
    op = getMachineOpValue(MI,0);
    Value |= op << ARMII::RegRdShift;

    // set second operand
    op = getMachineOpValue(MI,1);
    Value |= op << ARMII::RegRnShift;

    const MachineOperand &MO2 = MI.getOperand(2);
    const MachineOperand &MO3 = MI.getOperand(3);

    // set bit U(23) according to signal of immed value (positive or negative)
    Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
                                                ARMII::U_BitShift;

    // if this instr is in register offset/index encoding, set bit[3:0]
    // to the corresponding Rm register.
    if (MO2.getReg()) {
      Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
      break;
    }

    // if this instr is in immediate offset/index encoding, set bit 22 to 1
    if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
      Value |= 1 << 22;
      // set operands
      Value |= (ImmOffs >> 4) << 8; // immedH
      Value |= (ImmOffs & ~0xF); // immedL
    }

    break;
  }
  case ARMII::AddrMode4: {
    // bit 27 is always 1
    Value |= 1 << 27;

    unsigned Format = (Desc->TSFlags & ARMII::FormMask);
    // if it is a load instr, set bit L(20) to 1
    if (Format == ARMII::LdFrm)
      Value |= 1 << ARMII::L_BitShift;

    unsigned OpIndex = 0;

    // set first operand
    op = getMachineOpValue(MI,OpIndex);
    Value |= op << ARMII::RegRnShift;

    // set addressing mode by modifying bits U(23) and P(24)
    // IA - Increment after  - bit U = 1 and bit P = 0
    // IB - Increment before - bit U = 1 and bit P = 1
    // DA - Decrement after  - bit U = 0 and bit P = 0
    // DB - Decrement before - bit U = 0 and bit P = 1
    const MachineOperand &MO = MI.getOperand(OpIndex + 1);
    ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
    switch(Mode) {
    default: assert(0 && "Unknown addressing sub-mode!");
    case ARM_AM::ia: Value |= 0x1 << 23; break;
    case ARM_AM::ib: Value |= 0x3 << 23; break;
    case ARM_AM::da: break;
    case ARM_AM::db: Value |= 0x1 << 24; break;
    }

    // set bit W(21)
    if (ARM_AM::getAM4WBFlag(MO.getImm()))
      Value |= 0x1 << 21;

    // set registers
    for (unsigned i = OpIndex + 4, e = MI.getNumOperands(); i != e; ++i) {
      const MachineOperand &MOR = MI.getOperand(i);
      unsigned RegNumber = ARMRegisterInfo::getRegisterNumbering(MOR.getReg());
      assert(MRegisterInfo::isPhysicalRegister(MOR.getReg()) && RegNumber < 16);
      Value |= 0x1 << RegNumber;
    }

    break;
  }
  }

  return Value;
}