llvm.org GIT mirror llvm / release_21 lib / CodeGen / SimpleRegisterCoalescing.cpp
release_21

Tree @release_21 (Download .tar.gz)

SimpleRegisterCoalescing.cpp @release_21raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple register coalescing pass that attempts to
// aggressively coalesce every register copy that it can.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regcoalescing"
#include "llvm/CodeGen/SimpleRegisterCoalescing.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

STATISTIC(numJoins    , "Number of interval joins performed");
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
STATISTIC(numAborts   , "Number of times interval joining aborted");

char SimpleRegisterCoalescing::ID = 0;
namespace {
  static cl::opt<bool>
  EnableJoining("join-liveintervals",
                cl::desc("Coalesce copies (default=true)"),
                cl::init(true));

  RegisterPass<SimpleRegisterCoalescing> 
  X("simple-register-coalescing", "Simple Register Coalescing");

  // Declare that we implement the RegisterCoalescer interface
  RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
}

const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo();

void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
   //AU.addPreserved<LiveVariables>();
  AU.addPreserved<LiveIntervals>();
  AU.addPreservedID(PHIEliminationID);
  AU.addPreservedID(TwoAddressInstructionPassID);
  AU.addRequired<LiveVariables>();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<LoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy.  For example:
///
///  A3 = B0
///    ...
///  B1 = A3      <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
                                         MachineInstr *CopyMI) {
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));

  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  VNInfo *BValNo = BLR->valno;
  
  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
  // can't process it.
  if (!BValNo->reg) return false;
  assert(BValNo->def == CopyIdx &&
         "Copy doesn't define the value?");
  
  // AValNo is the value number in A that defines the copy, A0 in the example.
  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
  VNInfo *AValNo = AValLR->valno;
  
  // If AValNo is defined as a copy from IntB, we can potentially process this.
  
  // Get the instruction that defines this value number.
  unsigned SrcReg = AValNo->reg;
  if (!SrcReg) return false;  // Not defined by a copy.
    
  // If the value number is not defined by a copy instruction, ignore it.
    
  // If the source register comes from an interval other than IntB, we can't
  // handle this.
  if (rep(SrcReg) != IntB.reg) return false;
  
  // Get the LiveRange in IntB that this value number starts with.
  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
  
  // Make sure that the end of the live range is inside the same block as
  // CopyMI.
  MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
  if (!ValLREndInst || 
      ValLREndInst->getParent() != CopyMI->getParent()) return false;

  // Okay, we now know that ValLR ends in the same block that the CopyMI
  // live-range starts.  If there are no intervening live ranges between them in
  // IntB, we can merge them.
  if (ValLR+1 != BLR) return false;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (MRegisterInfo::isPhysicalRegister(IntB.reg) &&
      *mri_->getSubRegisters(IntB.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  }
  
  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
  
  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
  // We are about to delete CopyMI, so need to remove it as the 'instruction
  // that defines this value #'. Update the the valnum with the new defining
  // instruction #.
  BValNo->def = FillerStart;
  BValNo->reg = 0;
  
  // Okay, we can merge them.  We need to insert a new liverange:
  // [ValLR.end, BLR.begin) of either value number, then we merge the
  // two value numbers.
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));

  // If the IntB live range is assigned to a physical register, and if that
  // physreg has aliases, 
  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) {
      LiveInterval &AliasLI = li_->getInterval(*AS);
      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
              AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
    }
  }

  // Okay, merge "B1" into the same value number as "B0".
  if (BValNo != ValLR->valno)
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
  DOUT << "   result = "; IntB.print(DOUT, mri_);
  DOUT << "\n";

  // If the source instruction was killing the source register before the
  // merge, unset the isKill marker given the live range has been extended.
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
  if (UIdx != -1)
    ValLREndInst->getOperand(UIdx).unsetIsKill();
  
  // Finally, delete the copy instruction.
  li_->RemoveMachineInstrFromMaps(CopyMI);
  CopyMI->eraseFromParent();
  ++numPeep;
  return true;
}

/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI.  This returns true
/// if the copy was successfully coalesced away, or if it is never possible
/// to coalesce this copy, due to register constraints.  It returns
/// false if it is not currently possible to coalesce this interval, but
/// it may be possible if other things get coalesced.
bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
                             unsigned SrcReg, unsigned DstReg, bool PhysOnly) {
  DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;

  // Get representative registers.
  unsigned repSrcReg = rep(SrcReg);
  unsigned repDstReg = rep(DstReg);
  
  // If they are already joined we continue.
  if (repSrcReg == repDstReg) {
    DOUT << "\tCopy already coalesced.\n";
    return true;  // Not coalescable.
  }
  
  bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg);
  bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg);
  if (PhysOnly && !SrcIsPhys && !DstIsPhys)
    // Only joining physical registers with virtual registers in this round.
    return true;

  // If they are both physical registers, we cannot join them.
  if (SrcIsPhys && DstIsPhys) {
    DOUT << "\tCan not coalesce physregs.\n";
    return true;  // Not coalescable.
  }
  
  // We only join virtual registers with allocatable physical registers.
  if (SrcIsPhys && !allocatableRegs_[repSrcReg]) {
    DOUT << "\tSrc reg is unallocatable physreg.\n";
    return true;  // Not coalescable.
  }
  if (DstIsPhys && !allocatableRegs_[repDstReg]) {
    DOUT << "\tDst reg is unallocatable physreg.\n";
    return true;  // Not coalescable.
  }
  
  // If they are not of the same register class, we cannot join them.
  if (differingRegisterClasses(repSrcReg, repDstReg)) {
    DOUT << "\tSrc/Dest are different register classes.\n";
    return true;  // Not coalescable.
  }
  
  LiveInterval &SrcInt = li_->getInterval(repSrcReg);
  LiveInterval &DstInt = li_->getInterval(repDstReg);
  assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg &&
         "Register mapping is horribly broken!");

  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
  DOUT << " and "; DstInt.print(DOUT, mri_);
  DOUT << ": ";

  // Check if it is necessary to propagate "isDead" property before intervals
  // are joined.
  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
  bool isDead = mopd->isDead();
  bool isShorten = false;
  unsigned SrcStart = 0, RemoveStart = 0;
  unsigned SrcEnd = 0, RemoveEnd = 0;
  if (isDead) {
    unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
    LiveInterval::iterator SrcLR =
      SrcInt.FindLiveRangeContaining(li_->getUseIndex(CopyIdx));
    RemoveStart = SrcStart = SrcLR->start;
    RemoveEnd   = SrcEnd   = SrcLR->end;
    // The instruction which defines the src is only truly dead if there are
    // no intermediate uses and there isn't a use beyond the copy.
    // FIXME: find the last use, mark is kill and shorten the live range.
    if (SrcEnd > li_->getDefIndex(CopyIdx)) {
      isDead = false;
    } else {
      MachineOperand *MOU;
      MachineInstr *LastUse= lastRegisterUse(SrcStart, CopyIdx, repSrcReg, MOU);
      if (LastUse) {
        // Shorten the liveinterval to the end of last use.
        MOU->setIsKill();
        isDead = false;
        isShorten = true;
        RemoveStart = li_->getDefIndex(li_->getInstructionIndex(LastUse));
        RemoveEnd   = SrcEnd;
      } else {
        MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart);
        if (SrcMI) {
          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
          if (mops)
            // A dead def should have a single cycle interval.
            ++RemoveStart;
        }
      }
    }
  }

  // We need to be careful about coalescing a source physical register with a
  // virtual register. Once the coalescing is done, it cannot be broken and
  // these are not spillable! If the destination interval uses are far away,
  // think twice about coalescing them!
  if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) {
    LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
    unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
    unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
    const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
    unsigned Threshold = allocatableRCRegs_[RC].count();

    // If the virtual register live interval is long has it has low use desity,
    // do not join them, instead mark the physical register as its allocation
    // preference.
    unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
    LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
    if (Length > Threshold &&
        (((float)vi.NumUses / Length) < (1.0 / Threshold))) {
      JoinVInt.preference = JoinPReg;
      ++numAborts;
      DOUT << "\tMay tie down a physical register, abort!\n";
      return false;
    }
  }

  // Okay, attempt to join these two intervals.  On failure, this returns false.
  // Otherwise, if one of the intervals being joined is a physreg, this method
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
  // been modified, so we can use this information below to update aliases.
  bool Swapped = false;
  if (JoinIntervals(DstInt, SrcInt, Swapped)) {
    if (isDead) {
      // Result of the copy is dead. Propagate this property.
      if (SrcStart == 0) {
        assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
               "Live-in must be a physical register!");
        // Live-in to the function but dead. Remove it from entry live-in set.
        // JoinIntervals may end up swapping the two intervals.
        mf_->begin()->removeLiveIn(repSrcReg);
      } else {
        MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart);
        if (SrcMI) {
          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
          if (mops)
            mops->setIsDead();
        }
      }
    }

    if (isShorten || isDead) {
      // Shorten the destination live interval.
      if (Swapped)
        SrcInt.removeRange(RemoveStart, RemoveEnd);
    }
  } else {
    // Coalescing failed.
    
    // If we can eliminate the copy without merging the live ranges, do so now.
    if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
      return true;

    // Otherwise, we are unable to join the intervals.
    DOUT << "Interference!\n";
    return false;
  }

  LiveInterval *ResSrcInt = &SrcInt;
  LiveInterval *ResDstInt = &DstInt;
  if (Swapped) {
    std::swap(repSrcReg, repDstReg);
    std::swap(ResSrcInt, ResDstInt);
  }
  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
         "LiveInterval::join didn't work right!");
                               
  // If we're about to merge live ranges into a physical register live range,
  // we have to update any aliased register's live ranges to indicate that they
  // have clobbered values for this range.
  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
    // Unset unnecessary kills.
    if (!ResDstInt->containsOneValue()) {
      for (LiveInterval::Ranges::const_iterator I = ResSrcInt->begin(),
             E = ResSrcInt->end(); I != E; ++I)
        unsetRegisterKills(I->start, I->end, repDstReg);
    }

    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
      li_->getInterval(*AS).MergeInClobberRanges(*ResSrcInt,
                                                 li_->getVNInfoAllocator());
  } else {
    // Merge use info if the destination is a virtual register.
    LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
    LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
    dVI.NumUses += sVI.NumUses;
  }

  DOUT << "\n\t\tJoined.  Result = "; ResDstInt->print(DOUT, mri_);
  DOUT << "\n";

  // Remember these liveintervals have been joined.
  JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
  if (MRegisterInfo::isVirtualRegister(repDstReg))
    JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);

  // repSrcReg is guarateed to be the register whose live interval that is
  // being merged.
  li_->removeInterval(repSrcReg);
  r2rMap_[repSrcReg] = repDstReg;

  // Finally, delete the copy instruction.
  li_->RemoveMachineInstrFromMaps(CopyMI);
  CopyMI->eraseFromParent();
  ++numPeep;
  ++numJoins;
  return true;
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments) {
  unsigned VN = VNI->id;

  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");

  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
  if (I == ThisFromOther.end()) {
    NewVNInfo.push_back(VNI);
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  VNInfo *OtherValNo = I->second;

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
  
  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments);
  return ThisValNoAssignments[VN] = UltimateVN;
}

static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
  return std::find(V.begin(), V.end(), Val) != V.end();
}

/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval.  This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
  assert(RHS.containsOneValue());
  
  // Some number (potentially more than one) value numbers in the current
  // interval may be defined as copies from the RHS.  Scan the overlapping
  // portions of the LHS and RHS, keeping track of this and looking for
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
  // cannot coalesce.
  
  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
  
  if (LHSIt->start < RHSIt->start) {
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
    if (LHSIt != LHS.begin()) --LHSIt;
  } else if (RHSIt->start < LHSIt->start) {
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
    if (RHSIt != RHS.begin()) --RHSIt;
  }
  
  SmallVector<VNInfo*, 8> EliminatedLHSVals;
  
  while (1) {
    // Determine if these live intervals overlap.
    bool Overlaps = false;
    if (LHSIt->start <= RHSIt->start)
      Overlaps = LHSIt->end > RHSIt->start;
    else
      Overlaps = RHSIt->end > LHSIt->start;
    
    // If the live intervals overlap, there are two interesting cases: if the
    // LHS interval is defined by a copy from the RHS, it's ok and we record
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
    // coalesce these live ranges and we bail out.
    if (Overlaps) {
      // If we haven't already recorded that this value # is safe, check it.
      if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
        // Copy from the RHS?
        unsigned SrcReg = LHSIt->valno->reg;
        if (rep(SrcReg) != RHS.reg)
          return false;    // Nope, bail out.
        
        EliminatedLHSVals.push_back(LHSIt->valno);
      }
      
      // We know this entire LHS live range is okay, so skip it now.
      if (++LHSIt == LHSEnd) break;
      continue;
    }
    
    if (LHSIt->end < RHSIt->end) {
      if (++LHSIt == LHSEnd) break;
    } else {
      // One interesting case to check here.  It's possible that we have
      // something like "X3 = Y" which defines a new value number in the LHS,
      // and is the last use of this liverange of the RHS.  In this case, we
      // want to notice this copy (so that it gets coalesced away) even though
      // the live ranges don't actually overlap.
      if (LHSIt->start == RHSIt->end) {
        if (InVector(LHSIt->valno, EliminatedLHSVals)) {
          // We already know that this value number is going to be merged in
          // if coalescing succeeds.  Just skip the liverange.
          if (++LHSIt == LHSEnd) break;
        } else {
          // Otherwise, if this is a copy from the RHS, mark it as being merged
          // in.
          if (rep(LHSIt->valno->reg) == RHS.reg) {
            EliminatedLHSVals.push_back(LHSIt->valno);

            // We know this entire LHS live range is okay, so skip it now.
            if (++LHSIt == LHSEnd) break;
          }
        }
      }
      
      if (++RHSIt == RHSEnd) break;
    }
  }
  
  // If we got here, we know that the coalescing will be successful and that
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
  // the most common case is that EliminatedLHSVals has a single number, we
  // optimize for it: if there is more than one value, we merge them all into
  // the lowest numbered one, then handle the interval as if we were merging
  // with one value number.
  VNInfo *LHSValNo;
  if (EliminatedLHSVals.size() > 1) {
    // Loop through all the equal value numbers merging them into the smallest
    // one.
    VNInfo *Smallest = EliminatedLHSVals[0];
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
      if (EliminatedLHSVals[i]->id < Smallest->id) {
        // Merge the current notion of the smallest into the smaller one.
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
        Smallest = EliminatedLHSVals[i];
      } else {
        // Merge into the smallest.
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
      }
    }
    LHSValNo = Smallest;
  } else {
    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
    LHSValNo = EliminatedLHSVals[0];
  }
  
  // Okay, now that there is a single LHS value number that we're merging the
  // RHS into, update the value number info for the LHS to indicate that the
  // value number is defined where the RHS value number was.
  const VNInfo *VNI = RHS.getValNumInfo(0);
  LHSValNo->def = VNI->def;
  LHSValNo->reg = VNI->reg;
  
  // Okay, the final step is to loop over the RHS live intervals, adding them to
  // the LHS.
  LHS.addKills(LHSValNo, VNI->kills);
  LHS.MergeRangesInAsValue(RHS, LHSValNo);
  LHS.weight += RHS.weight;
  if (RHS.preference && !LHS.preference)
    LHS.preference = RHS.preference;
  
  return true;
}

/// JoinIntervals - Attempt to join these two intervals.  On failure, this
/// returns false.  Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it.  The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS,
                                             LiveInterval &RHS, bool &Swapped) {
  // Compute the final value assignment, assuming that the live ranges can be
  // coalesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
  SmallVector<VNInfo*, 16> NewVNInfo;
                          
  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (MRegisterInfo::isPhysicalRegister(LHS.reg) &&
      *mri_->getSubRegisters(LHS.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) &&
             *mri_->getSubRegisters(RHS.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  }
                          
  // Compute ultimate value numbers for the LHS and RHS values.
  if (RHS.containsOneValue()) {
    // Copies from a liveinterval with a single value are simple to handle and
    // very common, handle the special case here.  This is important, because
    // often RHS is small and LHS is large (e.g. a physreg).
    
    // Find out if the RHS is defined as a copy from some value in the LHS.
    int RHSVal0DefinedFromLHS = -1;
    int RHSValID = -1;
    VNInfo *RHSValNoInfo = NULL;
    VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
    unsigned RHSSrcReg = RHSValNoInfo0->reg;
    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
      // If RHS is not defined as a copy from the LHS, we can use simpler and
      // faster checks to see if the live ranges are coalescable.  This joiner
      // can't swap the LHS/RHS intervals though.
      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
        return SimpleJoin(LHS, RHS);
      } else {
        RHSValNoInfo = RHSValNoInfo0;
      }
    } else {
      // It was defined as a copy from the LHS, find out what value # it is.
      RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
      RHSValID = RHSValNoInfo->id;
      RHSVal0DefinedFromLHS = RHSValID;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.resize(LHS.getNumValNums(), NULL);
    
    // Okay, *all* of the values in LHS that are defined as a copy from RHS
    // should now get updated.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (unsigned LHSSrcReg = VNI->reg) {
        if (rep(LHSSrcReg) != RHS.reg) {
          // If this is not a copy from the RHS, its value number will be
          // unmodified by the coalescing.
          NewVNInfo[VN] = VNI;
          LHSValNoAssignments[VN] = VN;
        } else if (RHSValID == -1) {
          // Otherwise, it is a copy from the RHS, and we don't already have a
          // value# for it.  Keep the current value number, but remember it.
          LHSValNoAssignments[VN] = RHSValID = VN;
          NewVNInfo[VN] = RHSValNoInfo;
          LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
        } else {
          // Otherwise, use the specified value #.
          LHSValNoAssignments[VN] = RHSValID;
          if (VN == (unsigned)RHSValID) {  // Else this val# is dead.
            NewVNInfo[VN] = RHSValNoInfo;
            LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
          }
        }
      } else {
        NewVNInfo[VN] = VNI;
        LHSValNoAssignments[VN] = VN;
      }
    }
    
    assert(RHSValID != -1 && "Didn't find value #?");
    RHSValNoAssignments[0] = RHSValID;
    if (RHSVal0DefinedFromLHS != -1) {
      // This path doesn't go through ComputeUltimateVN so just set
      // it to anything.
      RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
    }
  } else {
    // Loop over the value numbers of the LHS, seeing if any are defined from
    // the RHS.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned ValSrcReg = VNI->reg;
      if (ValSrcReg == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the LHS interval.  If the src is
      // from the RHS interval, we can use its value #.
      if (rep(ValSrcReg) != RHS.reg)
        continue;
      
      // Figure out the value # from the RHS.
      LHSValsDefinedFromRHS[VNI] = RHS.getLiveRangeContaining(VNI->def-1)->valno;
    }
    
    // Loop over the value numbers of the RHS, seeing if any are defined from
    // the LHS.
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned ValSrcReg = VNI->reg;
      if (ValSrcReg == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the RHS interval.  If the src is
      // from the LHS interval, we can use its value #.
      if (rep(ValSrcReg) != LHS.reg)
        continue;
      
      // Figure out the value # from the LHS.
      RHSValsDefinedFromLHS[VNI]= LHS.getLiveRangeContaining(VNI->def-1)->valno;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
    
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) 
        continue;
      ComputeUltimateVN(VNI, NewVNInfo,
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
                        LHSValNoAssignments, RHSValNoAssignments);
    }
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
        continue;
      // If this value number isn't a copy from the LHS, it's a new number.
      if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
        NewVNInfo.push_back(VNI);
        RHSValNoAssignments[VN] = NewVNInfo.size()-1;
        continue;
      }
      
      ComputeUltimateVN(VNI, NewVNInfo,
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
                        RHSValNoAssignments, LHSValNoAssignments);
    }
  }
  
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
  // interval lists to see if these intervals are coalescable.
  LiveInterval::const_iterator I = LHS.begin();
  LiveInterval::const_iterator IE = LHS.end();
  LiveInterval::const_iterator J = RHS.begin();
  LiveInterval::const_iterator JE = RHS.end();
  
  // Skip ahead until the first place of potential sharing.
  if (I->start < J->start) {
    I = std::upper_bound(I, IE, J->start);
    if (I != LHS.begin()) --I;
  } else if (J->start < I->start) {
    J = std::upper_bound(J, JE, I->start);
    if (J != RHS.begin()) --J;
  }
  
  while (1) {
    // Determine if these two live ranges overlap.
    bool Overlaps;
    if (I->start < J->start) {
      Overlaps = I->end > J->start;
    } else {
      Overlaps = J->end > I->start;
    }

    // If so, check value # info to determine if they are really different.
    if (Overlaps) {
      // If the live range overlap will map to the same value number in the
      // result liverange, we can still coalesce them.  If not, we can't.
      if (LHSValNoAssignments[I->valno->id] !=
          RHSValNoAssignments[J->valno->id])
        return false;
    }
    
    if (I->end < J->end) {
      ++I;
      if (I == IE) break;
    } else {
      ++J;
      if (J == JE) break;
    }
  }

  // If we get here, we know that we can coalesce the live ranges.  Ask the
  // intervals to coalesce themselves now.
  if ((RHS.ranges.size() > LHS.ranges.size() &&
      MRegisterInfo::isVirtualRegister(LHS.reg)) ||
      MRegisterInfo::isPhysicalRegister(RHS.reg)) {
    // Update kill info. Some live ranges are extended due to copy coalescing.
    for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
           E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
      VNInfo *VNI = I->first;
      unsigned LHSValID = LHSValNoAssignments[VNI->id];
      LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
      RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
    }

    RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
    Swapped = true;
  } else {
    // Update kill info. Some live ranges are extended due to copy coalescing.
    for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
           E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
      VNInfo *VNI = I->first;
      unsigned RHSValID = RHSValNoAssignments[VNI->id];
      LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
      LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
    }

    LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
    Swapped = false;
  }
  return true;
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      if (LHS.first > RHS.first) return true;   // Deeper loops first
      return LHS.first == RHS.first &&
        LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
                                std::vector<CopyRec> *TryAgain, bool PhysOnly) {
  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
  
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E;) {
    MachineInstr *Inst = MII++;
    
    // If this isn't a copy, we can't join intervals.
    unsigned SrcReg, DstReg;
    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
    
    if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly))
      TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg));
  }
}

void SimpleRegisterCoalescing::joinIntervals() {
  DOUT << "********** JOINING INTERVALS ***********\n";

  JoinedLIs.resize(li_->getNumIntervals());
  JoinedLIs.reset();

  std::vector<CopyRec> TryAgainList;
  const LoopInfo &LI = getAnalysis<LoopInfo>();
  if (LI.begin() == LI.end()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      CopyCoalesceInMBB(I, &TryAgainList);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.

    // Join intervals in the function prolog first. We want to join physical
    // registers with virtual registers before the intervals got too long.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I)
      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoalesceInMBB(MBBs[i].second, NULL, true);
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoalesceInMBB(MBBs[i].second, &TryAgainList, false);
  }
  
  // Joining intervals can allow other intervals to be joined.  Iteratively join
  // until we make no progress.
  bool ProgressMade = true;
  while (ProgressMade) {
    ProgressMade = false;

    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
      CopyRec &TheCopy = TryAgainList[i];
      if (TheCopy.MI &&
          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
        TheCopy.MI = 0;   // Mark this one as done.
        ProgressMade = true;
      }
    }
  }

  // Some live range has been lengthened due to colaescing, eliminate the
  // unnecessary kills.
  int RegNum = JoinedLIs.find_first();
  while (RegNum != -1) {
    unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
    unsigned repReg = rep(Reg);
    LiveInterval &LI = li_->getInterval(repReg);
    LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
    for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = svi.Kills[i];
      // Suppose vr1 = op vr2, x
      // and vr1 and vr2 are coalesced. vr2 should still be marked kill
      // unless it is a two-address operand.
      if (li_->isRemoved(Kill) || hasRegisterDef(Kill, repReg))
        continue;
      if (LI.liveAt(li_->getInstructionIndex(Kill) + InstrSlots::NUM))
        unsetRegisterKill(Kill, repReg);
    }
    RegNum = JoinedLIs.find_next(RegNum);
  }
  
  DOUT << "*** Register mapping ***\n";
  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
    if (r2rMap_[i]) {
      DOUT << "  reg " << i << " -> ";
      DEBUG(printRegName(r2rMap_[i]));
      DOUT << "\n";
    }
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
                                             unsigned RegB) const {

  // Get the register classes for the first reg.
  if (MRegisterInfo::isPhysicalRegister(RegA)) {
    assert(MRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
  if (MRegisterInfo::isVirtualRegister(RegB))
    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
  else
    return !RegClass->contains(RegB);
}

/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End. It also returns the use operand by reference. It
/// returns NULL if there are no uses.
MachineInstr *
SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg,
                               MachineOperand *&MOU) {
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
  int s = Start;
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while ((e - InstrSlots::NUM) >= s && !MI) {
      e -= InstrSlots::NUM;
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return NULL;

    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isUse() && MO.getReg() &&
          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
        MOU = &MO;
        return MI;
      }
    }

    e -= InstrSlots::NUM;
  }

  return NULL;
}


/// findDefOperand - Returns the MachineOperand that is a def of the specific
/// register. It returns NULL if the def is not found.
MachineOperand *SimpleRegisterCoalescing::findDefOperand(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isDef() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      return &MO;
  }
  return NULL;
}

/// unsetRegisterKill - Unset IsKill property of all uses of specific register
/// of the specific instruction.
void SimpleRegisterCoalescing::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isKill() && MO.getReg() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      MO.unsetIsKill();
  }
}

/// unsetRegisterKills - Unset IsKill property of all uses of specific register
/// between cycles Start and End.
void SimpleRegisterCoalescing::unsetRegisterKills(unsigned Start, unsigned End,
                                       unsigned Reg) {
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
  int s = Start;
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while ((e - InstrSlots::NUM) >= s && !MI) {
      e -= InstrSlots::NUM;
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return;

    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isKill() && MO.getReg() &&
          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
        MO.unsetIsKill();
      }
    }

    e -= InstrSlots::NUM;
  }
}

/// hasRegisterDef - True if the instruction defines the specific register.
///
bool SimpleRegisterCoalescing::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isDef() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      return true;
  }
  return false;
}

void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
  if (MRegisterInfo::isPhysicalRegister(reg))
    cerr << mri_->getName(reg);
  else
    cerr << "%reg" << reg;
}

void SimpleRegisterCoalescing::releaseMemory() {
   r2rMap_.clear();
   JoinedLIs.clear();
}

static bool isZeroLengthInterval(LiveInterval *li) {
  for (LiveInterval::Ranges::const_iterator
         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
      return false;
  return true;
}

bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  li_ = &getAnalysis<LiveIntervals>();
  lv_ = &getAnalysis<LiveVariables>();

  DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
       << "********** Function: "
       << ((Value*)mf_->getFunction())->getName() << '\n';

  allocatableRegs_ = mri_->getAllocatableSet(fn);
  for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(),
         E = mri_->regclass_end(); I != E; ++I)
    allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I)));

  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());

  // Join (coalesce) intervals if requested.
  if (EnableJoining) {
    joinIntervals();
    DOUT << "********** INTERVALS POST JOINING **********\n";
    for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
      I->second.print(DOUT, mri_);
      DOUT << "\n";
    }
  }

  // perform a final pass over the instructions and compute spill
  // weights, coalesce virtual registers and remove identity moves.
  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();

  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());

    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      // if the move will be an identity move delete it
      unsigned srcReg, dstReg, RegRep;
      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
          (RegRep = rep(srcReg)) == rep(dstReg)) {
        // remove from def list
        LiveInterval &RegInt = li_->getOrCreateInterval(RegRep);
        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
        // If def of this move instruction is dead, remove its live range from
        // the dstination register's live interval.
        if (MO->isDead()) {
          unsigned MoveIdx = li_->getDefIndex(li_->getInstructionIndex(mii));
          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
          RegInt.removeRange(MLR->start, MoveIdx+1);
          if (RegInt.empty())
            li_->removeInterval(RegRep);
        }
        li_->RemoveMachineInstrFromMaps(mii);
        mii = mbbi->erase(mii);
        ++numPeep;
      } else {
        SmallSet<unsigned, 4> UniqueUses;
        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
          const MachineOperand &mop = mii->getOperand(i);
          if (mop.isRegister() && mop.getReg() &&
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
            // replace register with representative register
            unsigned reg = rep(mop.getReg());
            mii->getOperand(i).setReg(reg);

            // Multiple uses of reg by the same instruction. It should not
            // contribute to spill weight again.
            if (UniqueUses.count(reg) != 0)
              continue;
            LiveInterval &RegInt = li_->getInterval(reg);
            float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
            RegInt.weight += w;
            UniqueUses.insert(reg);
          }
        }
        ++mii;
      }
    }
  }

  for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
    LiveInterval &LI = I->second;
    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
      // If the live interval length is essentially zero, i.e. in every live
      // range the use follows def immediately, it doesn't make sense to spill
      // it and hope it will be easier to allocate for this li.
      if (isZeroLengthInterval(&LI))
        LI.weight = HUGE_VALF;

      // Slightly prefer live interval that has been assigned a preferred reg.
      if (LI.preference)
        LI.weight *= 1.01F;

      // Divide the weight of the interval by its size.  This encourages 
      // spilling of intervals that are large and have few uses, and
      // discourages spilling of small intervals with many uses.
      LI.weight /= LI.getSize();
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
   li_->print(O, m);
}

RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
  return new SimpleRegisterCoalescing();
}

// Make sure that anything that uses RegisterCoalescer pulls in this file...
DEFINING_FILE_FOR(SimpleRegisterCoalescing)