llvm.org GIT mirror llvm / release_20 lib / Target / X86 / X86InstrInfo.cpp
release_20

Tree @release_20 (Download .tar.gz)

X86InstrInfo.cpp @release_20raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "X86InstrInfo.h"
#include "X86.h"
#include "X86GenInstrInfo.inc"
#include "X86InstrBuilder.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/LiveVariables.h"
using namespace llvm;

X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
  : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])),
    TM(tm), RI(tm, *this) {
}

bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
                               unsigned& sourceReg,
                               unsigned& destReg) const {
  MachineOpCode oc = MI.getOpcode();
  if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
      oc == X86::MOV32rr || oc == X86::MOV64rr ||
      oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
      oc == X86::FpMOV  || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
      oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
      oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
      oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
      oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
      oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
      assert(MI.getNumOperands() >= 2 &&
             MI.getOperand(0).isRegister() &&
             MI.getOperand(1).isRegister() &&
             "invalid register-register move instruction");
      sourceReg = MI.getOperand(1).getReg();
      destReg = MI.getOperand(0).getReg();
      return true;
  }
  return false;
}

unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI, 
                                           int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case X86::MOV8rm:
  case X86::MOV16rm:
  case X86::MOV16_rm:
  case X86::MOV32rm:
  case X86::MOV32_rm:
  case X86::MOV64rm:
  case X86::FpLD64m:
  case X86::MOVSSrm:
  case X86::MOVSDrm:
  case X86::MOVAPSrm:
  case X86::MOVAPDrm:
  case X86::MMX_MOVD64rm:
  case X86::MMX_MOVQ64rm:
    if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
        MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
        MI->getOperand(2).getImmedValue() == 1 &&
        MI->getOperand(3).getReg() == 0 &&
        MI->getOperand(4).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
                                          int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case X86::MOV8mr:
  case X86::MOV16mr:
  case X86::MOV16_mr:
  case X86::MOV32mr:
  case X86::MOV32_mr:
  case X86::MOV64mr:
  case X86::FpSTP64m:
  case X86::MOVSSmr:
  case X86::MOVSDmr:
  case X86::MOVAPSmr:
  case X86::MOVAPDmr:
  case X86::MMX_MOVD64mr:
  case X86::MMX_MOVQ64mr:
  case X86::MMX_MOVNTQmr:
    if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
        MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
        MI->getOperand(1).getImmedValue() == 1 &&
        MI->getOperand(2).getReg() == 0 &&
        MI->getOperand(3).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(0).getFrameIndex();
      return MI->getOperand(4).getReg();
    }
    break;
  }
  return 0;
}


/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand.  This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
                                    MachineBasicBlock::iterator &MBBI,
                                    LiveVariables &LV) const {
  MachineInstr *MI = MBBI;
  // All instructions input are two-addr instructions.  Get the known operands.
  unsigned Dest = MI->getOperand(0).getReg();
  unsigned Src = MI->getOperand(1).getReg();

  MachineInstr *NewMI = NULL;
  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
  // we have better subtarget support, enable the 16-bit LEA generation here.
  bool DisableLEA16 = true;

  switch (MI->getOpcode()) {
  default: return 0;
  case X86::SHUFPSrri: {
    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
    
    unsigned A = MI->getOperand(0).getReg();
    unsigned B = MI->getOperand(1).getReg();
    unsigned C = MI->getOperand(2).getReg();
    unsigned M = MI->getOperand(3).getImm();
    if (B != C) return 0;
    NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
    break;
  }
  case X86::SHL64ri: {
    assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
    // the flags produced by a shift yet, so this is safe.
    unsigned Dest = MI->getOperand(0).getReg();
    unsigned Src = MI->getOperand(1).getReg();
    unsigned ShAmt = MI->getOperand(2).getImm();
    if (ShAmt == 0 || ShAmt >= 4) return 0;
    
    NewMI = BuildMI(get(X86::LEA64r), Dest)
      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
    break;
  }
  case X86::SHL32ri: {
    assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
    // the flags produced by a shift yet, so this is safe.
    unsigned Dest = MI->getOperand(0).getReg();
    unsigned Src = MI->getOperand(1).getReg();
    unsigned ShAmt = MI->getOperand(2).getImm();
    if (ShAmt == 0 || ShAmt >= 4) return 0;
    
    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
      X86::LEA64_32r : X86::LEA32r;
    NewMI = BuildMI(get(Opc), Dest)
      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
    break;
  }
  case X86::SHL16ri: {
    assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
    if (DisableLEA16) return 0;
    
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
    // the flags produced by a shift yet, so this is safe.
    unsigned Dest = MI->getOperand(0).getReg();
    unsigned Src = MI->getOperand(1).getReg();
    unsigned ShAmt = MI->getOperand(2).getImm();
    if (ShAmt == 0 || ShAmt >= 4) return 0;
    
    NewMI = BuildMI(get(X86::LEA16r), Dest)
      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
    break;
  }
  }

  // FIXME: None of these instructions are promotable to LEAs without
  // additional information.  In particular, LEA doesn't set the flags that
  // add and inc do.  :(
  if (0)
  switch (MI->getOpcode()) {
  case X86::INC32r:
  case X86::INC64_32r:
    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
    NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, 1);
    break;
  case X86::INC16r:
  case X86::INC64_16r:
    if (DisableLEA16) return 0;
    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
    NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
    break;
  case X86::DEC32r:
  case X86::DEC64_32r:
    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
    NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, -1);
    break;
  case X86::DEC16r:
  case X86::DEC64_16r:
    if (DisableLEA16) return 0;
    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
    NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
    break;
  case X86::ADD32rr:
    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
    NewMI = addRegReg(BuildMI(get(X86::LEA32r), Dest), Src,
                     MI->getOperand(2).getReg());
    break;
  case X86::ADD16rr:
    if (DisableLEA16) return 0;
    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
    NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
                     MI->getOperand(2).getReg());
    break;
  case X86::ADD32ri:
  case X86::ADD32ri8:
    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
    if (MI->getOperand(2).isImmediate())
      NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src,
                          MI->getOperand(2).getImmedValue());
    break;
  case X86::ADD16ri:
  case X86::ADD16ri8:
    if (DisableLEA16) return 0;
    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
    if (MI->getOperand(2).isImmediate())
      NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
                          MI->getOperand(2).getImmedValue());
    break;
  case X86::SHL16ri:
    if (DisableLEA16) return 0;
  case X86::SHL32ri:
    assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
           "Unknown shl instruction!");
    unsigned ShAmt = MI->getOperand(2).getImmedValue();
    if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
      X86AddressMode AM;
      AM.Scale = 1 << ShAmt;
      AM.IndexReg = Src;
      unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
      NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
    }
    break;
  }

  if (NewMI) {
    NewMI->copyKillDeadInfo(MI);
    LV.instructionChanged(MI, NewMI);  // Update live variables
    MFI->insert(MBBI, NewMI);          // Insert the new inst    
  }
  return NewMI;
}

/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
  // FIXME: Can commute cmoves by changing the condition!
  switch (MI->getOpcode()) {
  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
  case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
    unsigned Opc;
    unsigned Size;
    switch (MI->getOpcode()) {
    default: assert(0 && "Unreachable!");
    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
    }
    unsigned Amt = MI->getOperand(3).getImmedValue();
    unsigned A = MI->getOperand(0).getReg();
    unsigned B = MI->getOperand(1).getReg();
    unsigned C = MI->getOperand(2).getReg();
    bool BisKill = MI->getOperand(1).isKill();
    bool CisKill = MI->getOperand(2).isKill();
    return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
      .addReg(B, false, false, BisKill).addImm(Size-Amt);
  }
  default:
    return TargetInstrInfo::commuteInstruction(MI);
  }
}

static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
  switch (BrOpc) {
  default: return X86::COND_INVALID;
  case X86::JE:  return X86::COND_E;
  case X86::JNE: return X86::COND_NE;
  case X86::JL:  return X86::COND_L;
  case X86::JLE: return X86::COND_LE;
  case X86::JG:  return X86::COND_G;
  case X86::JGE: return X86::COND_GE;
  case X86::JB:  return X86::COND_B;
  case X86::JBE: return X86::COND_BE;
  case X86::JA:  return X86::COND_A;
  case X86::JAE: return X86::COND_AE;
  case X86::JS:  return X86::COND_S;
  case X86::JNS: return X86::COND_NS;
  case X86::JP:  return X86::COND_P;
  case X86::JNP: return X86::COND_NP;
  case X86::JO:  return X86::COND_O;
  case X86::JNO: return X86::COND_NO;
  }
}

unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
  switch (CC) {
  default: assert(0 && "Illegal condition code!");
  case X86::COND_E:  return X86::JE;
  case X86::COND_NE: return X86::JNE;
  case X86::COND_L:  return X86::JL;
  case X86::COND_LE: return X86::JLE;
  case X86::COND_G:  return X86::JG;
  case X86::COND_GE: return X86::JGE;
  case X86::COND_B:  return X86::JB;
  case X86::COND_BE: return X86::JBE;
  case X86::COND_A:  return X86::JA;
  case X86::COND_AE: return X86::JAE;
  case X86::COND_S:  return X86::JS;
  case X86::COND_NS: return X86::JNS;
  case X86::COND_P:  return X86::JP;
  case X86::COND_NP: return X86::JNP;
  case X86::COND_O:  return X86::JO;
  case X86::COND_NO: return X86::JNO;
  }
}

/// GetOppositeBranchCondition - Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
  switch (CC) {
  default: assert(0 && "Illegal condition code!");
  case X86::COND_E:  return X86::COND_NE;
  case X86::COND_NE: return X86::COND_E;
  case X86::COND_L:  return X86::COND_GE;
  case X86::COND_LE: return X86::COND_G;
  case X86::COND_G:  return X86::COND_LE;
  case X86::COND_GE: return X86::COND_L;
  case X86::COND_B:  return X86::COND_AE;
  case X86::COND_BE: return X86::COND_A;
  case X86::COND_A:  return X86::COND_BE;
  case X86::COND_AE: return X86::COND_B;
  case X86::COND_S:  return X86::COND_NS;
  case X86::COND_NS: return X86::COND_S;
  case X86::COND_P:  return X86::COND_NP;
  case X86::COND_NP: return X86::COND_P;
  case X86::COND_O:  return X86::COND_NO;
  case X86::COND_NO: return X86::COND_O;
  }
}


bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 std::vector<MachineOperand> &Cond) const {
  // TODO: If FP_REG_KILL is around, ignore it.
                                   
  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode()))
    return false;

  // Get the last instruction in the block.
  MachineInstr *LastInst = I;
  
  // If there is only one terminator instruction, process it.
  if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) {
    if (!isBranch(LastInst->getOpcode()))
      return true;
    
    // If the block ends with a branch there are 3 possibilities:
    // it's an unconditional, conditional, or indirect branch.
    
    if (LastInst->getOpcode() == X86::JMP) {
      TBB = LastInst->getOperand(0).getMachineBasicBlock();
      return false;
    }
    X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
    if (BranchCode == X86::COND_INVALID)
      return true;  // Can't handle indirect branch.

    // Otherwise, block ends with fall-through condbranch.
    TBB = LastInst->getOperand(0).getMachineBasicBlock();
    Cond.push_back(MachineOperand::CreateImm(BranchCode));
    return false;
  }
  
  // Get the instruction before it if it's a terminator.
  MachineInstr *SecondLastInst = I;
  
  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() &&
      isTerminatorInstr((--I)->getOpcode()))
    return true;

  // If the block ends with X86::JMP and a conditional branch, handle it.
  X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
  if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
    TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
    Cond.push_back(MachineOperand::CreateImm(BranchCode));
    FBB = LastInst->getOperand(0).getMachineBasicBlock();
    return false;
  }

  // Otherwise, can't handle this.
  return true;
}

void X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin()) return;
  --I;
  if (I->getOpcode() != X86::JMP && 
      GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
    return;
  
  // Remove the branch.
  I->eraseFromParent();
  
  I = MBB.end();
  
  if (I == MBB.begin()) return;
  --I;
  if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
    return;
  
  // Remove the branch.
  I->eraseFromParent();
}

void X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                MachineBasicBlock *FBB,
                                const std::vector<MachineOperand> &Cond) const {
  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 1 || Cond.size() == 0) &&
         "X86 branch conditions have one component!");

  if (FBB == 0) { // One way branch.
    if (Cond.empty()) {
      // Unconditional branch?
      BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
    } else {
      // Conditional branch.
      unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
      BuildMI(&MBB, get(Opc)).addMBB(TBB);
    }
    return;
  }
  
  // Two-way Conditional branch.
  unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
  BuildMI(&MBB, get(Opc)).addMBB(TBB);
  BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
}

bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
  if (MBB.empty()) return false;
  
  switch (MBB.back().getOpcode()) {
  case X86::JMP:     // Uncond branch.
  case X86::JMP32r:  // Indirect branch.
  case X86::JMP32m:  // Indirect branch through mem.
    return true;
  default: return false;
  }
}

bool X86InstrInfo::
ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
  Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
  return false;
}

const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
  if (Subtarget->is64Bit())
    return &X86::GR64RegClass;
  else
    return &X86::GR32RegClass;
}