llvm.org GIT mirror llvm / release_20 lib / CodeGen / VirtRegMap.cpp
release_20

Tree @release_20 (Download .tar.gz)

VirtRegMap.cpp @release_20raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumSpills, "Number of register spills");
STATISTIC(NumReMats, "Number of re-materialization");
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumReused, "Number of values reused");
STATISTIC(NumDSE   , "Number of dead stores elided");
STATISTIC(NumDCE   , "Number of copies elided");

namespace {
  enum SpillerName { simple, local };

  static cl::opt<SpillerName>
  SpillerOpt("spiller",
             cl::desc("Spiller to use: (default: local)"),
             cl::Prefix,
             cl::values(clEnumVal(simple, "  simple spiller"),
                        clEnumVal(local,  "  local spiller"),
                        clEnumValEnd),
             cl::init(local));
}

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

VirtRegMap::VirtRegMap(MachineFunction &mf)
  : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
    ReMatId(MAX_STACK_SLOT+1) {
  grow();
}

void VirtRegMap::grow() {
  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
}

int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
                                                        RC->getAlignment());
  Virt2StackSlotMap[virtReg] = frameIndex;
  ++NumSpills;
  return frameIndex;
}

void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  assert((frameIndex >= 0 ||
          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
         "illegal fixed frame index");
  Virt2StackSlotMap[virtReg] = frameIndex;
}

int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign re-mat id to already spilled register");
  const MachineInstr *DefMI = getReMaterializedMI(virtReg);
  int FrameIdx;
  if (TII.isLoadFromStackSlot((MachineInstr*)DefMI, FrameIdx)) {
    // Load from stack slot is re-materialize as reload from the stack slot!
    Virt2StackSlotMap[virtReg] = FrameIdx;
    return FrameIdx;
  }
  Virt2StackSlotMap[virtReg] = ReMatId;
  return ReMatId++;
}

void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
                            unsigned OpNo, MachineInstr *NewMI) {
  // Move previous memory references folded to new instruction.
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
    MI2VirtMap.erase(I++);
  }

  ModRef MRInfo;
  const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
  if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
      TID->findTiedToSrcOperand(OpNo) != -1) {
    // Folded a two-address operand.
    MRInfo = isModRef;
  } else if (OldMI->getOperand(OpNo).isDef()) {
    MRInfo = isMod;
  } else {
    MRInfo = isRef;
  }

  // add new memory reference
  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
}

void VirtRegMap::print(std::ostream &OS) const {
  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();

  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";

  }

  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
  OS << '\n';
}

void VirtRegMap::dump() const {
  print(DOUT);
}


//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//

Spiller::~Spiller() {}

namespace {
  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
  };
}

bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
  DOUT << "********** REWRITE MACHINE CODE **********\n";
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
  const TargetMachine &TM = MF.getTarget();
  const MRegisterInfo &MRI = *TM.getRegisterInfo();

  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
  // each vreg once (in the case where a spilled vreg is used by multiple
  // operands).  This is always smaller than the number of operands to the
  // current machine instr, so it should be small.
  std::vector<unsigned> LoadedRegs;

  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
       MBBI != E; ++MBBI) {
    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
    MachineBasicBlock &MBB = *MBBI;
    for (MachineBasicBlock::iterator MII = MBB.begin(),
           E = MBB.end(); MII != E; ++MII) {
      MachineInstr &MI = *MII;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (MO.isRegister() && MO.getReg())
          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
            unsigned VirtReg = MO.getReg();
            unsigned PhysReg = VRM.getPhys(VirtReg);
            if (VRM.hasStackSlot(VirtReg)) {
              int StackSlot = VRM.getStackSlot(VirtReg);
              const TargetRegisterClass* RC =
                MF.getSSARegMap()->getRegClass(VirtReg);

              if (MO.isUse() &&
                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
                  == LoadedRegs.end()) {
                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
                LoadedRegs.push_back(VirtReg);
                ++NumLoads;
                DOUT << '\t' << *prior(MII);
              }

              if (MO.isDef()) {
                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
                ++NumStores;
              }
            }
            MF.setPhysRegUsed(PhysReg);
            MI.getOperand(i).setReg(PhysReg);
          } else {
            MF.setPhysRegUsed(MO.getReg());
          }
      }

      DOUT << '\t' << MI;
      LoadedRegs.clear();
    }
  }
  return true;
}

//===----------------------------------------------------------------------===//
//  Local Spiller Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// LocalSpiller - This spiller does a simple pass over the machine basic
  /// block to attempt to keep spills in registers as much as possible for
  /// blocks that have low register pressure (the vreg may be spilled due to
  /// register pressure in other blocks).
  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
    const MRegisterInfo *MRI;
    const TargetInstrInfo *TII;
  public:
    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
      MRI = MF.getTarget().getRegisterInfo();
      TII = MF.getTarget().getInstrInfo();
      DOUT << "\n**** Local spiller rewriting function '"
           << MF.getFunction()->getName() << "':\n";

      std::vector<MachineInstr *> ReMatedMIs;
      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
           MBB != E; ++MBB)
        RewriteMBB(*MBB, VRM, ReMatedMIs);
      for (unsigned i = 0, e = ReMatedMIs.size(); i != e; ++i)
        delete ReMatedMIs[i];
      return true;
    }
  private:
    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
                    std::vector<MachineInstr*> &ReMatedMIs);
  };
}

/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
/// top down, keep track of which spills slots are available in each register.
///
/// Note that not all physregs are created equal here.  In particular, some
/// physregs are reloads that we are allowed to clobber or ignore at any time.
/// Other physregs are values that the register allocated program is using that
/// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
/// addAvailable sets it if.
namespace {
class VISIBILITY_HIDDEN AvailableSpills {
  const MRegisterInfo *MRI;
  const TargetInstrInfo *TII;

  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
  // register values that are still available, due to being loaded or stored to,
  // but not invalidated yet. It also tracks the instructions that defined
  // or used the register.
  typedef std::pair<unsigned, std::vector<MachineInstr*> > SSInfo;
  std::map<int, SSInfo> SpillSlotsAvailable;
    
  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
  // which stack slot values are currently held by a physreg.  This is used to
  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
  std::multimap<unsigned, int> PhysRegsAvailable;
  
  void disallowClobberPhysRegOnly(unsigned PhysReg);

  void ClobberPhysRegOnly(unsigned PhysReg);
public:
  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
    : MRI(mri), TII(tii) {
  }
  
  const MRegisterInfo *getRegInfo() const { return MRI; }

  /// getSpillSlotPhysReg - If the specified stack slot is available in a 
  /// physical register, return that PhysReg, otherwise return 0. It also
  /// returns by reference the instruction that either defines or last uses
  /// the register.
  unsigned getSpillSlotPhysReg(int Slot, MachineInstr *&SSMI) const {
    std::map<int, SSInfo>::const_iterator I = SpillSlotsAvailable.find(Slot);
    if (I != SpillSlotsAvailable.end()) {
      if (!I->second.second.empty())
        SSMI = I->second.second.back();
      return I->second.first >> 1;  // Remove the CanClobber bit.
    }
    return 0;
  }

  /// addLastUse - Add the last use information of all stack slots whose
  /// values are available in the specific register.
  void addLastUse(unsigned PhysReg, MachineInstr *Use) {
    std::multimap<unsigned, int>::iterator I =
      PhysRegsAvailable.lower_bound(PhysReg);
    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
      int Slot = I->second;
      I++;

      std::map<int, SSInfo>::iterator II = SpillSlotsAvailable.find(Slot);
      assert(II != SpillSlotsAvailable.end() && "Slot not available!");
      unsigned Val = II->second.first;
      assert((Val >> 1) == PhysReg && "Bidirectional map mismatch!");
      // This can be true if there are multiple uses of the same register.
      if (II->second.second.back() != Use)
        II->second.second.push_back(Use);
    }
  }
  
  /// removeLastUse - Remove the last use information of all stack slots whose
  /// values are available in the specific register.
  void removeLastUse(unsigned PhysReg, MachineInstr *Use) {
    std::multimap<unsigned, int>::iterator I =
      PhysRegsAvailable.lower_bound(PhysReg);
    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
      int Slot = I->second;
      I++;

      std::map<int, SSInfo>::iterator II = SpillSlotsAvailable.find(Slot);
      assert(II != SpillSlotsAvailable.end() && "Slot not available!");
      unsigned Val = II->second.first;
      assert((Val >> 1) == PhysReg && "Bidirectional map mismatch!");
      if (II->second.second.back() == Use)
        II->second.second.pop_back();
    }
  }
  
  /// addAvailable - Mark that the specified stack slot is available in the
  /// specified physreg.  If CanClobber is true, the physreg can be modified at
  /// any time without changing the semantics of the program.
  void addAvailable(int Slot, MachineInstr *MI, unsigned Reg,
                    bool CanClobber = true) {
    // If this stack slot is thought to be available in some other physreg, 
    // remove its record.
    ModifyStackSlot(Slot);
    
    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
    std::vector<MachineInstr*> DefUses;
    DefUses.push_back(MI);
    SpillSlotsAvailable[Slot] =
      std::make_pair((Reg << 1) | (unsigned)CanClobber, DefUses);
  
    if (Slot > VirtRegMap::MAX_STACK_SLOT)
      DOUT << "Remembering RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1;
    else
      DOUT << "Remembering SS#" << Slot;
    DOUT << " in physreg " << MRI->getName(Reg) << "\n";
  }

  /// canClobberPhysReg - Return true if the spiller is allowed to change the 
  /// value of the specified stackslot register if it desires.  The specified
  /// stack slot must be available in a physreg for this query to make sense.
  bool canClobberPhysReg(int Slot) const {
    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
    return SpillSlotsAvailable.find(Slot)->second.first & 1;
  }
  
  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
  /// stackslot register. The register is still available but is no longer
  /// allowed to be modifed.
  void disallowClobberPhysReg(unsigned PhysReg);
  
  /// ClobberPhysReg - This is called when the specified physreg changes
  /// value.  We use this to invalidate any info about stuff we thing lives in
  /// it and any of its aliases.
  void ClobberPhysReg(unsigned PhysReg);

  /// ModifyStackSlot - This method is called when the value in a stack slot
  /// changes.  This removes information about which register the previous value
  /// for this slot lives in (as the previous value is dead now).
  void ModifyStackSlot(int Slot);
};
}

/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
/// stackslot register. The register is still available but is no longer
/// allowed to be modifed.
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int Slot = I->second;
    I++;
    assert((SpillSlotsAvailable[Slot].first >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsAvailable[Slot].first &= ~1;
    DOUT << "PhysReg " << MRI->getName(PhysReg)
         << " copied, it is available for use but can no longer be modified\n";
  }
}

/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
/// stackslot register and its aliases. The register and its aliases may
/// still available but is no longer allowed to be modifed.
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    disallowClobberPhysRegOnly(*AS);
  disallowClobberPhysRegOnly(PhysReg);
}

/// ClobberPhysRegOnly - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in it.
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int Slot = I->second;
    PhysRegsAvailable.erase(I++);
    assert((SpillSlotsAvailable[Slot].first >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsAvailable.erase(Slot);
    DOUT << "PhysReg " << MRI->getName(PhysReg)
         << " clobbered, invalidating ";
    if (Slot > VirtRegMap::MAX_STACK_SLOT)
      DOUT << "RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
    else
      DOUT << "SS#" << Slot << "\n";
  }
}

/// ClobberPhysReg - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    ClobberPhysRegOnly(*AS);
  ClobberPhysRegOnly(PhysReg);
}

/// ModifyStackSlot - This method is called when the value in a stack slot
/// changes.  This removes information about which register the previous value
/// for this slot lives in (as the previous value is dead now).
void AvailableSpills::ModifyStackSlot(int Slot) {
  std::map<int, SSInfo>::iterator It = SpillSlotsAvailable.find(Slot);
  if (It == SpillSlotsAvailable.end()) return;
  unsigned Reg = It->second.first >> 1;
  SpillSlotsAvailable.erase(It);
  
  // This register may hold the value of multiple stack slots, only remove this
  // stack slot from the set of values the register contains.
  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
  for (; ; ++I) {
    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
           "Map inverse broken!");
    if (I->second == Slot) break;
  }
  PhysRegsAvailable.erase(I);
}



// ReusedOp - For each reused operand, we keep track of a bit of information, in
// case we need to rollback upon processing a new operand.  See comments below.
namespace {
  struct ReusedOp {
    // The MachineInstr operand that reused an available value.
    unsigned Operand;

    // StackSlot - The spill slot of the value being reused.
    unsigned StackSlot;

    // PhysRegReused - The physical register the value was available in.
    unsigned PhysRegReused;

    // AssignedPhysReg - The physreg that was assigned for use by the reload.
    unsigned AssignedPhysReg;
    
    // VirtReg - The virtual register itself.
    unsigned VirtReg;

    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
             unsigned vreg)
      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
      VirtReg(vreg) {}
  };
  
  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
  /// is reused instead of reloaded.
  class VISIBILITY_HIDDEN ReuseInfo {
    MachineInstr &MI;
    std::vector<ReusedOp> Reuses;
    BitVector PhysRegsClobbered;
  public:
    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
      PhysRegsClobbered.resize(mri->getNumRegs());
    }
    
    bool hasReuses() const {
      return !Reuses.empty();
    }
    
    /// addReuse - If we choose to reuse a virtual register that is already
    /// available instead of reloading it, remember that we did so.
    void addReuse(unsigned OpNo, unsigned StackSlot,
                  unsigned PhysRegReused, unsigned AssignedPhysReg,
                  unsigned VirtReg) {
      // If the reload is to the assigned register anyway, no undo will be
      // required.
      if (PhysRegReused == AssignedPhysReg) return;
      
      // Otherwise, remember this.
      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused, 
                                AssignedPhysReg, VirtReg));
    }

    void markClobbered(unsigned PhysReg) {
      PhysRegsClobbered.set(PhysReg);
    }

    bool isClobbered(unsigned PhysReg) const {
      return PhysRegsClobbered.test(PhysReg);
    }
    
    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
    /// is some other operand that is using the specified register, either pick
    /// a new register to use, or evict the previous reload and use this reg. 
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
                             AvailableSpills &Spills,
                             std::map<int, MachineInstr*> &MaybeDeadStores,
                             SmallSet<unsigned, 8> &Rejected) {
      if (Reuses.empty()) return PhysReg;  // This is most often empty.

      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
        ReusedOp &Op = Reuses[ro];
        // If we find some other reuse that was supposed to use this register
        // exactly for its reload, we can change this reload to use ITS reload
        // register. That is, unless its reload register has already been
        // considered and subsequently rejected because it has also been reused
        // by another operand.
        if (Op.PhysRegReused == PhysReg &&
            Rejected.count(Op.AssignedPhysReg) == 0) {
          // Yup, use the reload register that we didn't use before.
          unsigned NewReg = Op.AssignedPhysReg;
          Rejected.insert(PhysReg);
          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected);
        } else {
          // Otherwise, we might also have a problem if a previously reused
          // value aliases the new register.  If so, codegen the previous reload
          // and use this one.          
          unsigned PRRU = Op.PhysRegReused;
          const MRegisterInfo *MRI = Spills.getRegInfo();
          if (MRI->areAliases(PRRU, PhysReg)) {
            // Okay, we found out that an alias of a reused register
            // was used.  This isn't good because it means we have
            // to undo a previous reuse.
            MachineBasicBlock *MBB = MI->getParent();
            const TargetRegisterClass *AliasRC =
              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);

            // Copy Op out of the vector and remove it, we're going to insert an
            // explicit load for it.
            ReusedOp NewOp = Op;
            Reuses.erase(Reuses.begin()+ro);

            // Ok, we're going to try to reload the assigned physreg into the
            // slot that we were supposed to in the first place.  However, that
            // register could hold a reuse.  Check to see if it conflicts or
            // would prefer us to use a different register.
            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
                                         MI, Spills, MaybeDeadStores, Rejected);
            
            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
                                      NewOp.StackSlot, AliasRC);
            Spills.ClobberPhysReg(NewPhysReg);
            Spills.ClobberPhysReg(NewOp.PhysRegReused);
            
            // Any stores to this stack slot are not dead anymore.
            MaybeDeadStores.erase(NewOp.StackSlot);
            
            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
            
            Spills.addAvailable(NewOp.StackSlot, MI, NewPhysReg);
            ++NumLoads;
            DEBUG(MachineBasicBlock::iterator MII = MI;
                  DOUT << '\t' << *prior(MII));
            
            DOUT << "Reuse undone!\n";
            --NumReused;
            
            // Finally, PhysReg is now available, go ahead and use it.
            return PhysReg;
          }
        }
      }
      return PhysReg;
    }

    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
    /// 'Rejected' set to remember which registers have been considered and
    /// rejected for the reload. This avoids infinite looping in case like
    /// this:
    /// t1 := op t2, t3
    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
    /// t1 <- desires r1
    ///       sees r1 is taken by t2, tries t2's reload register r0
    ///       sees r0 is taken by t3, tries t3's reload register r1
    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
                             AvailableSpills &Spills,
                             std::map<int, MachineInstr*> &MaybeDeadStores) {
      SmallSet<unsigned, 8> Rejected;
      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected);
    }
  };
}


/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them.  If possible, avoid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
                              std::vector<MachineInstr*> &ReMatedMIs) {
  DOUT << MBB.getBasicBlock()->getName() << ":\n";

  // Spills - Keep track of which spilled values are available in physregs so
  // that we can choose to reuse the physregs instead of emitting reloads.
  AvailableSpills Spills(MRI, TII);
  
  // MaybeDeadStores - When we need to write a value back into a stack slot,
  // keep track of the inserted store.  If the stack slot value is never read
  // (because the value was used from some available register, for example), and
  // subsequently stored to, the original store is dead.  This map keeps track
  // of inserted stores that are not used.  If we see a subsequent store to the
  // same stack slot, the original store is deleted.
  std::map<int, MachineInstr*> MaybeDeadStores;

  MachineFunction &MF = *MBB.getParent();
  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
       MII != E; ) {
    MachineInstr &MI = *MII;
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;

    /// ReusedOperands - Keep track of operand reuse in case we need to undo
    /// reuse.
    ReuseInfo ReusedOperands(MI, MRI);

    // Loop over all of the implicit defs, clearing them from our available
    // sets.
    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();

    // If this instruction is being rematerialized, just remove it!
    int FrameIdx;
    if ((TID->Flags & M_REMATERIALIZIBLE) ||
        TII->isLoadFromStackSlot(&MI, FrameIdx)) {
      bool Remove = true;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (!MO.isRegister() || MO.getReg() == 0)
          continue;   // Ignore non-register operands.
        if (MO.isDef() && !VRM.isReMaterialized(MO.getReg())) {
          Remove = false;
          break;
        }
      }
      if (Remove) {
        VRM.RemoveFromFoldedVirtMap(&MI);
        ReMatedMIs.push_back(MI.removeFromParent());
        MII = NextMII;
        continue;
      }
    }

    const unsigned *ImpDef = TID->ImplicitDefs;
    if (ImpDef) {
      for ( ; *ImpDef; ++ImpDef) {
        MF.setPhysRegUsed(*ImpDef);
        ReusedOperands.markClobbered(*ImpDef);
        Spills.ClobberPhysReg(*ImpDef);
      }
    }

    // Process all of the spilled uses and all non spilled reg references.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isRegister() || MO.getReg() == 0)
        continue;   // Ignore non-register operands.
      
      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
        // Ignore physregs for spilling, but remember that it is used by this
        // function.
        MF.setPhysRegUsed(MO.getReg());
        ReusedOperands.markClobbered(MO.getReg());
        continue;
      }
      
      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
             "Not a virtual or a physical register?");
      
      unsigned VirtReg = MO.getReg();
      if (!VRM.hasStackSlot(VirtReg)) {
        // This virtual register was assigned a physreg!
        unsigned Phys = VRM.getPhys(VirtReg);
        MF.setPhysRegUsed(Phys);
        if (MO.isDef())
          ReusedOperands.markClobbered(Phys);
        MI.getOperand(i).setReg(Phys);
        continue;
      }
      
      // This virtual register is now known to be a spilled value.
      if (!MO.isUse())
        continue;  // Handle defs in the loop below (handle use&def here though)

      bool doReMat = VRM.isReMaterialized(VirtReg);
      int StackSlot = VRM.getStackSlot(VirtReg);
      unsigned PhysReg;

      // Check to see if this stack slot is available.
      MachineInstr *SSMI = NULL;
      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot, SSMI))) {
        // This spilled operand might be part of a two-address operand.  If this
        // is the case, then changing it will necessarily require changing the 
        // def part of the instruction as well.  However, in some cases, we
        // aren't allowed to modify the reused register.  If none of these cases
        // apply, reuse it.
        bool CanReuse = true;
        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
        if (ti != -1 &&
            MI.getOperand(ti).isReg() && 
            MI.getOperand(ti).getReg() == VirtReg) {
          // Okay, we have a two address operand.  We can reuse this physreg as
          // long as we are allowed to clobber the value and there isn't an
          // earlier def that has already clobbered the physreg.
          CanReuse = Spills.canClobberPhysReg(StackSlot) &&
            !ReusedOperands.isClobbered(PhysReg);
        }
        
        if (CanReuse) {
          // If this stack slot value is already available, reuse it!
          if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
            DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
          else
            DOUT << "Reusing SS#" << StackSlot;
          DOUT << " from physreg "
               << MRI->getName(PhysReg) << " for vreg"
               << VirtReg <<" instead of reloading into physreg "
               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
          MI.getOperand(i).setReg(PhysReg);

          // Extend the live range of the MI that last kill the register if
          // necessary.
          bool WasKill = false;
          if (SSMI) {
            int UIdx = SSMI->findRegisterUseOperandIdx(PhysReg, true);
            if (UIdx != -1) {
              MachineOperand &MOK = SSMI->getOperand(UIdx);
              WasKill = MOK.isKill();
              MOK.unsetIsKill();
            }
          }
          if (ti == -1) {
            // Unless it's the use of a two-address code, transfer the kill
            // of the reused register to this use.
            if (WasKill)
              MI.getOperand(i).setIsKill();
            Spills.addLastUse(PhysReg, &MI);
          }

          // The only technical detail we have is that we don't know that
          // PhysReg won't be clobbered by a reloaded stack slot that occurs
          // later in the instruction.  In particular, consider 'op V1, V2'.
          // If V1 is available in physreg R0, we would choose to reuse it
          // here, instead of reloading it into the register the allocator
          // indicated (say R1).  However, V2 might have to be reloaded
          // later, and it might indicate that it needs to live in R0.  When
          // this occurs, we need to have information available that
          // indicates it is safe to use R1 for the reload instead of R0.
          //
          // To further complicate matters, we might conflict with an alias,
          // or R0 and R1 might not be compatible with each other.  In this
          // case, we actually insert a reload for V1 in R1, ensuring that
          // we can get at R0 or its alias.
          ReusedOperands.addReuse(i, StackSlot, PhysReg,
                                  VRM.getPhys(VirtReg), VirtReg);
          if (ti != -1)
            // Only mark it clobbered if this is a use&def operand.
            ReusedOperands.markClobbered(PhysReg);
          ++NumReused;
          continue;
        }
        
        // Otherwise we have a situation where we have a two-address instruction
        // whose mod/ref operand needs to be reloaded.  This reload is already
        // available in some register "PhysReg", but if we used PhysReg as the
        // operand to our 2-addr instruction, the instruction would modify
        // PhysReg.  This isn't cool if something later uses PhysReg and expects
        // to get its initial value.
        //
        // To avoid this problem, and to avoid doing a load right after a store,
        // we emit a copy from PhysReg into the designated register for this
        // operand.
        unsigned DesignatedReg = VRM.getPhys(VirtReg);
        assert(DesignatedReg && "Must map virtreg to physreg!");

        // Note that, if we reused a register for a previous operand, the
        // register we want to reload into might not actually be
        // available.  If this occurs, use the register indicated by the
        // reuser.
        if (ReusedOperands.hasReuses())
          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
                                                      Spills, MaybeDeadStores);
        
        // If the mapped designated register is actually the physreg we have
        // incoming, we don't need to inserted a dead copy.
        if (DesignatedReg == PhysReg) {
          // If this stack slot value is already available, reuse it!
          if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
            DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
          else
            DOUT << "Reusing SS#" << StackSlot;
          DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
               << VirtReg
               << " instead of reloading into same physreg.\n";
          MI.getOperand(i).setReg(PhysReg);
          ReusedOperands.markClobbered(PhysReg);
          ++NumReused;
          continue;
        }
        
        const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
        MF.setPhysRegUsed(DesignatedReg);
        ReusedOperands.markClobbered(DesignatedReg);
        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);

        // Extend the live range of the MI that last kill the register if
        // necessary.
        bool WasKill = false;
        if (SSMI) {
          int UIdx = SSMI->findRegisterUseOperandIdx(PhysReg, true);
          if (UIdx != -1) {
            MachineOperand &MOK = SSMI->getOperand(UIdx);
            WasKill = MOK.isKill();
            MOK.unsetIsKill();
          }
        }
        MachineInstr *CopyMI = prior(MII);
        if (WasKill) {
          // Transfer kill to the next use.
          int UIdx = CopyMI->findRegisterUseOperandIdx(PhysReg);
          assert(UIdx != -1);
          MachineOperand &MOU = CopyMI->getOperand(UIdx);
          MOU.setIsKill();
        }
        Spills.addLastUse(PhysReg, CopyMI);

        // This invalidates DesignatedReg.
        Spills.ClobberPhysReg(DesignatedReg);
        
        Spills.addAvailable(StackSlot, &MI, DesignatedReg);
        MI.getOperand(i).setReg(DesignatedReg);
        DOUT << '\t' << *prior(MII);
        ++NumReused;
        continue;
      }
      
      // Otherwise, reload it and remember that we have it.
      PhysReg = VRM.getPhys(VirtReg);
      assert(PhysReg && "Must map virtreg to physreg!");
      const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);

      // Note that, if we reused a register for a previous operand, the
      // register we want to reload into might not actually be
      // available.  If this occurs, use the register indicated by the
      // reuser.
      if (ReusedOperands.hasReuses())
        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                                                 Spills, MaybeDeadStores);
      
      MF.setPhysRegUsed(PhysReg);
      ReusedOperands.markClobbered(PhysReg);
      if (doReMat) {
        MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
        ++NumReMats;
      } else {
        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
        ++NumLoads;
      }
      // This invalidates PhysReg.
      Spills.ClobberPhysReg(PhysReg);

      // Any stores to this stack slot are not dead anymore.
      if (!doReMat)
        MaybeDeadStores.erase(StackSlot);
      Spills.addAvailable(StackSlot, &MI, PhysReg);
      // Assumes this is the last use. IsKill will be unset if reg is reused
      // unless it's a two-address operand.
      if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
        MI.getOperand(i).setIsKill();
      MI.getOperand(i).setReg(PhysReg);
      DOUT << '\t' << *prior(MII);
    }

    DOUT << '\t' << MI;

    // If we have folded references to memory operands, make sure we clear all
    // physical registers that may contain the value of the spilled virtual
    // register
    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
      DOUT << "Folded vreg: " << I->second.first << "  MR: "
           << I->second.second;
      unsigned VirtReg = I->second.first;
      VirtRegMap::ModRef MR = I->second.second;
      if (!VRM.hasStackSlot(VirtReg)) {
        DOUT << ": No stack slot!\n";
        continue;
      }
      int SS = VRM.getStackSlot(VirtReg);
      DOUT << " - StackSlot: " << SS << "\n";
      
      // If this folded instruction is just a use, check to see if it's a
      // straight load from the virt reg slot.
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
        int FrameIdx;
        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
          if (FrameIdx == SS) {
            // If this spill slot is available, turn it into a copy (or nothing)
            // instead of leaving it as a load!
            MachineInstr *SSMI = NULL;
            if (unsigned InReg = Spills.getSpillSlotPhysReg(SS, SSMI)) {
              DOUT << "Promoted Load To Copy: " << MI;
              if (DestReg != InReg) {
                MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
                                  MF.getSSARegMap()->getRegClass(VirtReg));
                // Revisit the copy so we make sure to notice the effects of the
                // operation on the destreg (either needing to RA it if it's 
                // virtual or needing to clobber any values if it's physical).
                NextMII = &MI;
                --NextMII;  // backtrack to the copy.
              } else
                DOUT << "Removing now-noop copy: " << MI;

              // Either way, the live range of the last kill of InReg has been
              // extended. Remove its kill.
              bool WasKill = false;
              if (SSMI) {
                int UIdx = SSMI->findRegisterUseOperandIdx(InReg, true);
                if (UIdx != -1) {
                  MachineOperand &MOK = SSMI->getOperand(UIdx);
                  WasKill = MOK.isKill();
                  MOK.unsetIsKill();
                }
              }
              if (NextMII != MBB.end()) {
                // If NextMII uses InReg and the use is not a two address
                // operand, mark it killed.
                int UIdx = NextMII->findRegisterUseOperandIdx(InReg);
                if (UIdx != -1) {
                  MachineOperand &MOU = NextMII->getOperand(UIdx);
                  if (WasKill) {
                    const TargetInstrDescriptor *NTID =
                      NextMII->getInstrDescriptor();
                    if (UIdx >= NTID->numOperands ||
                        NTID->getOperandConstraint(UIdx, TOI::TIED_TO) == -1)
                      MOU.setIsKill();
                  }
                  Spills.addLastUse(InReg, &(*NextMII));
                }
              }

              VRM.RemoveFromFoldedVirtMap(&MI);
              MBB.erase(&MI);
              goto ProcessNextInst;
            }
          }
        }
      }

      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
      if (MDSI != MaybeDeadStores.end()) {
        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
          MaybeDeadStores.erase(MDSI);
        else {
          // If we get here, the store is dead, nuke it now.
          assert(VirtRegMap::isMod && "Can't be modref!");
          DOUT << "Removed dead store:\t" << *MDSI->second;
          MBB.erase(MDSI->second);
          VRM.RemoveFromFoldedVirtMap(MDSI->second);
          MaybeDeadStores.erase(MDSI);
          ++NumDSE;
        }
      }

      // If the spill slot value is available, and this is a new definition of
      // the value, the value is not available anymore.
      if (MR & VirtRegMap::isMod) {
        // Notice that the value in this stack slot has been modified.
        Spills.ModifyStackSlot(SS);
        
        // If this is *just* a mod of the value, check to see if this is just a
        // store to the spill slot (i.e. the spill got merged into the copy). If
        // so, realize that the vreg is available now, and add the store to the
        // MaybeDeadStore info.
        int StackSlot;
        if (!(MR & VirtRegMap::isRef)) {
          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
                   "Src hasn't been allocated yet?");
            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
            // this as a potentially dead store in case there is a subsequent
            // store into the stack slot without a read from it.
            MaybeDeadStores[StackSlot] = &MI;

            // If the stack slot value was previously available in some other
            // register, change it now.  Otherwise, make the register available,
            // in PhysReg.
            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
          }
        }
      }
    }

    // Process all of the spilled defs.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
        unsigned VirtReg = MO.getReg();

        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
          // Check to see if this is a noop copy.  If so, eliminate the
          // instruction before considering the dest reg to be changed.
          unsigned Src, Dst;
          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
            ++NumDCE;
            DOUT << "Removing now-noop copy: " << MI;
            Spills.removeLastUse(Src, &MI);
            MBB.erase(&MI);
            VRM.RemoveFromFoldedVirtMap(&MI);
            Spills.disallowClobberPhysReg(VirtReg);
            goto ProcessNextInst;
          }
          
          // If it's not a no-op copy, it clobbers the value in the destreg.
          Spills.ClobberPhysReg(VirtReg);
          ReusedOperands.markClobbered(VirtReg);
 
          // Check to see if this instruction is a load from a stack slot into
          // a register.  If so, this provides the stack slot value in the reg.
          int FrameIdx;
          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
            assert(DestReg == VirtReg && "Unknown load situation!");
            
            // Otherwise, if it wasn't available, remember that it is now!
            Spills.addAvailable(FrameIdx, &MI, DestReg);
            goto ProcessNextInst;
          }
            
          continue;
        }

        // The only vregs left are stack slot definitions.
        int StackSlot = VRM.getStackSlot(VirtReg);
        const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(VirtReg);

        // If this def is part of a two-address operand, make sure to execute
        // the store from the correct physical register.
        unsigned PhysReg;
        int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
        if (TiedOp != -1)
          PhysReg = MI.getOperand(TiedOp).getReg();
        else {
          PhysReg = VRM.getPhys(VirtReg);
          if (ReusedOperands.isClobbered(PhysReg)) {
            // Another def has taken the assigned physreg. It must have been a
            // use&def which got it due to reuse. Undo the reuse!
            PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                                                     Spills, MaybeDeadStores);
          }
        }

        MF.setPhysRegUsed(PhysReg);
        ReusedOperands.markClobbered(PhysReg);
        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
        DOUT << "Store:\t" << *next(MII);
        MI.getOperand(i).setReg(PhysReg);

        // If there is a dead store to this stack slot, nuke it now.
        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
        if (LastStore) {
          DOUT << "Removed dead store:\t" << *LastStore;
          ++NumDSE;
          MBB.erase(LastStore);
          VRM.RemoveFromFoldedVirtMap(LastStore);
        }
        LastStore = next(MII);

        // If the stack slot value was previously available in some other
        // register, change it now.  Otherwise, make the register available,
        // in PhysReg.
        Spills.ModifyStackSlot(StackSlot);
        Spills.ClobberPhysReg(PhysReg);
        Spills.addAvailable(StackSlot, LastStore, PhysReg);
        ++NumStores;

        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        {
          unsigned Src, Dst;
          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
            ++NumDCE;
            DOUT << "Removing now-noop copy: " << MI;
            Spills.removeLastUse(Src, &MI);
            MBB.erase(&MI);
            VRM.RemoveFromFoldedVirtMap(&MI);
            goto ProcessNextInst;
          }
        }        
      }
    }
  ProcessNextInst:
    MII = NextMII;
  }
}



llvm::Spiller* llvm::createSpiller() {
  switch (SpillerOpt) {
  default: assert(0 && "Unreachable!");
  case local:
    return new LocalSpiller();
  case simple:
    return new SimpleSpiller();
  }
}