llvm.org GIT mirror llvm / release_20 lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
release_20

Tree @release_20 (Download .tar.gz)

ScheduleDAGRRList.cpp @release_20raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms.  The basic approach uses a priority
// queue of available nodes to schedule.  One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
#include <climits>
#include <queue>
#include "llvm/Support/CommandLine.h"
using namespace llvm;

static RegisterScheduler
  burrListDAGScheduler("list-burr",
                       "  Bottom-up register reduction list scheduling",
                       createBURRListDAGScheduler);
static RegisterScheduler
  tdrListrDAGScheduler("list-tdrr",
                       "  Top-down register reduction list scheduling",
                       createTDRRListDAGScheduler);

namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation.  This supports both top-down and bottom-up scheduling.
///

class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
private:
  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
  /// it is top-down.
  bool isBottomUp;
  
  /// AvailableQueue - The priority queue to use for the available SUnits.
  ///
  SchedulingPriorityQueue *AvailableQueue;

public:
  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
                  const TargetMachine &tm, bool isbottomup,
                  SchedulingPriorityQueue *availqueue)
    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
      AvailableQueue(availqueue) {
    }

  ~ScheduleDAGRRList() {
    delete AvailableQueue;
  }

  void Schedule();

private:
  void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
  void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
  void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
  void ListScheduleTopDown();
  void ListScheduleBottomUp();
  void CommuteNodesToReducePressure();
};
}  // end anonymous namespace


/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
  DOUT << "********** List Scheduling **********\n";
  
  // Build scheduling units.
  BuildSchedUnits();

  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(&DAG));
  CalculateDepths();
  CalculateHeights();

  AvailableQueue->initNodes(SUnitMap, SUnits);

  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
  if (isBottomUp)
    ListScheduleBottomUp();
  else
    ListScheduleTopDown();
  
  AvailableQueue->releaseState();

  CommuteNodesToReducePressure();
  
  DOUT << "*** Final schedule ***\n";
  DEBUG(dumpSchedule());
  DOUT << "\n";
  
  // Emit in scheduled order
  EmitSchedule();
}

/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
/// it is not the last use of its first operand, add it to the CommuteSet if
/// possible. It will be commuted when it is translated to a MI.
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
  std::set<SUnit *> OperandSeen;
  for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
    SUnit *SU = Sequence[i];
    if (!SU) continue;
    if (SU->isCommutable) {
      unsigned Opc = SU->Node->getTargetOpcode();
      unsigned NumRes = CountResults(SU->Node);
      unsigned NumOps = CountOperands(SU->Node);
      for (unsigned j = 0; j != NumOps; ++j) {
        if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
          continue;

        SDNode *OpN = SU->Node->getOperand(j).Val;
        SUnit *OpSU = SUnitMap[OpN];
        if (OpSU && OperandSeen.count(OpSU) == 1) {
          // Ok, so SU is not the last use of OpSU, but SU is two-address so
          // it will clobber OpSU. Try to commute SU if no other source operands
          // are live below.
          bool DoCommute = true;
          for (unsigned k = 0; k < NumOps; ++k) {
            if (k != j) {
              OpN = SU->Node->getOperand(k).Val;
              OpSU = SUnitMap[OpN];
              if (OpSU && OperandSeen.count(OpSU) == 1) {
                DoCommute = false;
                break;
              }
            }
          }
          if (DoCommute)
            CommuteSet.insert(SU->Node);
        }

        // Only look at the first use&def node for now.
        break;
      }
    }

    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
         I != E; ++I) {
      if (!I->second)
        OperandSeen.insert(I->first);
    }
  }
}

//===----------------------------------------------------------------------===//
//  Bottom-Up Scheduling
//===----------------------------------------------------------------------===//

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the Available queue is the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
                                    unsigned CurCycle) {
  // FIXME: the distance between two nodes is not always == the predecessor's
  // latency. For example, the reader can very well read the register written
  // by the predecessor later than the issue cycle. It also depends on the
  // interrupt model (drain vs. freeze).
  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);

  if (!isChain)
    PredSU->NumSuccsLeft--;
  else
    PredSU->NumChainSuccsLeft--;
  
#ifndef NDEBUG
  if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
    cerr << "*** List scheduling failed! ***\n";
    PredSU->dump(&DAG);
    cerr << " has been released too many times!\n";
    assert(0);
  }
#endif
  
  if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
    // EntryToken has to go last!  Special case it here.
    if (PredSU->Node->getOpcode() != ISD::EntryToken) {
      PredSU->isAvailable = true;
      AvailableQueue->push(PredSU);
    }
  }
}

/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
  DEBUG(SU->dump(&DAG));
  SU->Cycle = CurCycle;

  AvailableQueue->ScheduledNode(SU);
  Sequence.push_back(SU);

  // Bottom up: release predecessors
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I)
    ReleasePred(I->first, I->second, CurCycle);
  SU->isScheduled = true;
}

/// isReady - True if node's lower cycle bound is less or equal to the current
/// scheduling cycle. Always true if all nodes have uniform latency 1.
static inline bool isReady(SUnit *SU, unsigned CurCycle) {
  return SU->CycleBound <= CurCycle;
}

/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
  unsigned CurCycle = 0;
  // Add root to Available queue.
  AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back. Schedule the node.
  std::vector<SUnit*> NotReady;
  while (!AvailableQueue->empty()) {
    SUnit *CurNode = AvailableQueue->pop();
    while (CurNode && !isReady(CurNode, CurCycle)) {
      NotReady.push_back(CurNode);
      CurNode = AvailableQueue->pop();
    }
    
    // Add the nodes that aren't ready back onto the available list.
    AvailableQueue->push_all(NotReady);
    NotReady.clear();

    if (CurNode != NULL)
      ScheduleNodeBottomUp(CurNode, CurCycle);
    CurCycle++;
  }

  // Add entry node last
  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
    Sequence.push_back(Entry);
  }

  // Reverse the order if it is bottom up.
  std::reverse(Sequence.begin(), Sequence.end());
  
  
#ifndef NDEBUG
  // Verify that all SUnits were scheduled.
  bool AnyNotSched = false;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
      if (!AnyNotSched)
        cerr << "*** List scheduling failed! ***\n";
      SUnits[i].dump(&DAG);
      cerr << "has not been scheduled!\n";
      AnyNotSched = true;
    }
  }
  assert(!AnyNotSched);
#endif
}

//===----------------------------------------------------------------------===//
//  Top-Down Scheduling
//===----------------------------------------------------------------------===//

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero.
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
                                    unsigned CurCycle) {
  // FIXME: the distance between two nodes is not always == the predecessor's
  // latency. For example, the reader can very well read the register written
  // by the predecessor later than the issue cycle. It also depends on the
  // interrupt model (drain vs. freeze).
  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);

  if (!isChain)
    SuccSU->NumPredsLeft--;
  else
    SuccSU->NumChainPredsLeft--;
  
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
    cerr << "*** List scheduling failed! ***\n";
    SuccSU->dump(&DAG);
    cerr << " has been released too many times!\n";
    assert(0);
  }
#endif
  
  if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
    SuccSU->isAvailable = true;
    AvailableQueue->push(SuccSU);
  }
}


/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
  DEBUG(SU->dump(&DAG));
  SU->Cycle = CurCycle;

  AvailableQueue->ScheduledNode(SU);
  Sequence.push_back(SU);

  // Top down: release successors
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I)
    ReleaseSucc(I->first, I->second, CurCycle);
  SU->isScheduled = true;
}

void ScheduleDAGRRList::ListScheduleTopDown() {
  unsigned CurCycle = 0;
  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];

  // All leaves to Available queue.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    // It is available if it has no predecessors.
    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
      AvailableQueue->push(&SUnits[i]);
      SUnits[i].isAvailable = true;
    }
  }
  
  // Emit the entry node first.
  ScheduleNodeTopDown(Entry, CurCycle);
  CurCycle++;

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back. Schedule the node.
  std::vector<SUnit*> NotReady;
  while (!AvailableQueue->empty()) {
    SUnit *CurNode = AvailableQueue->pop();
    while (CurNode && !isReady(CurNode, CurCycle)) {
      NotReady.push_back(CurNode);
      CurNode = AvailableQueue->pop();
    }
    
    // Add the nodes that aren't ready back onto the available list.
    AvailableQueue->push_all(NotReady);
    NotReady.clear();

    if (CurNode != NULL)
      ScheduleNodeTopDown(CurNode, CurCycle);
    CurCycle++;
  }
  
  
#ifndef NDEBUG
  // Verify that all SUnits were scheduled.
  bool AnyNotSched = false;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    if (!SUnits[i].isScheduled) {
      if (!AnyNotSched)
        cerr << "*** List scheduling failed! ***\n";
      SUnits[i].dump(&DAG);
      cerr << "has not been scheduled!\n";
      AnyNotSched = true;
    }
  }
  assert(!AnyNotSched);
#endif
}



//===----------------------------------------------------------------------===//
//                RegReductionPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
// 
namespace {
  template<class SF>
  class RegReductionPriorityQueue;
  
  /// Sorting functions for the Available queue.
  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
    
    bool operator()(const SUnit* left, const SUnit* right) const;
  };

  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
    
    bool operator()(const SUnit* left, const SUnit* right) const;
  };
}  // end anonymous namespace

static inline bool isCopyFromLiveIn(const SUnit *SU) {
  SDNode *N = SU->Node;
  return N->getOpcode() == ISD::CopyFromReg &&
    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
}

namespace {
  template<class SF>
  class VISIBILITY_HIDDEN RegReductionPriorityQueue
   : public SchedulingPriorityQueue {
    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;

  public:
    RegReductionPriorityQueue() :
    Queue(SF(this)) {}
    
    virtual void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
                           std::vector<SUnit> &sunits) {}
    virtual void releaseState() {}
    
    virtual unsigned getNodePriority(const SUnit *SU) const {
      return 0;
    }
    
    bool empty() const { return Queue.empty(); }
    
    void push(SUnit *U) {
      Queue.push(U);
    }
    void push_all(const std::vector<SUnit *> &Nodes) {
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
        Queue.push(Nodes[i]);
    }
    
    SUnit *pop() {
      if (empty()) return NULL;
      SUnit *V = Queue.top();
      Queue.pop();
      return V;
    }

    virtual bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
      return false;
    }
  };

  template<class SF>
  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
   : public RegReductionPriorityQueue<SF> {
    // SUnitMap SDNode to SUnit mapping (n -> 1).
    DenseMap<SDNode*, SUnit*> *SUnitMap;

    // SUnits - The SUnits for the current graph.
    const std::vector<SUnit> *SUnits;
    
    // SethiUllmanNumbers - The SethiUllman number for each node.
    std::vector<unsigned> SethiUllmanNumbers;

    const TargetInstrInfo *TII;
  public:
    BURegReductionPriorityQueue(const TargetInstrInfo *tii)
      : TII(tii) {}

    void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
                   std::vector<SUnit> &sunits) {
      SUnitMap = &sumap;
      SUnits = &sunits;
      // Add pseudo dependency edges for two-address nodes.
      AddPseudoTwoAddrDeps();
      // Calculate node priorities.
      CalculateSethiUllmanNumbers();
    }

    void releaseState() {
      SUnits = 0;
      SethiUllmanNumbers.clear();
    }

    unsigned getNodePriority(const SUnit *SU) const {
      assert(SU->NodeNum < SethiUllmanNumbers.size());
      unsigned Opc = SU->Node->getOpcode();
      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
        // CopyFromReg should be close to its def because it restricts
        // allocation choices. But if it is a livein then perhaps we want it
        // closer to its uses so it can be coalesced.
        return 0xffff;
      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
        // CopyToReg should be close to its uses to facilitate coalescing and
        // avoid spilling.
        return 0;
      else if (SU->NumSuccs == 0)
        // If SU does not have a use, i.e. it doesn't produce a value that would
        // be consumed (e.g. store), then it terminates a chain of computation.
        // Give it a large SethiUllman number so it will be scheduled right
        // before its predecessors that it doesn't lengthen their live ranges.
        return 0xffff;
      else if (SU->NumPreds == 0)
        // If SU does not have a def, schedule it close to its uses because it
        // does not lengthen any live ranges.
        return 0;
      else
        return SethiUllmanNumbers[SU->NodeNum];
    }

    bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
      unsigned Opc = SU1->Node->getTargetOpcode();
      unsigned NumRes = ScheduleDAG::CountResults(SU1->Node);
      unsigned NumOps = ScheduleDAG::CountOperands(SU1->Node);
      for (unsigned i = 0; i != NumOps; ++i) {
        if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) == -1)
          continue;
        if (SU1->Node->getOperand(i).isOperand(SU2->Node))
          return true;
      }
      return false;
    }
  private:
    bool canClobber(SUnit *SU, SUnit *Op);
    void AddPseudoTwoAddrDeps();
    void CalculateSethiUllmanNumbers();
    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
  };


  template<class SF>
  class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
    // SUnitMap SDNode to SUnit mapping (n -> 1).
    DenseMap<SDNode*, SUnit*> *SUnitMap;

    // SUnits - The SUnits for the current graph.
    const std::vector<SUnit> *SUnits;
    
    // SethiUllmanNumbers - The SethiUllman number for each node.
    std::vector<unsigned> SethiUllmanNumbers;

  public:
    TDRegReductionPriorityQueue() {}

    void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
                   std::vector<SUnit> &sunits) {
      SUnitMap = &sumap;
      SUnits = &sunits;
      // Calculate node priorities.
      CalculateSethiUllmanNumbers();
    }

    void releaseState() {
      SUnits = 0;
      SethiUllmanNumbers.clear();
    }

    unsigned getNodePriority(const SUnit *SU) const {
      assert(SU->NodeNum < SethiUllmanNumbers.size());
      return SethiUllmanNumbers[SU->NodeNum];
    }

  private:
    void CalculateSethiUllmanNumbers();
    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
  };
}

/// closestSucc - Returns the scheduled cycle of the successor which is
/// closet to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
  unsigned MaxCycle = 0;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    unsigned Cycle = I->first->Cycle;
    // If there are bunch of CopyToRegs stacked up, they should be considered
    // to be at the same position.
    if (I->first->Node->getOpcode() == ISD::CopyToReg)
      Cycle = closestSucc(I->first)+1;
    if (Cycle > MaxCycle)
      MaxCycle = Cycle;
  }
  return MaxCycle;
}

/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers. Live-in operands and live-out results don't count
/// since they are "fixed".
static unsigned calcMaxScratches(const SUnit *SU) {
  unsigned Scratches = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->second) continue;  // ignore chain preds
    if (I->first->Node->getOpcode() != ISD::CopyFromReg)
      Scratches++;
  }
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->second) continue;  // ignore chain succs
    if (I->first->Node->getOpcode() != ISD::CopyToReg)
      Scratches += 10;
  }
  return Scratches;
}

// Bottom up
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
  bool LIsTarget = left->Node->isTargetOpcode();
  bool RIsTarget = right->Node->isTargetOpcode();

  // Special tie breaker: if two nodes share a operand, the one that use it
  // as a def&use operand is preferred.
  if (LIsTarget && RIsTarget) {
    if (left->isTwoAddress && !right->isTwoAddress)
      if (SPQ->isDUOperand(left, right))
        return false;
    if (!left->isTwoAddress && right->isTwoAddress)
      if (SPQ->isDUOperand(right, left))
        return true;
  }

  unsigned LPriority = SPQ->getNodePriority(left);
  unsigned RPriority = SPQ->getNodePriority(right);
  if (LPriority > RPriority)
    return true;
  else if (LPriority == RPriority) {
    // Try schedule def + use closer when Sethi-Ullman numbers are the same.
    // e.g.
    // t1 = op t2, c1
    // t3 = op t4, c2
    //
    // and the following instructions are both ready.
    // t2 = op c3
    // t4 = op c4
    //
    // Then schedule t2 = op first.
    // i.e.
    // t4 = op c4
    // t2 = op c3
    // t1 = op t2, c1
    // t3 = op t4, c2
    //
    // This creates more short live intervals.
    unsigned LDist = closestSucc(left);
    unsigned RDist = closestSucc(right);
    if (LDist < RDist)
      return true;
    else if (LDist == RDist) {
      // Intuitively, it's good to push down instructions whose results are
      // liveout so their long live ranges won't conflict with other values
      // which are needed inside the BB. Further prioritize liveout instructions
      // by the number of operands which are calculated within the BB.
      unsigned LScratch = calcMaxScratches(left);
      unsigned RScratch = calcMaxScratches(right);
      if (LScratch > RScratch)
        return true;
      else if (LScratch == RScratch)
        if (left->Height > right->Height)
          return true;
        else if (left->Height == right->Height)
          if (left->Depth < right->Depth)
            return true;
          else if (left->Depth == right->Depth)
            if (left->CycleBound > right->CycleBound) 
              return true;
    }
  }
  return false;
}

// FIXME: This is probably too slow!
static void isReachable(SUnit *SU, SUnit *TargetSU,
                        std::set<SUnit *> &Visited, bool &Reached) {
  if (Reached) return;
  if (SU == TargetSU) {
    Reached = true;
    return;
  }
  if (!Visited.insert(SU).second) return;

  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
       ++I)
    isReachable(I->first, TargetSU, Visited, Reached);
}

static bool isReachable(SUnit *SU, SUnit *TargetSU) {
  std::set<SUnit *> Visited;
  bool Reached = false;
  isReachable(SU, TargetSU, Visited, Reached);
  return Reached;
}

template<class SF>
bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
  if (SU->isTwoAddress) {
    unsigned Opc = SU->Node->getTargetOpcode();
    unsigned NumRes = ScheduleDAG::CountResults(SU->Node);
    unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
    for (unsigned i = 0; i != NumOps; ++i) {
      if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
        SDNode *DU = SU->Node->getOperand(i).Val;
        if (Op == (*SUnitMap)[DU])
          return true;
      }
    }
  }
  return false;
}


/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule).
template<class SF>
void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
    SUnit *SU = (SUnit *)&((*SUnits)[i]);
    if (!SU->isTwoAddress)
      continue;

    SDNode *Node = SU->Node;
    if (!Node->isTargetOpcode())
      continue;

    unsigned Opc = Node->getTargetOpcode();
    unsigned NumRes = ScheduleDAG::CountResults(Node);
    unsigned NumOps = ScheduleDAG::CountOperands(Node);
    for (unsigned j = 0; j != NumOps; ++j) {
      if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
        SDNode *DU = SU->Node->getOperand(j).Val;
        SUnit *DUSU = (*SUnitMap)[DU];
        if (!DUSU) continue;
        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
             I != E; ++I) {
          if (I->second) continue;
          SUnit *SuccSU = I->first;
          if (SuccSU != SU &&
              (!canClobber(SuccSU, DUSU) ||
               (!SU->isCommutable && SuccSU->isCommutable))){
            if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
              DOUT << "Adding an edge from SU # " << SU->NodeNum
                   << " to SU #" << SuccSU->NodeNum << "\n";
              if (SU->addPred(SuccSU, true))
                SU->NumChainPredsLeft++;
              if (SuccSU->addSucc(SU, true))
                SuccSU->NumChainSuccsLeft++;
            }
          }
        }
      }
    }
  }
}

/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
/// Smaller number is the higher priority.
template<class SF>
unsigned BURegReductionPriorityQueue<SF>::
CalcNodeSethiUllmanNumber(const SUnit *SU) {
  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
  if (SethiUllmanNumber != 0)
    return SethiUllmanNumber;

  unsigned Extra = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->second) continue;  // ignore chain preds
    SUnit *PredSU = I->first;
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
    if (PredSethiUllman > SethiUllmanNumber) {
      SethiUllmanNumber = PredSethiUllman;
      Extra = 0;
    } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
      Extra++;
  }

  SethiUllmanNumber += Extra;

  if (SethiUllmanNumber == 0)
    SethiUllmanNumber = 1;
  
  return SethiUllmanNumber;
}

/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
template<class SF>
void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
  SethiUllmanNumbers.assign(SUnits->size(), 0);
  
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
}

static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
  unsigned Sum = 0;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    SUnit *SuccSU = I->first;
    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
         EE = SuccSU->Preds.end(); II != EE; ++II) {
      SUnit *PredSU = II->first;
      if (!PredSU->isScheduled)
        Sum++;
    }
  }

  return Sum;
}


// Top down
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
  unsigned LPriority = SPQ->getNodePriority(left);
  unsigned RPriority = SPQ->getNodePriority(right);
  bool LIsTarget = left->Node->isTargetOpcode();
  bool RIsTarget = right->Node->isTargetOpcode();
  bool LIsFloater = LIsTarget && left->NumPreds == 0;
  bool RIsFloater = RIsTarget && right->NumPreds == 0;
  unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
  unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;

  if (left->NumSuccs == 0 && right->NumSuccs != 0)
    return false;
  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
    return true;

  // Special tie breaker: if two nodes share a operand, the one that use it
  // as a def&use operand is preferred.
  if (LIsTarget && RIsTarget) {
    if (left->isTwoAddress && !right->isTwoAddress) {
      SDNode *DUNode = left->Node->getOperand(0).Val;
      if (DUNode->isOperand(right->Node))
        RBonus += 2;
    }
    if (!left->isTwoAddress && right->isTwoAddress) {
      SDNode *DUNode = right->Node->getOperand(0).Val;
      if (DUNode->isOperand(left->Node))
        LBonus += 2;
    }
  }
  if (LIsFloater)
    LBonus -= 2;
  if (RIsFloater)
    RBonus -= 2;
  if (left->NumSuccs == 1)
    LBonus += 2;
  if (right->NumSuccs == 1)
    RBonus += 2;

  if (LPriority+LBonus < RPriority+RBonus)
    return true;
  else if (LPriority == RPriority)
    if (left->Depth < right->Depth)
      return true;
    else if (left->Depth == right->Depth)
      if (left->NumSuccsLeft > right->NumSuccsLeft)
        return true;
      else if (left->NumSuccsLeft == right->NumSuccsLeft)
        if (left->CycleBound > right->CycleBound) 
          return true;
  return false;
}

/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
/// Smaller number is the higher priority.
template<class SF>
unsigned TDRegReductionPriorityQueue<SF>::
CalcNodeSethiUllmanNumber(const SUnit *SU) {
  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
  if (SethiUllmanNumber != 0)
    return SethiUllmanNumber;

  unsigned Opc = SU->Node->getOpcode();
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    SethiUllmanNumber = 0xffff;
  else if (SU->NumSuccsLeft == 0)
    // If SU does not have a use, i.e. it doesn't produce a value that would
    // be consumed (e.g. store), then it terminates a chain of computation.
    // Give it a small SethiUllman number so it will be scheduled right before
    // its predecessors that it doesn't lengthen their live ranges.
    SethiUllmanNumber = 0;
  else if (SU->NumPredsLeft == 0 &&
           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
    SethiUllmanNumber = 0xffff;
  else {
    int Extra = 0;
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
         I != E; ++I) {
      if (I->second) continue;  // ignore chain preds
      SUnit *PredSU = I->first;
      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
      if (PredSethiUllman > SethiUllmanNumber) {
        SethiUllmanNumber = PredSethiUllman;
        Extra = 0;
      } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
        Extra++;
    }

    SethiUllmanNumber += Extra;
  }
  
  return SethiUllmanNumber;
}

/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
template<class SF>
void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
  SethiUllmanNumbers.assign(SUnits->size(), 0);
  
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
                                                    SelectionDAG *DAG,
                                                    MachineBasicBlock *BB) {
  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
                           new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII));
}

llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
                                                    SelectionDAG *DAG,
                                                    MachineBasicBlock *BB) {
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
}