llvm.org GIT mirror llvm / release_16 utils / TableGen / DAGISelEmitter.cpp
release_16

Tree @release_16 (Download .tar.gz)

DAGISelEmitter.cpp @release_16raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//

#include "DAGISelEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <set>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Helpers for working with extended types.

/// FilterVTs - Filter a list of VT's according to a predicate.
///
template<typename T>
static std::vector<MVT::ValueType> 
FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
  std::vector<MVT::ValueType> Result;
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
    if (Filter(InVTs[i]))
      Result.push_back(InVTs[i]);
  return Result;
}

/// isExtIntegerVT - Return true if the specified extended value type is
/// integer, or isInt.
static bool isExtIntegerVT(unsigned char VT) {
  return VT == MVT::isInt ||
        (VT < MVT::LAST_VALUETYPE && MVT::isInteger((MVT::ValueType)VT));
}

/// isExtFloatingPointVT - Return true if the specified extended value type is
/// floating point, or isFP.
static bool isExtFloatingPointVT(unsigned char VT) {
  return VT == MVT::isFP ||
        (VT < MVT::LAST_VALUETYPE && MVT::isFloatingPoint((MVT::ValueType)VT));
}

//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//

SDTypeConstraint::SDTypeConstraint(Record *R) {
  OperandNo = R->getValueAsInt("OperandNum");
  
  if (R->isSubClassOf("SDTCisVT")) {
    ConstraintType = SDTCisVT;
    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
  } else if (R->isSubClassOf("SDTCisInt")) {
    ConstraintType = SDTCisInt;
  } else if (R->isSubClassOf("SDTCisFP")) {
    ConstraintType = SDTCisFP;
  } else if (R->isSubClassOf("SDTCisSameAs")) {
    ConstraintType = SDTCisSameAs;
    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
    ConstraintType = SDTCisVTSmallerThanOp;
    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 
      R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
    ConstraintType = SDTCisOpSmallerThanOp;
    x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 
      R->getValueAsInt("BigOperandNum");
  } else {
    std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
    exit(1);
  }
}

/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, which has NumResults results.
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
                                                 TreePatternNode *N,
                                                 unsigned NumResults) const {
  assert(NumResults == 1 && "We only work with single result nodes so far!");
  
  if (OpNo < NumResults)
    return N;  // FIXME: need value #
  else
    return N->getChild(OpNo-NumResults);
}

/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, throw an
/// exception.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
                                           const SDNodeInfo &NodeInfo,
                                           TreePattern &TP) const {
  unsigned NumResults = NodeInfo.getNumResults();
  assert(NumResults == 1 && "We only work with single result nodes so far!");
  
  // Check that the number of operands is sane.
  if (NodeInfo.getNumOperands() >= 0) {
    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
      TP.error(N->getOperator()->getName() + " node requires exactly " +
               itostr(NodeInfo.getNumOperands()) + " operands!");
  }

  const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
  
  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
  
  switch (ConstraintType) {
  default: assert(0 && "Unknown constraint type!");
  case SDTCisVT:
    // Operand must be a particular type.
    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
  case SDTCisInt: {
    // If there is only one integer type supported, this must be it.
    std::vector<MVT::ValueType> IntVTs =
      FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);

    // If we found exactly one supported integer type, apply it.
    if (IntVTs.size() == 1)
      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
    return NodeToApply->UpdateNodeType(MVT::isInt, TP);
  }
  case SDTCisFP: {
    // If there is only one FP type supported, this must be it.
    std::vector<MVT::ValueType> FPVTs =
      FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
        
    // If we found exactly one supported FP type, apply it.
    if (FPVTs.size() == 1)
      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
    return NodeToApply->UpdateNodeType(MVT::isFP, TP);
  }
  case SDTCisSameAs: {
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
    return NodeToApply->UpdateNodeType(OtherNode->getExtType(), TP) |
           OtherNode->UpdateNodeType(NodeToApply->getExtType(), TP);
  }
  case SDTCisVTSmallerThanOp: {
    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
    // have an integer type that is smaller than the VT.
    if (!NodeToApply->isLeaf() ||
        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
               ->isSubClassOf("ValueType"))
      TP.error(N->getOperator()->getName() + " expects a VT operand!");
    MVT::ValueType VT =
     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
    if (!MVT::isInteger(VT))
      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
    
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
    
    // It must be integer.
    bool MadeChange = false;
    MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
    
    if (OtherNode->hasTypeSet() && OtherNode->getType() <= VT)
      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
    return false;
  }
  case SDTCisOpSmallerThanOp: {
    TreePatternNode *BigOperand =
      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);

    // Both operands must be integer or FP, but we don't care which.
    bool MadeChange = false;
    
    if (isExtIntegerVT(NodeToApply->getExtType()))
      MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
    else if (isExtFloatingPointVT(NodeToApply->getExtType()))
      MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
    if (isExtIntegerVT(BigOperand->getExtType()))
      MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
    else if (isExtFloatingPointVT(BigOperand->getExtType()))
      MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);

    std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
    
    if (isExtIntegerVT(NodeToApply->getExtType())) {
      VTs = FilterVTs(VTs, MVT::isInteger);
    } else if (isExtFloatingPointVT(NodeToApply->getExtType())) {
      VTs = FilterVTs(VTs, MVT::isFloatingPoint);
    } else {
      VTs.clear();
    }

    switch (VTs.size()) {
    default:         // Too many VT's to pick from.
    case 0: break;   // No info yet.
    case 1: 
      // Only one VT of this flavor.  Cannot ever satisify the constraints.
      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
    case 2:
      // If we have exactly two possible types, the little operand must be the
      // small one, the big operand should be the big one.  Common with 
      // float/double for example.
      assert(VTs[0] < VTs[1] && "Should be sorted!");
      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
      break;
    }    
    return MadeChange;
  }
  }  
  return false;
}


//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
  EnumName    = R->getValueAsString("Opcode");
  SDClassName = R->getValueAsString("SDClass");
  Record *TypeProfile = R->getValueAsDef("TypeProfile");
  NumResults = TypeProfile->getValueAsInt("NumResults");
  NumOperands = TypeProfile->getValueAsInt("NumOperands");
  
  // Parse the properties.
  Properties = 0;
  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
    if (PropList[i]->getName() == "SDNPCommutative") {
      Properties |= 1 << SDNPCommutative;
    } else if (PropList[i]->getName() == "SDNPAssociative") {
      Properties |= 1 << SDNPAssociative;
    } else {
      std::cerr << "Unknown SD Node property '" << PropList[i]->getName()
                << "' on node '" << R->getName() << "'!\n";
      exit(1);
    }
  }
  
  
  // Parse the type constraints.
  std::vector<Record*> ConstraintList =
    TypeProfile->getValueAsListOfDefs("Constraints");
  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}

//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//

TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    delete getChild(i);
#endif
}

/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information.  If N already contains a conflicting type, then throw an
/// exception.  This returns true if any information was updated.
///
bool TreePatternNode::UpdateNodeType(unsigned char VT, TreePattern &TP) {
  if (VT == MVT::isUnknown || getExtType() == VT) return false;
  if (getExtType() == MVT::isUnknown) {
    setType(VT);
    return true;
  }
  
  // If we are told this is to be an int or FP type, and it already is, ignore
  // the advice.
  if ((VT == MVT::isInt && isExtIntegerVT(getExtType())) ||
      (VT == MVT::isFP  && isExtFloatingPointVT(getExtType())))
    return false;
      
  // If we know this is an int or fp type, and we are told it is a specific one,
  // take the advice.
  if ((getExtType() == MVT::isInt && isExtIntegerVT(VT)) ||
      (getExtType() == MVT::isFP  && isExtFloatingPointVT(VT))) {
    setType(VT);
    return true;
  }      

  if (isLeaf()) {
    dump();
    TP.error("Type inference contradiction found in node!");
  } else {
    TP.error("Type inference contradiction found in node " + 
             getOperator()->getName() + "!");
  }
  return true; // unreachable
}


void TreePatternNode::print(std::ostream &OS) const {
  if (isLeaf()) {
    OS << *getLeafValue();
  } else {
    OS << "(" << getOperator()->getName();
  }
  
  switch (getExtType()) {
  case MVT::Other: OS << ":Other"; break;
  case MVT::isInt: OS << ":isInt"; break;
  case MVT::isFP : OS << ":isFP"; break;
  case MVT::isUnknown: ; /*OS << ":?";*/ break;
  default:  OS << ":" << getType(); break;
  }

  if (!isLeaf()) {
    if (getNumChildren() != 0) {
      OS << " ";
      getChild(0)->print(OS);
      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
        OS << ", ";
        getChild(i)->print(OS);
      }
    }
    OS << ")";
  }
  
  if (!PredicateFn.empty())
    OS << "<<P:" << PredicateFn << ">>";
  if (TransformFn)
    OS << "<<X:" << TransformFn->getName() << ">>";
  if (!getName().empty())
    OS << ":$" << getName();

}
void TreePatternNode::dump() const {
  print(std::cerr);
}

/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node.  For this comparison, all of the state of the node
/// is considered, except for the assigned name.  Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
  if (N == this) return true;
  if (N->isLeaf() != isLeaf() || getExtType() != N->getExtType() ||
      getPredicateFn() != N->getPredicateFn() ||
      getTransformFn() != N->getTransformFn())
    return false;

  if (isLeaf()) {
    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
        return DI->getDef() == NDI->getDef();
    return getLeafValue() == N->getLeafValue();
  }
  
  if (N->getOperator() != getOperator() ||
      N->getNumChildren() != getNumChildren()) return false;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
      return false;
  return true;
}

/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
  TreePatternNode *New;
  if (isLeaf()) {
    New = new TreePatternNode(getLeafValue());
  } else {
    std::vector<TreePatternNode*> CChildren;
    CChildren.reserve(Children.size());
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      CChildren.push_back(getChild(i)->clone());
    New = new TreePatternNode(getOperator(), CChildren);
  }
  New->setName(getName());
  New->setType(getExtType());
  New->setPredicateFn(getPredicateFn());
  New->setTransformFn(getTransformFn());
  return New;
}

/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
  if (isLeaf()) return;
  
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = getChild(i);
    if (Child->isLeaf()) {
      Init *Val = Child->getLeafValue();
      if (dynamic_cast<DefInit*>(Val) &&
          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
        // We found a use of a formal argument, replace it with its value.
        Child = ArgMap[Child->getName()];
        assert(Child && "Couldn't find formal argument!");
        setChild(i, Child);
      }
    } else {
      getChild(i)->SubstituteFormalArguments(ArgMap);
    }
  }
}


/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
  if (isLeaf()) return this;  // nothing to do.
  Record *Op = getOperator();
  
  if (!Op->isSubClassOf("PatFrag")) {
    // Just recursively inline children nodes.
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      setChild(i, getChild(i)->InlinePatternFragments(TP));
    return this;
  }

  // Otherwise, we found a reference to a fragment.  First, look up its
  // TreePattern record.
  TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
  
  // Verify that we are passing the right number of operands.
  if (Frag->getNumArgs() != Children.size())
    TP.error("'" + Op->getName() + "' fragment requires " +
             utostr(Frag->getNumArgs()) + " operands!");

  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();

  // Resolve formal arguments to their actual value.
  if (Frag->getNumArgs()) {
    // Compute the map of formal to actual arguments.
    std::map<std::string, TreePatternNode*> ArgMap;
    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
  
    FragTree->SubstituteFormalArguments(ArgMap);
  }
  
  FragTree->setName(getName());
  
  // Get a new copy of this fragment to stitch into here.
  //delete this;    // FIXME: implement refcounting!
  return FragTree;
}

/// getIntrinsicType - Check to see if the specified record has an intrinsic
/// type which should be applied to it.  This infer the type of register
/// references from the register file information, for example.
///
static unsigned char getIntrinsicType(Record *R, bool NotRegisters,
                                      TreePattern &TP) {
  // Check to see if this is a register or a register class...
  if (R->isSubClassOf("RegisterClass")) {
    if (NotRegisters) return MVT::isUnknown;
    return getValueType(R->getValueAsDef("RegType"));
  } else if (R->isSubClassOf("PatFrag")) {
    // Pattern fragment types will be resolved when they are inlined.
    return MVT::isUnknown;
  } else if (R->isSubClassOf("Register")) {
    //const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
    // TODO: if a register appears in exactly one regclass, we could use that
    // type info.
    return MVT::isUnknown;
  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
    // Using a VTSDNode or CondCodeSDNode.
    return MVT::Other;
  } else if (R->getName() == "node") {
    // Placeholder.
    return MVT::isUnknown;
  }
  
  TP.error("Unknown node flavor used in pattern: " + R->getName());
  return MVT::Other;
}

/// ApplyTypeConstraints - Apply all of the type constraints relevent to
/// this node and its children in the tree.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, throw an
/// exception.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
  if (isLeaf()) {
    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
      // If it's a regclass or something else known, include the type.
      return UpdateNodeType(getIntrinsicType(DI->getDef(), NotRegisters, TP),
                            TP);
    return false;
  }
  
  // special handling for set, which isn't really an SDNode.
  if (getOperator()->getName() == "set") {
    assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
    bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
    
    // Types of operands must match.
    MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtType(), TP);
    MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtType(), TP);
    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
    return MadeChange;
  } else if (getOperator()->isSubClassOf("SDNode")) {
    const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator());
    
    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    return MadeChange;  
  } else if (getOperator()->isSubClassOf("Instruction")) {
    const DAGInstruction &Inst =
      TP.getDAGISelEmitter().getInstruction(getOperator());
    
    assert(Inst.getNumResults() == 1 && "Only supports one result instrs!");
    // Apply the result type to the node
    bool MadeChange = UpdateNodeType(Inst.getResultType(0), TP);

    if (getNumChildren() != Inst.getNumOperands())
      TP.error("Instruction '" + getOperator()->getName() + " expects " +
               utostr(Inst.getNumOperands()) + " operands, not " +
               utostr(getNumChildren()) + " operands!");
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
      MadeChange |= getChild(i)->UpdateNodeType(Inst.getOperandType(i), TP);
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    }
    return MadeChange;
  } else {
    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
    
    // Node transforms always take one operand, and take and return the same
    // type.
    if (getNumChildren() != 1)
      TP.error("Node transform '" + getOperator()->getName() +
               "' requires one operand!");
    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
    return MadeChange;
  }
}

/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false.  Otherwise, return true.  This is
/// used as a santity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
  if (isLeaf()) return true;

  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->canPatternMatch(Reason, ISE))
      return false;
  
  // If this node is a commutative operator, check that the LHS isn't an
  // immediate.
  const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
  if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
    // Scan all of the operands of the node and make sure that only the last one
    // is a constant node.
    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
      if (!getChild(i)->isLeaf() && 
          getChild(i)->getOperator()->getName() == "imm") {
        Reason = "Immediate value must be on the RHS of commutative operators!";
        return false;
      }
  }
  
  return true;
}

//===----------------------------------------------------------------------===//
// TreePattern implementation
//

TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
                         DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
   isInputPattern = isInput;
   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
}

TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
                         DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
  isInputPattern = isInput;
  Trees.push_back(ParseTreePattern(Pat));
}

TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
                         DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
  isInputPattern = isInput;
  Trees.push_back(Pat);
}



void TreePattern::error(const std::string &Msg) const {
  dump();
  throw "In " + TheRecord->getName() + ": " + Msg;
}

TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
  Record *Operator = Dag->getNodeType();
  
  if (Operator->isSubClassOf("ValueType")) {
    // If the operator is a ValueType, then this must be "type cast" of a leaf
    // node.
    if (Dag->getNumArgs() != 1)
      error("Type cast only takes one operand!");
    
    Init *Arg = Dag->getArg(0);
    TreePatternNode *New;
    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
      Record *R = DI->getDef();
      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
        Dag->setArg(0, new DagInit(R,
                                std::vector<std::pair<Init*, std::string> >()));
        TreePatternNode *TPN = ParseTreePattern(Dag);
        TPN->setName(Dag->getArgName(0));
        return TPN;
      }   
      
      New = new TreePatternNode(DI);
    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
      New = ParseTreePattern(DI);
    } else {
      Arg->dump();
      error("Unknown leaf value for tree pattern!");
      return 0;
    }
    
    // Apply the type cast.
    New->UpdateNodeType(getValueType(Operator), *this);
    return New;
  }
  
  // Verify that this is something that makes sense for an operator.
  if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
      !Operator->isSubClassOf("Instruction") && 
      !Operator->isSubClassOf("SDNodeXForm") &&
      Operator->getName() != "set")
    error("Unrecognized node '" + Operator->getName() + "'!");
  
  //  Check to see if this is something that is illegal in an input pattern.
  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
      Operator->isSubClassOf("SDNodeXForm")))
    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
  
  std::vector<TreePatternNode*> Children;
  
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
    Init *Arg = Dag->getArg(i);
    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
      Children.push_back(ParseTreePattern(DI));
      Children.back()->setName(Dag->getArgName(i));
    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
      Record *R = DefI->getDef();
      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
      // TreePatternNode if its own.
      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
        Dag->setArg(i, new DagInit(R,
                              std::vector<std::pair<Init*, std::string> >()));
        --i;  // Revisit this node...
      } else {
        TreePatternNode *Node = new TreePatternNode(DefI);
        Node->setName(Dag->getArgName(i));
        Children.push_back(Node);
        
        // Input argument?
        if (R->getName() == "node") {
          if (Dag->getArgName(i).empty())
            error("'node' argument requires a name to match with operand list");
          Args.push_back(Dag->getArgName(i));
        }
      }
    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
      TreePatternNode *Node = new TreePatternNode(II);
      if (!Dag->getArgName(i).empty())
        error("Constant int argument should not have a name!");
      Children.push_back(Node);
    } else {
      std::cerr << '"';
      Arg->dump();
      std::cerr << "\": ";
      error("Unknown leaf value for tree pattern!");
    }
  }
  
  return new TreePatternNode(Operator, Children);
}

/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible.  Return true if all types are infered, false
/// otherwise.  Throw an exception if a type contradiction is found.
bool TreePattern::InferAllTypes() {
  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
  }
  
  bool HasUnresolvedTypes = false;
  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
  return !HasUnresolvedTypes;
}

void TreePattern::print(std::ostream &OS) const {
  OS << getRecord()->getName();
  if (!Args.empty()) {
    OS << "(" << Args[0];
    for (unsigned i = 1, e = Args.size(); i != e; ++i)
      OS << ", " << Args[i];
    OS << ")";
  }
  OS << ": ";
  
  if (Trees.size() > 1)
    OS << "[\n";
  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
    OS << "\t";
    Trees[i]->print(OS);
    OS << "\n";
  }

  if (Trees.size() > 1)
    OS << "]\n";
}

void TreePattern::dump() const { print(std::cerr); }



//===----------------------------------------------------------------------===//
// DAGISelEmitter implementation
//

// Parse all of the SDNode definitions for the target, populating SDNodes.
void DAGISelEmitter::ParseNodeInfo() {
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
  while (!Nodes.empty()) {
    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
    Nodes.pop_back();
  }
}

/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
  OS << "\n// Node transformations.\n";
  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
  while (!Xforms.empty()) {
    Record *XFormNode = Xforms.back();
    Record *SDNode = XFormNode->getValueAsDef("Opcode");
    std::string Code = XFormNode->getValueAsCode("XFormFunction");
    SDNodeXForms.insert(std::make_pair(XFormNode,
                                       std::make_pair(SDNode, Code)));

    if (!Code.empty()) {
      std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
      const char *C2 = ClassName == "SDNode" ? "N" : "inN";

      OS << "inline SDOperand Transform_" << XFormNode->getName()
         << "(SDNode *" << C2 << ") {\n";
      if (ClassName != "SDNode")
        OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
      OS << Code << "\n}\n";
    }

    Xforms.pop_back();
  }
}



/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map.  After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
/// This also emits all of the predicate functions to the output file.
///
void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
  
  // First step, parse all of the fragments and emit predicate functions.
  OS << "\n// Predicate functions.\n";
  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
    PatternFragments[Fragments[i]] = P;
    
    // Validate the argument list, converting it to map, to discard duplicates.
    std::vector<std::string> &Args = P->getArgList();
    std::set<std::string> OperandsMap(Args.begin(), Args.end());
    
    if (OperandsMap.count(""))
      P->error("Cannot have unnamed 'node' values in pattern fragment!");
    
    // Parse the operands list.
    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
    if (OpsList->getNodeType()->getName() != "ops")
      P->error("Operands list should start with '(ops ... '!");
    
    // Copy over the arguments.       
    Args.clear();
    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
          static_cast<DefInit*>(OpsList->getArg(j))->
          getDef()->getName() != "node")
        P->error("Operands list should all be 'node' values.");
      if (OpsList->getArgName(j).empty())
        P->error("Operands list should have names for each operand!");
      if (!OperandsMap.count(OpsList->getArgName(j)))
        P->error("'" + OpsList->getArgName(j) +
                 "' does not occur in pattern or was multiply specified!");
      OperandsMap.erase(OpsList->getArgName(j));
      Args.push_back(OpsList->getArgName(j));
    }
    
    if (!OperandsMap.empty())
      P->error("Operands list does not contain an entry for operand '" +
               *OperandsMap.begin() + "'!");

    // If there is a code init for this fragment, emit the predicate code and
    // keep track of the fact that this fragment uses it.
    std::string Code = Fragments[i]->getValueAsCode("Predicate");
    if (!Code.empty()) {
      assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!");
      std::string ClassName =
        getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
      const char *C2 = ClassName == "SDNode" ? "N" : "inN";
      
      OS << "inline bool Predicate_" << Fragments[i]->getName()
         << "(SDNode *" << C2 << ") {\n";
      if (ClassName != "SDNode")
        OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
      OS << Code << "\n}\n";
      P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
    }
    
    // If there is a node transformation corresponding to this, keep track of
    // it.
    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
      P->getOnlyTree()->setTransformFn(Transform);
  }
  
  OS << "\n\n";

  // Now that we've parsed all of the tree fragments, do a closure on them so
  // that there are not references to PatFrags left inside of them.
  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
       E = PatternFragments.end(); I != E; ++I) {
    TreePattern *ThePat = I->second;
    ThePat->InlinePatternFragments();
        
    // Infer as many types as possible.  Don't worry about it if we don't infer
    // all of them, some may depend on the inputs of the pattern.
    try {
      ThePat->InferAllTypes();
    } catch (...) {
      // If this pattern fragment is not supported by this target (no types can
      // satisfy its constraints), just ignore it.  If the bogus pattern is
      // actually used by instructions, the type consistency error will be
      // reported there.
    }
    
    // If debugging, print out the pattern fragment result.
    DEBUG(ThePat->dump());
  }
}

/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input.  Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
                      std::map<std::string, TreePatternNode*> &InstInputs) {
  // No name -> not interesting.
  if (Pat->getName().empty()) {
    if (Pat->isLeaf()) {
      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
        I->error("Input " + DI->getDef()->getName() + " must be named!");

    }
    return false;
  }

  Record *Rec;
  if (Pat->isLeaf()) {
    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
    Rec = DI->getDef();
  } else {
    assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
    Rec = Pat->getOperator();
  }

  TreePatternNode *&Slot = InstInputs[Pat->getName()];
  if (!Slot) {
    Slot = Pat;
  } else {
    Record *SlotRec;
    if (Slot->isLeaf()) {
      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
    } else {
      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
      SlotRec = Slot->getOperator();
    }
    
    // Ensure that the inputs agree if we've already seen this input.
    if (Rec != SlotRec)
      I->error("All $" + Pat->getName() + " inputs must agree with each other");
    if (Slot->getExtType() != Pat->getExtType())
      I->error("All $" + Pat->getName() + " inputs must agree with each other");
  }
  return true;
}

/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern.  Report errors if we see anything naughty.
void DAGISelEmitter::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
                            std::map<std::string, TreePatternNode*> &InstInputs,
                            std::map<std::string, Record*> &InstResults) {
  if (Pat->isLeaf()) {
    bool isUse = HandleUse(I, Pat, InstInputs);
    if (!isUse && Pat->getTransformFn())
      I->error("Cannot specify a transform function for a non-input value!");
    return;
  } else if (Pat->getOperator()->getName() != "set") {
    // If this is not a set, verify that the children nodes are not void typed,
    // and recurse.
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      if (Pat->getChild(i)->getExtType() == MVT::isVoid)
        I->error("Cannot have void nodes inside of patterns!");
      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults);
    }
    
    // If this is a non-leaf node with no children, treat it basically as if
    // it were a leaf.  This handles nodes like (imm).
    bool isUse = false;
    if (Pat->getNumChildren() == 0)
      isUse = HandleUse(I, Pat, InstInputs);
    
    if (!isUse && Pat->getTransformFn())
      I->error("Cannot specify a transform function for a non-input value!");
    return;
  } 
  
  // Otherwise, this is a set, validate and collect instruction results.
  if (Pat->getNumChildren() == 0)
    I->error("set requires operands!");
  else if (Pat->getNumChildren() & 1)
    I->error("set requires an even number of operands");
  
  if (Pat->getTransformFn())
    I->error("Cannot specify a transform function on a set node!");
  
  // Check the set destinations.
  unsigned NumValues = Pat->getNumChildren()/2;
  for (unsigned i = 0; i != NumValues; ++i) {
    TreePatternNode *Dest = Pat->getChild(i);
    if (!Dest->isLeaf())
      I->error("set destination should be a virtual register!");
    
    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
    if (!Val)
      I->error("set destination should be a virtual register!");
    
    if (!Val->getDef()->isSubClassOf("RegisterClass"))
      I->error("set destination should be a virtual register!");
    if (Dest->getName().empty())
      I->error("set destination must have a name!");
    if (InstResults.count(Dest->getName()))
      I->error("cannot set '" + Dest->getName() +"' multiple times");
    InstResults[Dest->getName()] = Val->getDef();

    // Verify and collect info from the computation.
    FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
                                InstInputs, InstResults);
  }
}


/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved.  This populates the Instructions list with fully
/// resolved instructions.
void DAGISelEmitter::ParseInstructions() {
  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
  
  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
    ListInit *LI = 0;
    
    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
      LI = Instrs[i]->getValueAsListInit("Pattern");
    
    // If there is no pattern, only collect minimal information about the
    // instruction for its operand list.  We have to assume that there is one
    // result, as we have no detailed info.
    if (!LI || LI->getSize() == 0) {
      std::vector<MVT::ValueType> ResultTypes;
      std::vector<MVT::ValueType> OperandTypes;
      
      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
      
      // Doesn't even define a result?
      if (InstInfo.OperandList.size() == 0)
        continue;
      
      // Assume the first operand is the result.
      ResultTypes.push_back(InstInfo.OperandList[0].Ty);
      
      // The rest are inputs.
      for (unsigned j = 1, e = InstInfo.OperandList.size(); j != e; ++j)
        OperandTypes.push_back(InstInfo.OperandList[j].Ty);
      
      // Create and insert the instruction.
      Instructions.insert(std::make_pair(Instrs[i], 
                            DAGInstruction(0, ResultTypes, OperandTypes)));
      continue;  // no pattern.
    }
    
    // Parse the instruction.
    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
    // Inline pattern fragments into it.
    I->InlinePatternFragments();
    
    // Infer as many types as possible.  If we cannot infer all of them, we can
    // never do anything with this instruction pattern: report it to the user.
    if (!I->InferAllTypes())
      I->error("Could not infer all types in pattern!");
    
    // InstInputs - Keep track of all of the inputs of the instruction, along 
    // with the record they are declared as.
    std::map<std::string, TreePatternNode*> InstInputs;
    
    // InstResults - Keep track of all the virtual registers that are 'set'
    // in the instruction, including what reg class they are.
    std::map<std::string, Record*> InstResults;
    
    // Verify that the top-level forms in the instruction are of void type, and
    // fill in the InstResults map.
    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
      TreePatternNode *Pat = I->getTree(j);
      if (Pat->getExtType() != MVT::isVoid) {
        I->dump();
        I->error("Top-level forms in instruction pattern should have"
                 " void types");
      }

      // Find inputs and outputs, and verify the structure of the uses/defs.
      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults);
    }

    // Now that we have inputs and outputs of the pattern, inspect the operands
    // list for the instruction.  This determines the order that operands are
    // added to the machine instruction the node corresponds to.
    unsigned NumResults = InstResults.size();

    // Parse the operands list from the (ops) list, validating it.
    std::vector<std::string> &Args = I->getArgList();
    assert(Args.empty() && "Args list should still be empty here!");
    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());

    // Check that all of the results occur first in the list.
    std::vector<MVT::ValueType> ResultTypes;
    for (unsigned i = 0; i != NumResults; ++i) {
      if (i == CGI.OperandList.size())
        I->error("'" + InstResults.begin()->first +
                 "' set but does not appear in operand list!");
      const std::string &OpName = CGI.OperandList[i].Name;
      
      // Check that it exists in InstResults.
      Record *R = InstResults[OpName];
      if (R == 0)
        I->error("Operand $" + OpName + " should be a set destination: all "
                 "outputs must occur before inputs in operand list!");
      
      if (CGI.OperandList[i].Rec != R)
        I->error("Operand $" + OpName + " class mismatch!");
      
      // Remember the return type.
      ResultTypes.push_back(CGI.OperandList[i].Ty);
      
      // Okay, this one checks out.
      InstResults.erase(OpName);
    }

    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
    // the copy while we're checking the inputs.
    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);

    std::vector<TreePatternNode*> ResultNodeOperands;
    std::vector<MVT::ValueType> OperandTypes;
    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
      const std::string &OpName = CGI.OperandList[i].Name;
      if (OpName.empty())
        I->error("Operand #" + utostr(i) + " in operands list has no name!");

      if (!InstInputsCheck.count(OpName))
        I->error("Operand $" + OpName +
                 " does not appear in the instruction pattern");
      TreePatternNode *InVal = InstInputsCheck[OpName];
      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
      if (CGI.OperandList[i].Ty != InVal->getExtType())
        I->error("Operand $" + OpName +
                 "'s type disagrees between the operand and pattern");
      OperandTypes.push_back(InVal->getType());
      
      // Construct the result for the dest-pattern operand list.
      TreePatternNode *OpNode = InVal->clone();
      
      // No predicate is useful on the result.
      OpNode->setPredicateFn("");
      
      // Promote the xform function to be an explicit node if set.
      if (Record *Xform = OpNode->getTransformFn()) {
        OpNode->setTransformFn(0);
        std::vector<TreePatternNode*> Children;
        Children.push_back(OpNode);
        OpNode = new TreePatternNode(Xform, Children);
      }
      
      ResultNodeOperands.push_back(OpNode);
    }
    
    if (!InstInputsCheck.empty())
      I->error("Input operand $" + InstInputsCheck.begin()->first +
               " occurs in pattern but not in operands list!");

    TreePatternNode *ResultPattern =
      new TreePatternNode(I->getRecord(), ResultNodeOperands);

    // Create and insert the instruction.
    DAGInstruction TheInst(I, ResultTypes, OperandTypes);
    Instructions.insert(std::make_pair(I->getRecord(), TheInst));

    // Use a temporary tree pattern to infer all types and make sure that the
    // constructed result is correct.  This depends on the instruction already
    // being inserted into the Instructions map.
    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
    Temp.InferAllTypes();

    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
    
    DEBUG(I->dump());
  }
   
  // If we can, convert the instructions to be patterns that are matched!
  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
       E = Instructions.end(); II != E; ++II) {
    TreePattern *I = II->second.getPattern();
    if (I == 0) continue;  // No pattern.
    
    if (I->getNumTrees() != 1) {
      std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
      continue;
    }
    TreePatternNode *Pattern = I->getTree(0);
    if (Pattern->getOperator()->getName() != "set")
      continue;  // Not a set (store or something?)
    
    if (Pattern->getNumChildren() != 2)
      continue;  // Not a set of a single value (not handled so far)
    
    TreePatternNode *SrcPattern = Pattern->getChild(1)->clone();
    
    std::string Reason;
    if (!SrcPattern->canPatternMatch(Reason, *this))
      I->error("Instruction can never match: " + Reason);
    
    TreePatternNode *DstPattern = II->second.getResultPattern();
    PatternsToMatch.push_back(std::make_pair(SrcPattern, DstPattern));
  }
}

void DAGISelEmitter::ParsePatterns() {
  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");

  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
    TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);

    // Inline pattern fragments into it.
    Pattern->InlinePatternFragments();
    
    // Infer as many types as possible.  If we cannot infer all of them, we can
    // never do anything with this pattern: report it to the user.
    if (!Pattern->InferAllTypes())
      Pattern->error("Could not infer all types in pattern!");
    
    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
    if (LI->getSize() == 0) continue;  // no pattern.
    
    // Parse the instruction.
    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
    
    // Inline pattern fragments into it.
    Result->InlinePatternFragments();
    
    // Infer as many types as possible.  If we cannot infer all of them, we can
    // never do anything with this pattern: report it to the user.
    if (!Result->InferAllTypes())
      Result->error("Could not infer all types in pattern result!");
   
    if (Result->getNumTrees() != 1)
      Result->error("Cannot handle instructions producing instructions "
                    "with temporaries yet!");

    std::string Reason;
    if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
      Pattern->error("Pattern can never match: " + Reason);
    
    PatternsToMatch.push_back(std::make_pair(Pattern->getOnlyTree(),
                                             Result->getOnlyTree()));
  }
}

/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(TreePatternNode *Orig, 
               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
                                 std::vector<TreePatternNode*> &OutVariants,
                                 DAGISelEmitter &ISE) {
  // Make sure that each operand has at least one variant to choose from.
  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
    if (ChildVariants[i].empty())
      return;
        
  // The end result is an all-pairs construction of the resultant pattern.
  std::vector<unsigned> Idxs;
  Idxs.resize(ChildVariants.size());
  bool NotDone = true;
  while (NotDone) {
    // Create the variant and add it to the output list.
    std::vector<TreePatternNode*> NewChildren;
    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
    
    // Copy over properties.
    R->setName(Orig->getName());
    R->setPredicateFn(Orig->getPredicateFn());
    R->setTransformFn(Orig->getTransformFn());
    R->setType(Orig->getExtType());
    
    // If this pattern cannot every match, do not include it as a variant.
    std::string ErrString;
    if (!R->canPatternMatch(ErrString, ISE)) {
      delete R;
    } else {
      bool AlreadyExists = false;
      
      // Scan to see if this pattern has already been emitted.  We can get
      // duplication due to things like commuting:
      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
      // which are the same pattern.  Ignore the dups.
      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
        if (R->isIsomorphicTo(OutVariants[i])) {
          AlreadyExists = true;
          break;
        }
      
      if (AlreadyExists)
        delete R;
      else
        OutVariants.push_back(R);
    }
    
    // Increment indices to the next permutation.
    NotDone = false;
    // Look for something we can increment without causing a wrap-around.
    for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
      if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
        NotDone = true;   // Found something to increment.
        break;
      }
      Idxs[IdxsIdx] = 0;
    }
  }
}

/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNode *Orig, 
                                 const std::vector<TreePatternNode*> &LHS,
                                 const std::vector<TreePatternNode*> &RHS,
                                 std::vector<TreePatternNode*> &OutVariants,
                                 DAGISelEmitter &ISE) {
  std::vector<std::vector<TreePatternNode*> > ChildVariants;
  ChildVariants.push_back(LHS);
  ChildVariants.push_back(RHS);
  CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
}  


static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
                                     std::vector<TreePatternNode *> &Children) {
  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
  Record *Operator = N->getOperator();
  
  // Only permit raw nodes.
  if (!N->getName().empty() || !N->getPredicateFn().empty() ||
      N->getTransformFn()) {
    Children.push_back(N);
    return;
  }

  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
    Children.push_back(N->getChild(0));
  else
    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);

  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
    Children.push_back(N->getChild(1));
  else
    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
}

/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNode *N,
                               std::vector<TreePatternNode*> &OutVariants,
                               DAGISelEmitter &ISE) {
  // We cannot permute leaves.
  if (N->isLeaf()) {
    OutVariants.push_back(N);
    return;
  }

  // Look up interesting info about the node.
  const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());

  // If this node is associative, reassociate.
  if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) {
    // Reassociate by pulling together all of the linked operators 
    std::vector<TreePatternNode*> MaximalChildren;
    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);

    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
    // permutations.
    if (MaximalChildren.size() == 3) {
      // Find the variants of all of our maximal children.
      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
      GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
      GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
      GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
      
      // There are only two ways we can permute the tree:
      //   (A op B) op C    and    A op (B op C)
      // Within these forms, we can also permute A/B/C.
      
      // Generate legal pair permutations of A/B/C.
      std::vector<TreePatternNode*> ABVariants;
      std::vector<TreePatternNode*> BAVariants;
      std::vector<TreePatternNode*> ACVariants;
      std::vector<TreePatternNode*> CAVariants;
      std::vector<TreePatternNode*> BCVariants;
      std::vector<TreePatternNode*> CBVariants;
      CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
      CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
      CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
      CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
      CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
      CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);

      // Combine those into the result: (x op x) op x
      CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
      CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
      CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
      CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
      CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
      CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);

      // Combine those into the result: x op (x op x)
      CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
      CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
      CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
      CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
      CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
      CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
      return;
    }
  }
  
  // Compute permutations of all children.
  std::vector<std::vector<TreePatternNode*> > ChildVariants;
  ChildVariants.resize(N->getNumChildren());
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);

  // Build all permutations based on how the children were formed.
  CombineChildVariants(N, ChildVariants, OutVariants, ISE);

  // If this node is commutative, consider the commuted order.
  if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
    assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
    // Consider the commuted order.
    CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
                         OutVariants, ISE);
  }
}


// GenerateVariants - Generate variants.  For example, commutative patterns can
// match multiple ways.  Add them to PatternsToMatch as well.
void DAGISelEmitter::GenerateVariants() {
  
  DEBUG(std::cerr << "Generating instruction variants.\n");
  
  // Loop over all of the patterns we've collected, checking to see if we can
  // generate variants of the instruction, through the exploitation of
  // identities.  This permits the target to provide agressive matching without
  // the .td file having to contain tons of variants of instructions.
  //
  // Note that this loop adds new patterns to the PatternsToMatch list, but we
  // intentionally do not reconsider these.  Any variants of added patterns have
  // already been added.
  //
  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
    std::vector<TreePatternNode*> Variants;
    GenerateVariantsOf(PatternsToMatch[i].first, Variants, *this);

    assert(!Variants.empty() && "Must create at least original variant!");
    Variants.erase(Variants.begin());  // Remove the original pattern.

    if (Variants.empty())  // No variants for this pattern.
      continue;

    DEBUG(std::cerr << "FOUND VARIANTS OF: ";
          PatternsToMatch[i].first->dump();
          std::cerr << "\n");

    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
      TreePatternNode *Variant = Variants[v];

      DEBUG(std::cerr << "  VAR#" << v <<  ": ";
            Variant->dump();
            std::cerr << "\n");
      
      // Scan to see if an instruction or explicit pattern already matches this.
      bool AlreadyExists = false;
      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
        // Check to see if this variant already exists.
        if (Variant->isIsomorphicTo(PatternsToMatch[p].first)) {
          DEBUG(std::cerr << "  *** ALREADY EXISTS, ignoring variant.\n");
          AlreadyExists = true;
          break;
        }
      }
      // If we already have it, ignore the variant.
      if (AlreadyExists) continue;

      // Otherwise, add it to the list of patterns we have.
      PatternsToMatch.push_back(std::make_pair(Variant, 
                                               PatternsToMatch[i].second));
    }

    DEBUG(std::cerr << "\n");
  }
}


/// getPatternSize - Return the 'size' of this pattern.  We want to match large
/// patterns before small ones.  This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P) {
  assert(isExtIntegerVT(P->getExtType()) || 
         isExtFloatingPointVT(P->getExtType()) &&
         "Not a valid pattern node to size!");
  unsigned Size = 1;  // The node itself.
  
  // Count children in the count if they are also nodes.
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = P->getChild(i);
    if (!Child->isLeaf() && Child->getExtType() != MVT::Other)
      Size += getPatternSize(Child);
    else if (Child->isLeaf() && dynamic_cast<IntInit*>(Child->getLeafValue())) {
      ++Size;  // Matches a ConstantSDNode.
    }
  }
  
  return Size;
}

/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack.  We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P) {
  if (P->isLeaf()) return 0;
  
  unsigned Cost = P->getOperator()->isSubClassOf("Instruction");
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternCost(P->getChild(i));
  return Cost;
}

// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
  bool operator()(DAGISelEmitter::PatternToMatch *LHS,
                  DAGISelEmitter::PatternToMatch *RHS) {
    unsigned LHSSize = getPatternSize(LHS->first);
    unsigned RHSSize = getPatternSize(RHS->first);
    if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost
    if (LHSSize < RHSSize) return false;
    
    // If the patterns have equal complexity, compare generated instruction cost
    return getResultPatternCost(LHS->second) <getResultPatternCost(RHS->second);
  }
};

/// EmitMatchForPattern - Emit a matcher for N, going to the label for PatternNo
/// if the match fails.  At this point, we already know that the opcode for N
/// matches, and the SDNode for the result has the RootName specified name.
void DAGISelEmitter::EmitMatchForPattern(TreePatternNode *N,
                                         const std::string &RootName,
                                     std::map<std::string,std::string> &VarMap,
                                         unsigned PatternNo, std::ostream &OS) {
  assert(!N->isLeaf() && "Cannot match against a leaf!");
  
  // If this node has a name associated with it, capture it in VarMap.  If
  // we already saw this in the pattern, emit code to verify dagness.
  if (!N->getName().empty()) {
    std::string &VarMapEntry = VarMap[N->getName()];
    if (VarMapEntry.empty()) {
      VarMapEntry = RootName;
    } else {
      // If we get here, this is a second reference to a specific name.  Since
      // we already have checked that the first reference is valid, we don't
      // have to recursively match it, just check that it's the same as the
      // previously named thing.
      OS << "      if (" << VarMapEntry << " != " << RootName
         << ") goto P" << PatternNo << "Fail;\n";
      return;
    }
  }
  
  // Emit code to load the child nodes and match their contents recursively.
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
    OS << "      SDOperand " << RootName << i <<" = " << RootName
       << ".getOperand(" << i << ");\n";
    TreePatternNode *Child = N->getChild(i);
    
    if (!Child->isLeaf()) {
      // If it's not a leaf, recursively match.
      const SDNodeInfo &CInfo = getSDNodeInfo(Child->getOperator());
      OS << "      if (" << RootName << i << ".getOpcode() != "
         << CInfo.getEnumName() << ") goto P" << PatternNo << "Fail;\n";
      EmitMatchForPattern(Child, RootName + utostr(i), VarMap, PatternNo, OS);
    } else {
      // If this child has a name associated with it, capture it in VarMap.  If
      // we already saw this in the pattern, emit code to verify dagness.
      if (!Child->getName().empty()) {
        std::string &VarMapEntry = VarMap[Child->getName()];
        if (VarMapEntry.empty()) {
          VarMapEntry = RootName + utostr(i);
        } else {
          // If we get here, this is a second reference to a specific name.  Since
          // we already have checked that the first reference is valid, we don't
          // have to recursively match it, just check that it's the same as the
          // previously named thing.
          OS << "      if (" << VarMapEntry << " != " << RootName << i
          << ") goto P" << PatternNo << "Fail;\n";
          continue;
        }
      }
      
      // Handle leaves of various types.
      if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
        Record *LeafRec = DI->getDef();
        if (LeafRec->isSubClassOf("RegisterClass")) {
          // Handle register references.  Nothing to do here.
        } else if (LeafRec->isSubClassOf("ValueType")) {
          // Make sure this is the specified value type.
          OS << "      if (cast<VTSDNode>(" << RootName << i << ")->getVT() != "
          << "MVT::" << LeafRec->getName() << ") goto P" << PatternNo
          << "Fail;\n";
        } else if (LeafRec->isSubClassOf("CondCode")) {
          // Make sure this is the specified cond code.
          OS << "      if (cast<CondCodeSDNode>(" << RootName << i
             << ")->get() != " << "ISD::" << LeafRec->getName()
             << ") goto P" << PatternNo << "Fail;\n";
        } else {
          Child->dump();
          assert(0 && "Unknown leaf type!");
        }
      } else if (IntInit *II = dynamic_cast<IntInit*>(Child->getLeafValue())) {
        OS << "      if (!isa<ConstantSDNode>(" << RootName << i << ") ||\n"
           << "          cast<ConstantSDNode>(" << RootName << i
           << ")->getSignExtended() != " << II->getValue() << ")\n"
           << "        goto P" << PatternNo << "Fail;\n";
      } else {
        Child->dump();
        assert(0 && "Unknown leaf type!");
      }
    }
  }
  
  // If there is a node predicate for this, emit the call.
  if (!N->getPredicateFn().empty())
    OS << "      if (!" << N->getPredicateFn() << "(" << RootName
       << ".Val)) goto P" << PatternNo << "Fail;\n";
}

/// CodeGenPatternResult - Emit the action for a pattern.  Now that it has
/// matched, we actually have to build a DAG!
unsigned DAGISelEmitter::
CodeGenPatternResult(TreePatternNode *N, unsigned &Ctr,
                     std::map<std::string,std::string> &VariableMap, 
                     std::ostream &OS, bool isRoot) {
  // This is something selected from the pattern we matched.
  if (!N->getName().empty()) {
    assert(!isRoot && "Root of pattern cannot be a leaf!");
    std::string &Val = VariableMap[N->getName()];
    assert(!Val.empty() &&
           "Variable referenced but not defined and not caught earlier!");
    if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
      // Already selected this operand, just return the tmpval.
      return atoi(Val.c_str()+3);
    }
    
    unsigned ResNo = Ctr++;
    if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
      switch (N->getType()) {
      default: assert(0 && "Unknown type for constant node!");
      case MVT::i1:  OS << "      bool Tmp"; break;
      case MVT::i8:  OS << "      unsigned char Tmp"; break;
      case MVT::i16: OS << "      unsigned short Tmp"; break;
      case MVT::i32: OS << "      unsigned Tmp"; break;
      case MVT::i64: OS << "      uint64_t Tmp"; break;
      }
      OS << ResNo << "C = cast<ConstantSDNode>(" << Val << ")->getValue();\n";
      OS << "      SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant(Tmp"
         << ResNo << "C, MVT::" << getEnumName(N->getType()) << ");\n";
    } else {
      OS << "      SDOperand Tmp" << ResNo << " = Select(" << Val << ");\n";
    }
    // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
    // value if used multiple times by this pattern result.
    Val = "Tmp"+utostr(ResNo);
    return ResNo;
  }
  
  if (N->isLeaf()) {
    // If this is an explicit register reference, handle it.
    if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
      unsigned ResNo = Ctr++;
      if (DI->getDef()->isSubClassOf("Register")) {
        OS << "      SDOperand Tmp" << ResNo << " = CurDAG->getRegister("
           << getQualifiedName(DI->getDef()) << ", MVT::"
           << getEnumName(N->getType())
           << ");\n";
        return ResNo;
      }
    } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
      unsigned ResNo = Ctr++;
      OS << "      SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant("
         << II->getValue() << ", MVT::"
        << getEnumName(N->getType())
        << ");\n";
      return ResNo;
    }
    
    N->dump();
    assert(0 && "Unknown leaf type!");
    return ~0U;
  }

  Record *Op = N->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    // Emit all of the operands.
    std::vector<unsigned> Ops;
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
      Ops.push_back(CodeGenPatternResult(N->getChild(i), Ctr, VariableMap, OS));

    CodeGenInstruction &II = Target.getInstruction(Op->getName());
    unsigned ResNo = Ctr++;
    
    if (!isRoot) {
      OS << "      SDOperand Tmp" << ResNo << " = CurDAG->getTargetNode("
         << II.Namespace << "::" << II.TheDef->getName() << ", MVT::"
         << getEnumName(N->getType());
      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
        OS << ", Tmp" << Ops[i];
      OS << ");\n";
    } else {
      // If this instruction is the root, and if there is only one use of it,
      // use SelectNodeTo instead of getTargetNode to avoid an allocation.
      OS << "      if (N.Val->hasOneUse()) {\n";
      OS << "        CurDAG->SelectNodeTo(N.Val, "
         << II.Namespace << "::" << II.TheDef->getName() << ", MVT::"
         << getEnumName(N->getType());
      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
        OS << ", Tmp" << Ops[i];
      OS << ");\n";
      OS << "        return N;\n";
      OS << "      } else {\n";
      OS << "        return CodeGenMap[N] = CurDAG->getTargetNode("
      << II.Namespace << "::" << II.TheDef->getName() << ", MVT::"
      << getEnumName(N->getType());
      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
        OS << ", Tmp" << Ops[i];
      OS << ");\n";
      OS << "      }\n";
    }
    return ResNo;
  } else if (Op->isSubClassOf("SDNodeXForm")) {
    assert(N->getNumChildren() == 1 && "node xform should have one child!");
    unsigned OpVal = CodeGenPatternResult(N->getChild(0), Ctr, VariableMap, OS);
    
    unsigned ResNo = Ctr++;
    OS << "      SDOperand Tmp" << ResNo << " = Transform_" << Op->getName()
       << "(Tmp" << OpVal << ".Val);\n";
    if (isRoot) {
      OS << "      CodeGenMap[N] = Tmp" << ResNo << ";\n";
      OS << "      return Tmp" << ResNo << ";\n";
    }
    return ResNo;
  } else {
    N->dump();
    assert(0 && "Unknown node in result pattern!");
    return ~0U;
  }
}

/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
/// type information from it.
static void RemoveAllTypes(TreePatternNode *N) {
  N->setType(MVT::isUnknown);
  if (!N->isLeaf())
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
      RemoveAllTypes(N->getChild(i));
}

/// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' and
/// add it to the tree.  'Pat' and 'Other' are isomorphic trees except that 
/// 'Pat' may be missing types.  If we find an unresolved type to add a check
/// for, this returns true otherwise false if Pat has all types.
static bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
                               const std::string &Prefix, unsigned PatternNo,
                               std::ostream &OS) {
  // Did we find one?
  if (!Pat->hasTypeSet()) {
    // Move a type over from 'other' to 'pat'.
    Pat->setType(Other->getType());
    OS << "      if (" << Prefix << ".getValueType() != MVT::"
       << getName(Pat->getType()) << ") goto P" << PatternNo << "Fail;\n";
    return true;
  } else if (Pat->isLeaf()) {
    return false;
  }
  
  for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i)
    if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
                           Prefix + utostr(i), PatternNo, OS))
      return true;
  return false;
}

/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
/// stream to match the pattern, and generate the code for the match if it
/// succeeds.
void DAGISelEmitter::EmitCodeForPattern(PatternToMatch &Pattern,
                                        std::ostream &OS) {
  static unsigned PatternCount = 0;
  unsigned PatternNo = PatternCount++;
  OS << "    { // Pattern #" << PatternNo << ": ";
  Pattern.first->print(OS);
  OS << "\n      // Emits: ";
  Pattern.second->print(OS);
  OS << "\n";
  OS << "      // Pattern complexity = " << getPatternSize(Pattern.first)
     << "  cost = " << getResultPatternCost(Pattern.second) << "\n";

  // Emit the matcher, capturing named arguments in VariableMap.
  std::map<std::string,std::string> VariableMap;
  EmitMatchForPattern(Pattern.first, "N", VariableMap, PatternNo, OS);
  
  // TP - Get *SOME* tree pattern, we don't care which.
  TreePattern &TP = *PatternFragments.begin()->second;
  
  // At this point, we know that we structurally match the pattern, but the
  // types of the nodes may not match.  Figure out the fewest number of type 
  // comparisons we need to emit.  For example, if there is only one integer
  // type supported by a target, there should be no type comparisons at all for
  // integer patterns!
  //
  // To figure out the fewest number of type checks needed, clone the pattern,
  // remove the types, then perform type inference on the pattern as a whole.
  // If there are unresolved types, emit an explicit check for those types,
  // apply the type to the tree, then rerun type inference.  Iterate until all
  // types are resolved.
  //
  TreePatternNode *Pat = Pattern.first->clone();
  RemoveAllTypes(Pat);
  
  do {
    // Resolve/propagate as many types as possible.
    try {
      bool MadeChange = true;
      while (MadeChange)
        MadeChange = Pat->ApplyTypeConstraints(TP,true/*Ignore reg constraints*/);
    } catch (...) {
      assert(0 && "Error: could not find consistent types for something we"
             " already decided was ok!");
      abort();
    }

    // Insert a check for an unresolved type and add it to the tree.  If we find
    // an unresolved type to add a check for, this returns true and we iterate,
    // otherwise we are done.
  } while (InsertOneTypeCheck(Pat, Pattern.first, "N", PatternNo, OS));
  
  unsigned TmpNo = 0;
  CodeGenPatternResult(Pattern.second, TmpNo,
                       VariableMap, OS, true /*the root*/);
  delete Pat;
  
  OS << "    }\n  P" << PatternNo << "Fail:\n";
}


namespace {
  /// CompareByRecordName - An ordering predicate that implements less-than by
  /// comparing the names records.
  struct CompareByRecordName {
    bool operator()(const Record *LHS, const Record *RHS) const {
      // Sort by name first.
      if (LHS->getName() < RHS->getName()) return true;
      // If both names are equal, sort by pointer.
      return LHS->getName() == RHS->getName() && LHS < RHS;
    }
  };
}

void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
  std::string InstNS = Target.inst_begin()->second.Namespace;
  if (!InstNS.empty()) InstNS += "::";
  
  // Emit boilerplate.
  OS << "// The main instruction selector code.\n"
     << "SDOperand SelectCode(SDOperand N) {\n"
     << "  if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
     << "      N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
     << "INSTRUCTION_LIST_END))\n"
     << "    return N;   // Already selected.\n\n"
     << "  if (!N.Val->hasOneUse()) {\n"
  << "    std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);\n"
     << "    if (CGMI != CodeGenMap.end()) return CGMI->second;\n"
     << "  }\n"
     << "  switch (N.getOpcode()) {\n"
     << "  default: break;\n"
     << "  case ISD::EntryToken:       // These leaves remain the same.\n"
     << "    return N;\n"
     << "  case ISD::AssertSext:\n"
     << "  case ISD::AssertZext: {\n"
     << "    SDOperand Tmp0 = Select(N.getOperand(0));\n"
     << "    if (!N.Val->hasOneUse()) CodeGenMap[N] = Tmp0;\n"
     << "    return Tmp0;\n"
     << "  }\n"
     << "  case ISD::TokenFactor:\n"
     << "    if (N.getNumOperands() == 2) {\n"
     << "      SDOperand Op0 = Select(N.getOperand(0));\n"
     << "      SDOperand Op1 = Select(N.getOperand(1));\n"
     << "      return CodeGenMap[N] =\n"
     << "          CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);\n"
     << "    } else {\n"
     << "      std::vector<SDOperand> Ops;\n"
     << "      for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
     << "        Ops.push_back(Select(N.getOperand(i)));\n"
     << "       return CodeGenMap[N] = \n"
     << "               CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n"
     << "    }\n"
     << "  case ISD::CopyFromReg: {\n"
     << "    SDOperand Chain = Select(N.getOperand(0));\n"
     << "    if (Chain == N.getOperand(0)) return N; // No change\n"
     << "    SDOperand New = CurDAG->getCopyFromReg(Chain,\n"
     << "                    cast<RegisterSDNode>(N.getOperand(1))->getReg(),\n"
     << "                                         N.Val->getValueType(0));\n"
     << "    return New.getValue(N.ResNo);\n"
     << "  }\n"
     << "  case ISD::CopyToReg: {\n"
     << "    SDOperand Chain = Select(N.getOperand(0));\n"
     << "    SDOperand Reg = N.getOperand(1);\n"
     << "    SDOperand Val = Select(N.getOperand(2));\n"
     << "    return CodeGenMap[N] = \n"
     << "                   CurDAG->getNode(ISD::CopyToReg, MVT::Other,\n"
     << "                                   Chain, Reg, Val);\n"
     << "  }\n";
    
  // Group the patterns by their top-level opcodes.
  std::map<Record*, std::vector<PatternToMatch*>,
           CompareByRecordName> PatternsByOpcode;
  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i)
    PatternsByOpcode[PatternsToMatch[i].first->getOperator()]
      .push_back(&PatternsToMatch[i]);
  
  // Loop over all of the case statements.
  for (std::map<Record*, std::vector<PatternToMatch*>,
                CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
       E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
    const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
    std::vector<PatternToMatch*> &Patterns = PBOI->second;
    
    OS << "  case " << OpcodeInfo.getEnumName() << ":\n";

    // We want to emit all of the matching code now.  However, we want to emit
    // the matches in order of minimal cost.  Sort the patterns so the least
    // cost one is at the start.
    std::stable_sort(Patterns.begin(), Patterns.end(),
                     PatternSortingPredicate());
    
    for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
      EmitCodeForPattern(*Patterns[i], OS);
    OS << "    break;\n\n";
  }
  

  OS << "  } // end of big switch.\n\n"
     << "  std::cerr << \"Cannot yet select: \";\n"
     << "  N.Val->dump();\n"
     << "  std::cerr << '\\n';\n"
     << "  abort();\n"
     << "}\n";
}

void DAGISelEmitter::run(std::ostream &OS) {
  EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
                       " target", OS);
  
  OS << "// *** NOTE: This file is #included into the middle of the target\n"
     << "// *** instruction selector class.  These functions are really "
     << "methods.\n\n";
  
  OS << "// Instance var to keep track of multiply used nodes that have \n"
     << "// already been selected.\n"
     << "std::map<SDOperand, SDOperand> CodeGenMap;\n";
  
  ParseNodeInfo();
  ParseNodeTransforms(OS);
  ParsePatternFragments(OS);
  ParseInstructions();
  ParsePatterns();
  
  // Generate variants.  For example, commutative patterns can match
  // multiple ways.  Add them to PatternsToMatch as well.
  GenerateVariants();

  
  DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n";
        for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
          std::cerr << "PATTERN: ";  PatternsToMatch[i].first->dump();
          std::cerr << "\nRESULT:  ";PatternsToMatch[i].second->dump();
          std::cerr << "\n";
        });
  
  // At this point, we have full information about the 'Patterns' we need to
  // parse, both implicitly from instructions as well as from explicit pattern
  // definitions.  Emit the resultant instruction selector.
  EmitInstructionSelector(OS);  
  
  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
       E = PatternFragments.end(); I != E; ++I)
    delete I->second;
  PatternFragments.clear();

  Instructions.clear();
}