llvm.org GIT mirror llvm / release_16 lib / Target / X86 / X86PeepholeOpt.cpp
release_16

Tree @release_16 (Download .tar.gz)

X86PeepholeOpt.cpp @release_16raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
//===-- X86PeepholeOpt.cpp - X86 Peephole Optimizer -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a peephole optimizer for the X86.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"

using namespace llvm;

namespace {
  Statistic<> NumPHOpts("x86-peephole",
                        "Number of peephole optimization performed");
  Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded");
  struct PH : public MachineFunctionPass {
    virtual bool runOnMachineFunction(MachineFunction &MF);

    bool PeepholeOptimize(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &I);

    virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
  };
}

FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }

bool PH::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
    for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
      if (PeepholeOptimize(*BI, I)) {
        Changed = true;
        ++NumPHOpts;
      } else
        ++I;

  return Changed;
}


bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &I) {
  assert(I != MBB.end());
  MachineBasicBlock::iterator NextI = next(I);

  MachineInstr *MI = I;
  MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
  unsigned Size = 0;
  switch (MI->getOpcode()) {
  case X86::MOV8rr:
  case X86::MOV16rr:
  case X86::MOV32rr:   // Destroy X = X copies...
    if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
      I = MBB.erase(I);
      return true;
    }
    return false;

    // A large number of X86 instructions have forms which take an 8-bit
    // immediate despite the fact that the operands are 16 or 32 bits.  Because
    // this can save three bytes of code size (and icache space), we want to
    // shrink them if possible.
  case X86::IMUL16rri: case X86::IMUL32rri:
    assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
    if (MI->getOperand(2).isImmediate()) {
      int Val = MI->getOperand(2).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break;
        case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        unsigned R1 = MI->getOperand(1).getReg();
        I = MBB.insert(MBB.erase(I),
                       BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
        return true;
      }
    }
    return false;

#if 0
  case X86::IMUL16rmi: case X86::IMUL32rmi:
    assert(MI->getNumOperands() == 6 && "These should all have 6 operands!");
    if (MI->getOperand(5).isImmediate()) {
      int Val = MI->getOperand(5).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::IMUL16rmi: Opcode = X86::IMUL16rmi8; break;
        case X86::IMUL32rmi: Opcode = X86::IMUL32rmi8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        unsigned R1 = MI->getOperand(1).getReg();
        unsigned Scale = MI->getOperand(2).getImmedValue();
        unsigned R2 = MI->getOperand(3).getReg();
        unsigned Offset = MI->getOperand(4).getImmedValue();
        I = MBB.insert(MBB.erase(I),
                       BuildMI(Opcode, 5, R0).addReg(R1).addZImm(Scale).
                             addReg(R2).addSImm(Offset).addZImm((char)Val));
        return true;
      }
    }
    return false;
#endif

  case X86::ADD16ri:  case X86::ADD32ri:  case X86::ADC32ri:
  case X86::SUB16ri:  case X86::SUB32ri:
  case X86::SBB16ri:  case X86::SBB32ri:
  case X86::AND16ri:  case X86::AND32ri:
  case X86::OR16ri:   case X86::OR32ri:
  case X86::XOR16ri:  case X86::XOR32ri:
    assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
    if (MI->getOperand(1).isImmediate()) {
      int Val = MI->getOperand(1).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::ADD16ri:  Opcode = X86::ADD16ri8; break;
        case X86::ADD32ri:  Opcode = X86::ADD32ri8; break;
        case X86::ADC32ri:  Opcode = X86::ADC32ri8; break;
        case X86::SUB16ri:  Opcode = X86::SUB16ri8; break;
        case X86::SUB32ri:  Opcode = X86::SUB32ri8; break;
        case X86::SBB16ri:  Opcode = X86::SBB16ri8; break;
        case X86::SBB32ri:  Opcode = X86::SBB32ri8; break;
        case X86::AND16ri:  Opcode = X86::AND16ri8; break;
        case X86::AND32ri:  Opcode = X86::AND32ri8; break;
        case X86::OR16ri:   Opcode = X86::OR16ri8; break;
        case X86::OR32ri:   Opcode = X86::OR32ri8; break;
        case X86::XOR16ri:  Opcode = X86::XOR16ri8; break;
        case X86::XOR32ri:  Opcode = X86::XOR32ri8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        I = MBB.insert(MBB.erase(I),
                    BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef)
                      .addZImm((char)Val));
        return true;
      }
    }
    return false;

  case X86::ADD16mi:  case X86::ADD32mi:  case X86::ADC32mi:
  case X86::SUB16mi:  case X86::SUB32mi:
  case X86::SBB16mi:  case X86::SBB32mi:
  case X86::AND16mi:  case X86::AND32mi:
  case X86::OR16mi:  case X86::OR32mi:
  case X86::XOR16mi:  case X86::XOR32mi:
    assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
    if (MI->getOperand(4).isImmediate()) {
      int Val = MI->getOperand(4).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::ADD16mi:  Opcode = X86::ADD16mi8; break;
        case X86::ADD32mi:  Opcode = X86::ADD32mi8; break;
        case X86::ADC32mi:  Opcode = X86::ADC32mi8; break;
        case X86::SUB16mi:  Opcode = X86::SUB16mi8; break;
        case X86::SUB32mi:  Opcode = X86::SUB32mi8; break;
        case X86::SBB16mi:  Opcode = X86::SBB16mi8; break;
        case X86::SBB32mi:  Opcode = X86::SBB32mi8; break;
        case X86::AND16mi:  Opcode = X86::AND16mi8; break;
        case X86::AND32mi:  Opcode = X86::AND32mi8; break;
        case X86::OR16mi:   Opcode = X86::OR16mi8; break;
        case X86::OR32mi:   Opcode = X86::OR32mi8; break;
        case X86::XOR16mi:  Opcode = X86::XOR16mi8; break;
        case X86::XOR32mi:  Opcode = X86::XOR32mi8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        unsigned Scale = MI->getOperand(1).getImmedValue();
        unsigned R1 = MI->getOperand(2).getReg();
        if (MI->getOperand(3).isImmediate()) {
          unsigned Offset = MI->getOperand(3).getImmedValue();
          I = MBB.insert(MBB.erase(I),
                         BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
                         addReg(R1).addSImm(Offset).addZImm((char)Val));
        } else if (MI->getOperand(3).isGlobalAddress()) {
          GlobalValue *GA = MI->getOperand(3).getGlobal();
          int Offset = MI->getOperand(3).getOffset();
          I = MBB.insert(MBB.erase(I),
                         BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
                         addReg(R1).addGlobalAddress(GA, false, Offset).
                         addZImm((char)Val));
        }
        return true;
      }
    }
    return false;

#if 0
  case X86::MOV32ri: Size++;
  case X86::MOV16ri: Size++;
  case X86::MOV8ri:
    // FIXME: We can only do this transformation if we know that flags are not
    // used here, because XOR clobbers the flags!
    if (MI->getOperand(1).isImmediate()) {         // avoid mov EAX, <value>
      int Val = MI->getOperand(1).getImmedValue();
      if (Val == 0) {                              // mov EAX, 0 -> xor EAX, EAX
        static const unsigned Opcode[] ={X86::XOR8rr,X86::XOR16rr,X86::XOR32rr};
        unsigned Reg = MI->getOperand(0).getReg();
        I = MBB.insert(MBB.erase(I),
                       BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg));
        return true;
      } else if (Val == -1) {                     // mov EAX, -1 -> or EAX, -1
        // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
      }
    }
    return false;
#endif
  case X86::BSWAP32r:        // Change bswap EAX, bswap EAX into nothing
    if (Next->getOpcode() == X86::BSWAP32r &&
        MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
      I = MBB.erase(MBB.erase(I));
      return true;
    }
    return false;
  default:
    return false;
  }
}

namespace {
  class UseDefChains : public MachineFunctionPass {
    std::vector<MachineInstr*> DefiningInst;
  public:
    // getDefinition - Return the machine instruction that defines the specified
    // SSA virtual register.
    MachineInstr *getDefinition(unsigned Reg) {
      assert(MRegisterInfo::isVirtualRegister(Reg) &&
             "use-def chains only exist for SSA registers!");
      assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
             "Unknown register number!");
      assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
             "Unknown register number!");
      return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
    }

    // setDefinition - Update the use-def chains to indicate that MI defines
    // register Reg.
    void setDefinition(unsigned Reg, MachineInstr *MI) {
      if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
        DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
      DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
    }

    // removeDefinition - Update the use-def chains to forget about Reg
    // entirely.
    void removeDefinition(unsigned Reg) {
      assert(getDefinition(Reg));      // Check validity
      DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
    }

    virtual bool runOnMachineFunction(MachineFunction &MF) {
      for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
        for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
          for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
            MachineOperand &MO = I->getOperand(i);
            if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
                MRegisterInfo::isVirtualRegister(MO.getReg()))
              setDefinition(MO.getReg(), I);
          }
        }
      return false;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    virtual void releaseMemory() {
      std::vector<MachineInstr*>().swap(DefiningInst);
    }
  };

  RegisterAnalysis<UseDefChains> X("use-def-chains",
                                "use-def chain construction for machine code");
}


namespace {
  Statistic<> NumSSAPHOpts("x86-ssa-peephole",
                           "Number of SSA peephole optimization performed");

  /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer.  This
  /// pass is really a bad idea: a better instruction selector should completely
  /// supersume it.  However, that will take some time to develop, and the
  /// simple things this can do are important now.
  class SSAPH : public MachineFunctionPass {
    UseDefChains *UDC;
  public:
    virtual bool runOnMachineFunction(MachineFunction &MF);

    bool PeepholeOptimize(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &I);

    virtual const char *getPassName() const {
      return "X86 SSA-based Peephole Optimizer";
    }

    /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
    /// opcode of the instruction, then return true.
    bool Propagate(MachineInstr *MI, unsigned DestOpNo,
                   MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
      MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
      if (NewOpcode) MI->setOpcode(NewOpcode);
      return true;
    }

    /// OptimizeAddress - If we can fold the addressing arithmetic for this
    /// memory instruction into the instruction itself, do so and return true.
    bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);

    /// getDefininingInst - If the specified operand is a read of an SSA
    /// register, return the machine instruction defining it, otherwise, return
    /// null.
    MachineInstr *getDefiningInst(MachineOperand &MO) {
      if (MO.isDef() || !MO.isRegister() ||
          !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
      return UDC->getDefinition(MO.getReg());
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<UseDefChains>();
      AU.addPreserved<UseDefChains>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };
}

FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }

bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;
  bool LocalChanged;

  UDC = &getAnalysis<UseDefChains>();

  do {
    LocalChanged = false;

    for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
      for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
        if (PeepholeOptimize(*BI, I)) {
          LocalChanged = true;
          ++NumSSAPHOpts;
        } else
          ++I;
    Changed |= LocalChanged;
  } while (LocalChanged);

  return Changed;
}

static bool isValidScaleAmount(unsigned Scale) {
  return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
}

/// OptimizeAddress - If we can fold the addressing arithmetic for this
/// memory instruction into the instruction itself, do so and return true.
bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
  MachineOperand &BaseRegOp      = MI->getOperand(OpNo+0);
  MachineOperand &ScaleOp        = MI->getOperand(OpNo+1);
  MachineOperand &IndexRegOp     = MI->getOperand(OpNo+2);
  MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);

  unsigned BaseReg  = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
  unsigned Scale    = ScaleOp.getImmedValue();
  unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;

  bool Changed = false;

  // If the base register is unset, and the index register is set with a scale
  // of 1, move it to be the base register.
  if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
      Scale == 1 && IndexReg != 0) {
    BaseRegOp.setReg(IndexReg);
    IndexRegOp.setReg(0);
    return true;
  }

  // Attempt to fold instructions used by the base register into the instruction
  if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
    switch (DefInst->getOpcode()) {
    case X86::MOV32ri:
      // If there is no displacement set for this instruction set one now.
      // FIXME: If we can fold two immediates together, we should do so!
      if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
        if (DefInst->getOperand(1).isImmediate()) {
          BaseRegOp.setReg(0);
          return Propagate(MI, OpNo+3, DefInst, 1);
        }
      }
      break;

    case X86::ADD32rr:
      // If the source is a register-register add, and we do not yet have an
      // index register, fold the add into the memory address.
      if (IndexReg == 0) {
        BaseRegOp = DefInst->getOperand(1);
        IndexRegOp = DefInst->getOperand(2);
        ScaleOp.setImmedValue(1);
        return true;
      }
      break;

    case X86::SHL32ri:
      // If this shift could be folded into the index portion of the address if
      // it were the index register, move it to the index register operand now,
      // so it will be folded in below.
      if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
          DefInst->getOperand(2).getImmedValue() < 4) {
        std::swap(BaseRegOp, IndexRegOp);
        ScaleOp.setImmedValue(1); Scale = 1;
        std::swap(IndexReg, BaseReg);
        Changed = true;
        break;
      }
    }
  }

  // Attempt to fold instructions used by the index into the instruction
  if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
    switch (DefInst->getOpcode()) {
    case X86::SHL32ri: {
      // Figure out what the resulting scale would be if we folded this shift.
      unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
      if (isValidScaleAmount(ResScale)) {
        IndexRegOp = DefInst->getOperand(1);
        ScaleOp.setImmedValue(ResScale);
        return true;
      }
      break;
    }
    }
  }

  return Changed;
}

bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator &I) {
    MachineBasicBlock::iterator NextI = next(I);

  MachineInstr *MI = I;
  MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;

  bool Changed = false;

  const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();

  // Scan the operands of this instruction.  If any operands are
  // register-register copies, replace the operand with the source.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
    // Is this an SSA register use?
    if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i))) {
      // If the operand is a vreg-vreg copy, it is always safe to replace the
      // source value with the input operand.
      unsigned Source, Dest;
      if (TII.isMoveInstr(*DefInst, Source, Dest)) {
        // Don't propagate physical registers into any instructions.
        if (DefInst->getOperand(1).isRegister() &&
            MRegisterInfo::isVirtualRegister(Source)) {
          MI->getOperand(i).setReg(Source);
          Changed = true;
          ++NumPHMoves;
        }
      }
    }


  // Perform instruction specific optimizations.
  switch (MI->getOpcode()) {

    // Register to memory stores.  Format: <base,scale,indexreg,immdisp>, srcreg
  case X86::MOV32mr: case X86::MOV16mr: case X86::MOV8mr:
  case X86::MOV32mi: case X86::MOV16mi: case X86::MOV8mi:
    // Check to see if we can fold the source instruction into this one...
    if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
      switch (SrcInst->getOpcode()) {
        // Fold the immediate value into the store, if possible.
      case X86::MOV8ri:  return Propagate(MI, 4, SrcInst, 1, X86::MOV8mi);
      case X86::MOV16ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV16mi);
      case X86::MOV32ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV32mi);
      default: break;
      }
    }

    // If we can optimize the addressing expression, do so now.
    if (OptimizeAddress(MI, 0))
      return true;
    break;

  case X86::MOV32rm:
  case X86::MOV16rm:
  case X86::MOV8rm:
    // If we can optimize the addressing expression, do so now.
    if (OptimizeAddress(MI, 1))
      return true;
    break;

  default: break;
  }

  return Changed;
}