llvm.org GIT mirror llvm / release_16 lib / Target / PowerPC / PPCISelLowering.cpp
release_16

Tree @release_16 (Download .tar.gz)

PPCISelLowering.cpp @release_16raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//

#include "PPCISelLowering.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
using namespace llvm;

PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
  : TargetLowering(TM) {
    
  // Fold away setcc operations if possible.
  setSetCCIsExpensive();
  setPow2DivIsCheap();
  
  // Use _setjmp/_longjmp instead of setjmp/longjmp.
  setUseUnderscoreSetJmpLongJmp(true);
    
  // Set up the register classes.
  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
  
  // PowerPC has no intrinsics for these particular operations
  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
  
  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
  
  // PowerPC has no SREM/UREM instructions
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);
  
  // We don't support sin/cos/sqrt/fmod
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
  setOperationAction(ISD::FREM , MVT::f64, Expand);
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
  setOperationAction(ISD::FREM , MVT::f32, Expand);
  
  // If we're enabling GP optimizations, use hardware square root
  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
  }
  
  // PowerPC does not have CTPOP or CTTZ
  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
  
  // PowerPC does not have Select
  setOperationAction(ISD::SELECT, MVT::i32, Expand);
  setOperationAction(ISD::SELECT, MVT::f32, Expand);
  setOperationAction(ISD::SELECT, MVT::f64, Expand);
  
  // PowerPC wants to turn select_cc of FP into fsel when possible.
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
  
  // PowerPC does not have BRCOND* which requires SetCC
  setOperationAction(ISD::BRCOND,       MVT::Other, Expand);
  setOperationAction(ISD::BRCONDTWOWAY, MVT::Other, Expand);
  
  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);

  // PowerPC does not have [U|S]INT_TO_FP
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);

  // PowerPC does not have truncstore for i1.
  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
  
  if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
    // They also have instructions for converting between i64 and fp.
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
  } else {
    // PowerPC does not have FP_TO_UINT on 32 bit implementations.
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
  }

  if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
    // 64 bit PowerPC implementations can support i64 types directly
    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
  } else {
    // 32 bit PowerPC wants to expand i64 shifts itself.
    setOperationAction(ISD::SHL, MVT::i64, Custom);
    setOperationAction(ISD::SRL, MVT::i64, Custom);
    setOperationAction(ISD::SRA, MVT::i64, Custom);
  }
  
  setSetCCResultContents(ZeroOrOneSetCCResult);
  
  computeRegisterProperties();
}

/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDOperand Op) {
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
    // Maybe this has already been legalized into the constant pool?
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
  }
  return false;
}

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  switch (Op.getOpcode()) {
  default: assert(0 && "Wasn't expecting to be able to lower this!"); 
  case ISD::FP_TO_SINT: {
    assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
    SDOperand Src = Op.getOperand(0);
    if (Src.getValueType() == MVT::f32)
      Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
    
    switch (Op.getValueType()) {
    default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
    case MVT::i32:
      Op = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
      break;
    case MVT::i64:
      Op = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
      break;
    }
   
    int FrameIdx =
      DAG.getMachineFunction().getFrameInfo()->CreateStackObject(8, 8);
    SDOperand FI = DAG.getFrameIndex(FrameIdx, MVT::i32);
    SDOperand ST = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
                               Op, FI, DAG.getSrcValue(0));
    if (Op.getOpcode() == PPCISD::FCTIDZ) {
      Op = DAG.getLoad(MVT::i64, ST, FI, DAG.getSrcValue(0));
    } else {
      FI = DAG.getNode(ISD::ADD, MVT::i32, FI, DAG.getConstant(4, MVT::i32));
      Op = DAG.getLoad(MVT::i32, ST, FI, DAG.getSrcValue(0));
    }
    return Op;
  }
  case ISD::SINT_TO_FP: {
    assert(MVT::i64 == Op.getOperand(0).getValueType() && 
           "Unhandled SINT_TO_FP type in custom expander!");
    int FrameIdx =
      DAG.getMachineFunction().getFrameInfo()->CreateStackObject(8, 8);
    SDOperand FI = DAG.getFrameIndex(FrameIdx, MVT::i32);
    SDOperand ST = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
                               Op.getOperand(0), FI, DAG.getSrcValue(0));
    SDOperand LD = DAG.getLoad(MVT::f64, ST, FI, DAG.getSrcValue(0));
    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, LD);
    if (MVT::f32 == Op.getValueType())
      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
    return FP;
  }
  case ISD::SELECT_CC: {
    // Turn FP only select_cc's into fsel instructions.
    if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
        !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
      break;
    
    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
    
    // Cannot handle SETEQ/SETNE.
    if (CC == ISD::SETEQ || CC == ISD::SETNE) break;
    
    MVT::ValueType ResVT = Op.getValueType();
    MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
    SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);

    // If the RHS of the comparison is a 0.0, we don't need to do the
    // subtraction at all.
    if (isFloatingPointZero(RHS))
      switch (CC) {
      default: assert(0 && "Invalid FSEL condition"); abort();
      case ISD::SETULT:
      case ISD::SETLT:
        std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
      case ISD::SETUGE:
      case ISD::SETGE:
        if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
          LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
        return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
      case ISD::SETUGT:
      case ISD::SETGT:
        std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
      case ISD::SETULE:
      case ISD::SETLE:
        if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
          LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
        return DAG.getNode(PPCISD::FSEL, ResVT,
                           DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
      }
    
    SDOperand Cmp;
    switch (CC) {
    default: assert(0 && "Invalid FSEL condition"); abort();
    case ISD::SETULT:
    case ISD::SETLT:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
    case ISD::SETUGE:
    case ISD::SETGE:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
    case ISD::SETUGT:
    case ISD::SETGT:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
    case ISD::SETULE:
    case ISD::SETLE:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
    }
    break;
  }
  case ISD::SHL: {
    assert(Op.getValueType() == MVT::i64 &&
           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
    // The generic code does a fine job expanding shift by a constant.
    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
    
    // Otherwise, expand into a bunch of logical ops.  Note that these ops
    // depend on the PPC behavior for oversized shift amounts.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(1, MVT::i32));
    SDOperand Amt = Op.getOperand(1);
    
    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
                                 DAG.getConstant(32, MVT::i32), Amt);
    SDOperand Tmp2 = DAG.getNode(ISD::SHL, MVT::i32, Hi, Amt);
    SDOperand Tmp3 = DAG.getNode(ISD::SRL, MVT::i32, Lo, Tmp1);
    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
                                 DAG.getConstant(-32U, MVT::i32));
    SDOperand Tmp6 = DAG.getNode(ISD::SHL, MVT::i32, Lo, Tmp5);
    SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
    SDOperand OutLo = DAG.getNode(ISD::SHL, MVT::i32, Lo, Amt);
    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
  }
  case ISD::SRL: {
    assert(Op.getValueType() == MVT::i64 &&
           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
    // The generic code does a fine job expanding shift by a constant.
    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
    
    // Otherwise, expand into a bunch of logical ops.  Note that these ops
    // depend on the PPC behavior for oversized shift amounts.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(1, MVT::i32));
    SDOperand Amt = Op.getOperand(1);
    
    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
                                 DAG.getConstant(32, MVT::i32), Amt);
    SDOperand Tmp2 = DAG.getNode(ISD::SRL, MVT::i32, Lo, Amt);
    SDOperand Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, Hi, Tmp1);
    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
                                 DAG.getConstant(-32U, MVT::i32));
    SDOperand Tmp6 = DAG.getNode(ISD::SRL, MVT::i32, Hi, Tmp5);
    SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
    SDOperand OutHi = DAG.getNode(ISD::SRL, MVT::i32, Hi, Amt);
    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
  }    
  case ISD::SRA: {
    assert(Op.getValueType() == MVT::i64 &&
           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
    // The generic code does a fine job expanding shift by a constant.
    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
      
    // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(1, MVT::i32));
    SDOperand Amt = Op.getOperand(1);
    
    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
                                 DAG.getConstant(32, MVT::i32), Amt);
    SDOperand Tmp2 = DAG.getNode(ISD::SRL, MVT::i32, Lo, Amt);
    SDOperand Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, Hi, Tmp1);
    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
                                 DAG.getConstant(-32U, MVT::i32));
    SDOperand Tmp6 = DAG.getNode(ISD::SRA, MVT::i32, Hi, Tmp5);
    SDOperand OutHi = DAG.getNode(ISD::SRA, MVT::i32, Hi, Amt);
    SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
                                      Tmp4, Tmp6, ISD::SETLE);
    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
  }
  }
  return SDOperand();
}

std::vector<SDOperand>
PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
  //
  // add beautiful description of PPC stack frame format, or at least some docs
  //
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  MachineBasicBlock& BB = MF.front();
  SSARegMap *RegMap = MF.getSSARegMap();
  std::vector<SDOperand> ArgValues;
  
  unsigned ArgOffset = 24;
  unsigned GPR_remaining = 8;
  unsigned FPR_remaining = 13;
  unsigned GPR_idx = 0, FPR_idx = 0;
  static const unsigned GPR[] = {
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
  };
  static const unsigned FPR[] = {
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
  };
  
  // Add DAG nodes to load the arguments...  On entry to a function on PPC,
  // the arguments start at offset 24, although they are likely to be passed
  // in registers.
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    SDOperand newroot, argt;
    unsigned ObjSize;
    bool needsLoad = false;
    bool ArgLive = !I->use_empty();
    MVT::ValueType ObjectVT = getValueType(I->getType());
    
    switch (ObjectVT) {
    default: assert(0 && "Unhandled argument type!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      ObjSize = 4;
      if (!ArgLive) break;
      if (GPR_remaining > 0) {
        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
        MF.addLiveIn(GPR[GPR_idx], VReg);
        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
        if (ObjectVT != MVT::i32) {
          unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext 
                                                       : ISD::AssertZext;
          argt = DAG.getNode(AssertOp, MVT::i32, argt, 
                             DAG.getValueType(ObjectVT));
          argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
        }
      } else {
        needsLoad = true;
      }
      break;
    case MVT::i64: ObjSize = 8;
      if (!ArgLive) break;
      if (GPR_remaining > 0) {
        SDOperand argHi, argLo;
        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
        MF.addLiveIn(GPR[GPR_idx], VReg);
        argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
        // If we have two or more remaining argument registers, then both halves
        // of the i64 can be sourced from there.  Otherwise, the lower half will
        // have to come off the stack.  This can happen when an i64 is preceded
        // by 28 bytes of arguments.
        if (GPR_remaining > 1) {
          unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
          MF.addLiveIn(GPR[GPR_idx+1], VReg);
          argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
        } else {
          int FI = MFI->CreateFixedObject(4, ArgOffset+4);
          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
          argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
                              DAG.getSrcValue(NULL));
        }
        // Build the outgoing arg thingy
        argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
        newroot = argLo;
      } else {
        needsLoad = true;
      }
      break;
    case MVT::f32:
    case MVT::f64:
      ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
      if (!ArgLive) break;
      if (FPR_remaining > 0) {
        unsigned VReg;
        if (ObjectVT == MVT::f32)
          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
        else
          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
        MF.addLiveIn(FPR[FPR_idx], VReg);
        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
        --FPR_remaining;
        ++FPR_idx;
      } else {
        needsLoad = true;
      }
      break;
    }
    
    // We need to load the argument to a virtual register if we determined above
    // that we ran out of physical registers of the appropriate type
    if (needsLoad) {
      unsigned SubregOffset = 0;
      if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
      if (ObjectVT == MVT::i16) SubregOffset = 2;
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
                        DAG.getConstant(SubregOffset, MVT::i32));
      argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
                                   DAG.getSrcValue(NULL));
    }
    
    // Every 4 bytes of argument space consumes one of the GPRs available for
    // argument passing.
    if (GPR_remaining > 0) {
      unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
      GPR_remaining -= delta;
      GPR_idx += delta;
    }
    ArgOffset += ObjSize;
    if (newroot.Val)
      DAG.setRoot(newroot.getValue(1));
    
    ArgValues.push_back(argt);
  }
  
  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (F.isVarArg()) {
    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
    // If this function is vararg, store any remaining integer argument regs
    // to their spots on the stack so that they may be loaded by deferencing the
    // result of va_next.
    std::vector<SDOperand> MemOps;
    for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
      MF.addLiveIn(GPR[GPR_idx], VReg);
      SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
                                    Val, FIN, DAG.getSrcValue(NULL));
      MemOps.push_back(Store);
      // Increment the address by four for the next argument to store
      SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
    }
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
  }
  
  // Finally, inform the code generator which regs we return values in.
  switch (getValueType(F.getReturnType())) {
    default: assert(0 && "Unknown type!");
    case MVT::isVoid: break;
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      MF.addLiveOut(PPC::R3);
      break;
    case MVT::i64:
      MF.addLiveOut(PPC::R3);
      MF.addLiveOut(PPC::R4);
      break;
    case MVT::f32:
    case MVT::f64:
      MF.addLiveOut(PPC::F1);
      break;
  }
  
  return ArgValues;
}

std::pair<SDOperand, SDOperand>
PPCTargetLowering::LowerCallTo(SDOperand Chain,
                               const Type *RetTy, bool isVarArg,
                               unsigned CallingConv, bool isTailCall,
                               SDOperand Callee, ArgListTy &Args,
                               SelectionDAG &DAG) {
  // args_to_use will accumulate outgoing args for the ISD::CALL case in
  // SelectExpr to use to put the arguments in the appropriate registers.
  std::vector<SDOperand> args_to_use;
  
  // Count how many bytes are to be pushed on the stack, including the linkage
  // area, and parameter passing area.
  unsigned NumBytes = 24;
  
  if (Args.empty()) {
    Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
                        DAG.getConstant(NumBytes, getPointerTy()));
  } else {
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      switch (getValueType(Args[i].second)) {
      default: assert(0 && "Unknown value type!");
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
      case MVT::f32:
        NumBytes += 4;
        break;
      case MVT::i64:
      case MVT::f64:
        NumBytes += 8;
        break;
      }
    }
        
    // Just to be safe, we'll always reserve the full 24 bytes of linkage area
    // plus 32 bytes of argument space in case any called code gets funky on us.
    // (Required by ABI to support var arg)
    if (NumBytes < 56) NumBytes = 56;
    
    // Adjust the stack pointer for the new arguments...
    // These operations are automatically eliminated by the prolog/epilog pass
    Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
                        DAG.getConstant(NumBytes, getPointerTy()));
    
    // Set up a copy of the stack pointer for use loading and storing any
    // arguments that may not fit in the registers available for argument
    // passing.
    SDOperand StackPtr = DAG.getCopyFromReg(DAG.getEntryNode(),
                                            PPC::R1, MVT::i32);
    
    // Figure out which arguments are going to go in registers, and which in
    // memory.  Also, if this is a vararg function, floating point operations
    // must be stored to our stack, and loaded into integer regs as well, if
    // any integer regs are available for argument passing.
    unsigned ArgOffset = 24;
    unsigned GPR_remaining = 8;
    unsigned FPR_remaining = 13;
    
    std::vector<SDOperand> MemOps;
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      // PtrOff will be used to store the current argument to the stack if a
      // register cannot be found for it.
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
      MVT::ValueType ArgVT = getValueType(Args[i].second);
      
      switch (ArgVT) {
      default: assert(0 && "Unexpected ValueType for argument!");
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
        // Promote the integer to 32 bits.  If the input type is signed use a
        // sign extend, otherwise use a zero extend.
        if (Args[i].second->isSigned())
          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
        else
          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
        // FALL THROUGH
      case MVT::i32:
        if (GPR_remaining > 0) {
          args_to_use.push_back(Args[i].first);
          --GPR_remaining;
        } else {
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Args[i].first, PtrOff,
                                       DAG.getSrcValue(NULL)));
        }
        ArgOffset += 4;
        break;
      case MVT::i64:
        // If we have one free GPR left, we can place the upper half of the i64
        // in it, and store the other half to the stack.  If we have two or more
        // free GPRs, then we can pass both halves of the i64 in registers.
        if (GPR_remaining > 0) {
          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
                                     Args[i].first, DAG.getConstant(1, MVT::i32));
          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
                                     Args[i].first, DAG.getConstant(0, MVT::i32));
          args_to_use.push_back(Hi);
          --GPR_remaining;
          if (GPR_remaining > 0) {
            args_to_use.push_back(Lo);
            --GPR_remaining;
          } else {
            SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
            PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
            MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                         Lo, PtrOff, DAG.getSrcValue(NULL)));
          }
        } else {
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Args[i].first, PtrOff,
                                       DAG.getSrcValue(NULL)));
        }
        ArgOffset += 8;
        break;
      case MVT::f32:
      case MVT::f64:
        if (FPR_remaining > 0) {
          args_to_use.push_back(Args[i].first);
          --FPR_remaining;
          if (isVarArg) {
            SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                          Args[i].first, PtrOff,
                                          DAG.getSrcValue(NULL));
            MemOps.push_back(Store);
            // Float varargs are always shadowed in available integer registers
            if (GPR_remaining > 0) {
              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
                                           DAG.getSrcValue(NULL));
              MemOps.push_back(Load);
              args_to_use.push_back(Load);
              --GPR_remaining;
            }
            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
              SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
              PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
                                           DAG.getSrcValue(NULL));
              MemOps.push_back(Load);
              args_to_use.push_back(Load);
              --GPR_remaining;
            }
          } else {
            // If we have any FPRs remaining, we may also have GPRs remaining.
            // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
            // GPRs.
            if (GPR_remaining > 0) {
              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
              --GPR_remaining;
            }
            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
              --GPR_remaining;
            }
          }
        } else {
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Args[i].first, PtrOff,
                                       DAG.getSrcValue(NULL)));
        }
        ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
        break;
      }
    }
    if (!MemOps.empty())
      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
  }
  
  std::vector<MVT::ValueType> RetVals;
  MVT::ValueType RetTyVT = getValueType(RetTy);
  MVT::ValueType ActualRetTyVT = RetTyVT;
  if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
    ActualRetTyVT = MVT::i32;   // Promote result to i32.
    
  if (RetTyVT != MVT::isVoid)
    RetVals.push_back(ActualRetTyVT);
  RetVals.push_back(MVT::Other);
  
  SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
                                            Chain, Callee, args_to_use), 0);
  Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
                      DAG.getConstant(NumBytes, getPointerTy()));
  SDOperand RetVal = TheCall;
  
  // If the result is a small value, add a note so that we keep track of the
  // information about whether it is sign or zero extended.
  if (RetTyVT != ActualRetTyVT) {
    RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
                         MVT::i32, RetVal, DAG.getValueType(RetTyVT));
    RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
  }
  
  return std::make_pair(RetVal, Chain);
}

SDOperand PPCTargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op,
                                           SelectionDAG &DAG) {
  if (Op.getValueType() == MVT::i64) {
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op, 
                               DAG.getConstant(1, MVT::i32));
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op,
                               DAG.getConstant(0, MVT::i32));
    return DAG.getNode(ISD::RET, MVT::Other, Chain, Lo, Hi);
  } else {
    return DAG.getNode(ISD::RET, MVT::Other, Chain, Op);
  }
}

SDOperand PPCTargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
                                          Value *VAListV, SelectionDAG &DAG) {
  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
  return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP,
                     DAG.getSrcValue(VAListV));
}

std::pair<SDOperand,SDOperand>
PPCTargetLowering::LowerVAArg(SDOperand Chain,
                              SDOperand VAListP, Value *VAListV,
                              const Type *ArgTy, SelectionDAG &DAG) {
  MVT::ValueType ArgVT = getValueType(ArgTy);
  
  SDOperand VAList =
    DAG.getLoad(MVT::i32, Chain, VAListP, DAG.getSrcValue(VAListV));
  SDOperand Result = DAG.getLoad(ArgVT, Chain, VAList, DAG.getSrcValue(NULL));
  unsigned Amt;
  if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
    Amt = 4;
  else {
    assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
           "Other types should have been promoted for varargs!");
    Amt = 8;
  }
  VAList = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
                       DAG.getConstant(Amt, VAList.getValueType()));
  Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
                      VAList, VAListP, DAG.getSrcValue(VAListV));
  return std::make_pair(Result, Chain);
}


std::pair<SDOperand, SDOperand> PPCTargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
                        SelectionDAG &DAG) {
  assert(0 && "LowerFrameReturnAddress unimplemented");
  abort();
}

MachineBasicBlock *
PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
                                           MachineBasicBlock *BB) {
  assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
          MI->getOpcode() == PPC::SELECT_CC_F4 ||
          MI->getOpcode() == PPC::SELECT_CC_F8) &&
         "Unexpected instr type to insert");
  
  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
  // control-flow pattern.  The incoming instruction knows the destination vreg
  // to set, the condition code register to branch on, the true/false values to
  // select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  ilist<MachineBasicBlock>::iterator It = BB;
  ++It;
  
  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   cmpTY ccX, r1, r2
  //   bCC copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB = BB;
  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
  MachineFunction *F = BB->getParent();
  F->getBasicBlockList().insert(It, copy0MBB);
  F->getBasicBlockList().insert(It, sinkMBB);
  // Update machine-CFG edges
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);
  
  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;
  
  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);
  
  //  sinkMBB:
  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
  //  ...
  BB = sinkMBB;
  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);

  delete MI;   // The pseudo instruction is gone now.
  return BB;
}