llvm.org GIT mirror llvm / release_16 lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
release_16

Tree @release_16 (Download .tar.gz)

SelectionDAGISel.cpp @release_16raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "isel"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <map>
#include <iostream>
using namespace llvm;

#ifndef NDEBUG
static cl::opt<bool>
ViewDAGs("view-isel-dags", cl::Hidden,
         cl::desc("Pop up a window to show isel dags as they are selected"));
#else
static const bool ViewDAGs = 0;
#endif


namespace llvm {
  //===--------------------------------------------------------------------===//
  /// FunctionLoweringInfo - This contains information that is global to a
  /// function that is used when lowering a region of the function.
  class FunctionLoweringInfo {
  public:
    TargetLowering &TLI;
    Function &Fn;
    MachineFunction &MF;
    SSARegMap *RegMap;

    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);

    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;

    /// ValueMap - Since we emit code for the function a basic block at a time,
    /// we must remember which virtual registers hold the values for
    /// cross-basic-block values.
    std::map<const Value*, unsigned> ValueMap;

    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
    /// the entry block.  This allows the allocas to be efficiently referenced
    /// anywhere in the function.
    std::map<const AllocaInst*, int> StaticAllocaMap;

    unsigned MakeReg(MVT::ValueType VT) {
      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
    }

    unsigned CreateRegForValue(const Value *V) {
      MVT::ValueType VT = TLI.getValueType(V->getType());
      // The common case is that we will only create one register for this
      // value.  If we have that case, create and return the virtual register.
      unsigned NV = TLI.getNumElements(VT);
      if (NV == 1) {
        // If we are promoting this value, pick the next largest supported type.
        return MakeReg(TLI.getTypeToTransformTo(VT));
      }

      // If this value is represented with multiple target registers, make sure
      // to create enough consequtive registers of the right (smaller) type.
      unsigned NT = VT-1;  // Find the type to use.
      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
        --NT;

      unsigned R = MakeReg((MVT::ValueType)NT);
      for (unsigned i = 1; i != NV; ++i)
        MakeReg((MVT::ValueType)NT);
      return R;
    }

    unsigned InitializeRegForValue(const Value *V) {
      unsigned &R = ValueMap[V];
      assert(R == 0 && "Already initialized this value register!");
      return R = CreateRegForValue(V);
    }
  };
}

/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it.
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
  if (isa<PHINode>(I)) return true;
  BasicBlock *BB = I->getParent();
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
      return true;
  return false;
}

/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
/// entry block, return true.
static bool isOnlyUsedInEntryBlock(Argument *A) {
  BasicBlock *Entry = A->getParent()->begin();
  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
    if (cast<Instruction>(*UI)->getParent() != Entry)
      return false;  // Use not in entry block.
  return true;
}

FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
                                           Function &fn, MachineFunction &mf)
    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {

  // Create a vreg for each argument register that is not dead and is used
  // outside of the entry block for the function.
  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
       AI != E; ++AI)
    if (!isOnlyUsedInEntryBlock(AI))
      InitializeRegForValue(AI);

  // Initialize the mapping of values to registers.  This is only set up for
  // instruction values that are used outside of the block that defines
  // them.
  Function::iterator BB = Fn.begin(), EB = Fn.end();
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
        const Type *Ty = AI->getAllocatedType();
        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);

        // If the alignment of the value is smaller than the size of the value,
        // and if the size of the value is particularly small (<= 8 bytes),
        // round up to the size of the value for potentially better performance.
        //
        // FIXME: This could be made better with a preferred alignment hook in
        // TargetData.  It serves primarily to 8-byte align doubles for X86.
        if (Align < TySize && TySize <= 8) Align = TySize;
        TySize *= CUI->getValue();   // Get total allocated size.
        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
        StaticAllocaMap[AI] =
          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
      }

  for (; BB != EB; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
        if (!isa<AllocaInst>(I) ||
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
          InitializeRegForValue(I);

  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
  // also creates the initial PHI MachineInstrs, though none of the input
  // operands are populated.
  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
    MBBMap[BB] = MBB;
    MF.getBasicBlockList().push_back(MBB);

    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    // appropriate.
    PHINode *PN;
    for (BasicBlock::iterator I = BB->begin();
         (PN = dyn_cast<PHINode>(I)); ++I)
      if (!PN->use_empty()) {
        unsigned NumElements =
          TLI.getNumElements(TLI.getValueType(PN->getType()));
        unsigned PHIReg = ValueMap[PN];
        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
        for (unsigned i = 0; i != NumElements; ++i)
          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
      }
  }
}



//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
/// Also, targets can overload any lowering method.
///
namespace llvm {
class SelectionDAGLowering {
  MachineBasicBlock *CurMBB;

  std::map<const Value*, SDOperand> NodeMap;

  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
  /// them up and then emit token factor nodes when possible.  This allows us to
  /// get simple disambiguation between loads without worrying about alias
  /// analysis.
  std::vector<SDOperand> PendingLoads;

public:
  // TLI - This is information that describes the available target features we
  // need for lowering.  This indicates when operations are unavailable,
  // implemented with a libcall, etc.
  TargetLowering &TLI;
  SelectionDAG &DAG;
  const TargetData &TD;

  /// FuncInfo - Information about the function as a whole.
  ///
  FunctionLoweringInfo &FuncInfo;

  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
                       FunctionLoweringInfo &funcinfo)
    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
      FuncInfo(funcinfo) {
  }

  /// getRoot - Return the current virtual root of the Selection DAG.
  ///
  SDOperand getRoot() {
    if (PendingLoads.empty())
      return DAG.getRoot();

    if (PendingLoads.size() == 1) {
      SDOperand Root = PendingLoads[0];
      DAG.setRoot(Root);
      PendingLoads.clear();
      return Root;
    }

    // Otherwise, we have to make a token factor node.
    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
    PendingLoads.clear();
    DAG.setRoot(Root);
    return Root;
  }

  void visit(Instruction &I) { visit(I.getOpcode(), I); }

  void visit(unsigned Opcode, User &I) {
    switch (Opcode) {
    default: assert(0 && "Unknown instruction type encountered!");
             abort();
      // Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
#include "llvm/Instruction.def"
    }
  }

  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }


  SDOperand getIntPtrConstant(uint64_t Val) {
    return DAG.getConstant(Val, TLI.getPointerTy());
  }

  SDOperand getValue(const Value *V) {
    SDOperand &N = NodeMap[V];
    if (N.Val) return N;

    MVT::ValueType VT = TLI.getValueType(V->getType());
    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
        visit(CE->getOpcode(), *CE);
        assert(N.Val && "visit didn't populate the ValueMap!");
        return N;
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
        return N = DAG.getGlobalAddress(GV, VT);
      } else if (isa<ConstantPointerNull>(C)) {
        return N = DAG.getConstant(0, TLI.getPointerTy());
      } else if (isa<UndefValue>(C)) {
        return N = DAG.getNode(ISD::UNDEF, VT);
      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
        return N = DAG.getConstantFP(CFP->getValue(), VT);
      } else {
        // Canonicalize all constant ints to be unsigned.
        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
      }

    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
      std::map<const AllocaInst*, int>::iterator SI =
        FuncInfo.StaticAllocaMap.find(AI);
      if (SI != FuncInfo.StaticAllocaMap.end())
        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
    }

    std::map<const Value*, unsigned>::const_iterator VMI =
      FuncInfo.ValueMap.find(V);
    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");

    unsigned InReg = VMI->second;
   
    // If this type is not legal, make it so now.
    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
    
    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
    if (DestVT < VT) {
      // Source must be expanded.  This input value is actually coming from the
      // register pair VMI->second and VMI->second+1.
      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
    } else {
      if (DestVT > VT) { // Promotion case
        if (MVT::isFloatingPoint(VT))
          N = DAG.getNode(ISD::FP_ROUND, VT, N);
        else
          N = DAG.getNode(ISD::TRUNCATE, VT, N);
      }
    }
    
    return N;
  }

  const SDOperand &setValue(const Value *V, SDOperand NewN) {
    SDOperand &N = NodeMap[V];
    assert(N.Val == 0 && "Already set a value for this node!");
    return N = NewN;
  }

  // Terminator instructions.
  void visitRet(ReturnInst &I);
  void visitBr(BranchInst &I);
  void visitUnreachable(UnreachableInst &I) { /* noop */ }

  // These all get lowered before this pass.
  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }

  //
  void visitBinary(User &I, unsigned Opcode, bool isShift = false);
  void visitAdd(User &I) {
    visitBinary(I, I.getType()->isFloatingPoint() ? ISD::FADD : ISD::ADD);
  }
  void visitSub(User &I);
  void visitMul(User &I) {
    visitBinary(I, I.getType()->isFloatingPoint() ? ISD::FMUL : ISD::MUL);
  }
  void visitDiv(User &I) {
    unsigned Opc;
    const Type *Ty = I.getType();
    if (Ty->isFloatingPoint())
      Opc = ISD::FDIV;
    else if (Ty->isUnsigned())
      Opc = ISD::UDIV;
    else
      Opc = ISD::SDIV;
    visitBinary(I, Opc);
  }
  void visitRem(User &I) {
    unsigned Opc;
    const Type *Ty = I.getType();
    if (Ty->isFloatingPoint())
      Opc = ISD::FREM;
    else if (Ty->isUnsigned())
      Opc = ISD::UREM;
    else
      Opc = ISD::SREM;
    visitBinary(I, Opc);
  }
  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
  void visitOr (User &I) { visitBinary(I, ISD::OR); }
  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
  void visitShl(User &I) { visitBinary(I, ISD::SHL, true); }
  void visitShr(User &I) {
    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA, true);
  }

  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }

  void visitGetElementPtr(User &I);
  void visitCast(User &I);
  void visitSelect(User &I);
  //

  void visitMalloc(MallocInst &I);
  void visitFree(FreeInst &I);
  void visitAlloca(AllocaInst &I);
  void visitLoad(LoadInst &I);
  void visitStore(StoreInst &I);
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
  void visitCall(CallInst &I);

  void visitVAStart(CallInst &I);
  void visitVAArg(VAArgInst &I);
  void visitVAEnd(CallInst &I);
  void visitVACopy(CallInst &I);
  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);

  void visitMemIntrinsic(CallInst &I, unsigned Op);

  void visitUserOp1(Instruction &I) {
    assert(0 && "UserOp1 should not exist at instruction selection time!");
    abort();
  }
  void visitUserOp2(Instruction &I) {
    assert(0 && "UserOp2 should not exist at instruction selection time!");
    abort();
  }
};
} // end namespace llvm

void SelectionDAGLowering::visitRet(ReturnInst &I) {
  if (I.getNumOperands() == 0) {
    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
    return;
  }

  SDOperand Op1 = getValue(I.getOperand(0));
  MVT::ValueType TmpVT;

  switch (Op1.getValueType()) {
  default: assert(0 && "Unknown value type!");
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    // If this is a machine where 32-bits is legal or expanded, promote to
    // 32-bits, otherwise, promote to 64-bits.
    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
    else
      TmpVT = MVT::i32;

    // Extend integer types to result type.
    if (I.getOperand(0)->getType()->isSigned())
      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
    else
      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
    break;
  case MVT::f32:
  case MVT::i64:
  case MVT::f64:
    break; // No extension needed!
  }
  // Allow targets to lower this further to meet ABI requirements
  DAG.setRoot(TLI.LowerReturnTo(getRoot(), Op1, DAG));
}

void SelectionDAGLowering::visitBr(BranchInst &I) {
  // Update machine-CFG edges.
  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];

  // Figure out which block is immediately after the current one.
  MachineBasicBlock *NextBlock = 0;
  MachineFunction::iterator BBI = CurMBB;
  if (++BBI != CurMBB->getParent()->end())
    NextBlock = BBI;

  if (I.isUnconditional()) {
    // If this is not a fall-through branch, emit the branch.
    if (Succ0MBB != NextBlock)
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
                              DAG.getBasicBlock(Succ0MBB)));
  } else {
    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];

    SDOperand Cond = getValue(I.getCondition());
    if (Succ1MBB == NextBlock) {
      // If the condition is false, fall through.  This means we should branch
      // if the condition is true to Succ #0.
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
                              Cond, DAG.getBasicBlock(Succ0MBB)));
    } else if (Succ0MBB == NextBlock) {
      // If the condition is true, fall through.  This means we should branch if
      // the condition is false to Succ #1.  Invert the condition first.
      SDOperand True = DAG.getConstant(1, Cond.getValueType());
      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
                              Cond, DAG.getBasicBlock(Succ1MBB)));
    } else {
      std::vector<SDOperand> Ops;
      Ops.push_back(getRoot());
      Ops.push_back(Cond);
      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
    }
  }
}

void SelectionDAGLowering::visitSub(User &I) {
  // -0.0 - X --> fneg
  if (I.getType()->isFloatingPoint()) {
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
      if (CFP->isExactlyValue(-0.0)) {
        SDOperand Op2 = getValue(I.getOperand(1));
        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
        return;
      }
    visitBinary(I, ISD::FSUB);
  } else {
    visitBinary(I, ISD::SUB);
  }
}

void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode, bool isShift) {
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));

  if (isShift)
    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);

  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
}

void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
                                      ISD::CondCode UnsignedOpcode) {
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));
  ISD::CondCode Opcode = SignedOpcode;
  if (I.getOperand(0)->getType()->isUnsigned())
    Opcode = UnsignedOpcode;
  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
}

void SelectionDAGLowering::visitSelect(User &I) {
  SDOperand Cond     = getValue(I.getOperand(0));
  SDOperand TrueVal  = getValue(I.getOperand(1));
  SDOperand FalseVal = getValue(I.getOperand(2));
  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
                           TrueVal, FalseVal));
}

void SelectionDAGLowering::visitCast(User &I) {
  SDOperand N = getValue(I.getOperand(0));
  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
  MVT::ValueType DestTy = TLI.getValueType(I.getType());

  if (N.getValueType() == DestTy) {
    setValue(&I, N);  // noop cast.
  } else if (DestTy == MVT::i1) {
    // Cast to bool is a comparison against zero, not truncation to zero.
    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
                                       DAG.getConstantFP(0.0, N.getValueType());
    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
  } else if (isInteger(SrcTy)) {
    if (isInteger(DestTy)) {        // Int -> Int cast
      if (DestTy < SrcTy)   // Truncating cast?
        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
      else if (I.getOperand(0)->getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
    } else {                        // Int -> FP cast
      if (I.getOperand(0)->getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
    }
  } else {
    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
      if (DestTy < SrcTy)   // Rounding cast?
        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
    } else {                        // FP -> Int cast.
      if (I.getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
    }
  }
}

void SelectionDAGLowering::visitGetElementPtr(User &I) {
  SDOperand N = getValue(I.getOperand(0));
  const Type *Ty = I.getOperand(0)->getType();
  const Type *UIntPtrTy = TD.getIntPtrType();

  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
       OI != E; ++OI) {
    Value *Idx = *OI;
    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
      if (Field) {
        // N = N + Offset
        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
                        getIntPtrConstant(Offset));
      }
      Ty = StTy->getElementType(Field);
    } else {
      Ty = cast<SequentialType>(Ty)->getElementType();
      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
        // N = N + Idx * ElementSize;
        uint64_t ElementSize = TD.getTypeSize(Ty);
        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);

        // If the index is smaller or larger than intptr_t, truncate or extend
        // it.
        if (IdxN.getValueType() < Scale.getValueType()) {
          if (Idx->getType()->isSigned())
            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
          else
            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
        } else if (IdxN.getValueType() > Scale.getValueType())
          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);

        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
      }
    }
  }
  setValue(&I, N);
}

void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
  // If this is a fixed sized alloca in the entry block of the function,
  // allocate it statically on the stack.
  if (FuncInfo.StaticAllocaMap.count(&I))
    return;   // getValue will auto-populate this.

  const Type *Ty = I.getAllocatedType();
  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);

  SDOperand AllocSize = getValue(I.getArraySize());
  MVT::ValueType IntPtr = TLI.getPointerTy();
  if (IntPtr < AllocSize.getValueType())
    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
  else if (IntPtr > AllocSize.getValueType())
    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);

  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
                          getIntPtrConstant(TySize));

  // Handle alignment.  If the requested alignment is less than or equal to the
  // stack alignment, ignore it and round the size of the allocation up to the
  // stack alignment size.  If the size is greater than the stack alignment, we
  // note this in the DYNAMIC_STACKALLOC node.
  unsigned StackAlign =
    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
  if (Align <= StackAlign) {
    Align = 0;
    // Add SA-1 to the size.
    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
                            getIntPtrConstant(StackAlign-1));
    // Mask out the low bits for alignment purposes.
    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
  }

  std::vector<MVT::ValueType> VTs;
  VTs.push_back(AllocSize.getValueType());
  VTs.push_back(MVT::Other);
  std::vector<SDOperand> Ops;
  Ops.push_back(getRoot());
  Ops.push_back(AllocSize);
  Ops.push_back(getIntPtrConstant(Align));
  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
  DAG.setRoot(setValue(&I, DSA).getValue(1));

  // Inform the Frame Information that we have just allocated a variable-sized
  // object.
  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
}


void SelectionDAGLowering::visitLoad(LoadInst &I) {
  SDOperand Ptr = getValue(I.getOperand(0));

  SDOperand Root;
  if (I.isVolatile())
    Root = getRoot();
  else {
    // Do not serialize non-volatile loads against each other.
    Root = DAG.getRoot();
  }

  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr,
                            DAG.getSrcValue(I.getOperand(0)));
  setValue(&I, L);

  if (I.isVolatile())
    DAG.setRoot(L.getValue(1));
  else
    PendingLoads.push_back(L.getValue(1));
}


void SelectionDAGLowering::visitStore(StoreInst &I) {
  Value *SrcV = I.getOperand(0);
  SDOperand Src = getValue(SrcV);
  SDOperand Ptr = getValue(I.getOperand(1));
  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
                          DAG.getSrcValue(I.getOperand(1))));
}

void SelectionDAGLowering::visitCall(CallInst &I) {
  const char *RenameFn = 0;
  SDOperand Tmp;
  if (Function *F = I.getCalledFunction())
    if (F->isExternal())
      switch (F->getIntrinsicID()) {
      case 0:     // Not an LLVM intrinsic.
        if (F->getName() == "fabs" || F->getName() == "fabsf") {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
            return;
          }
        }
        else if (F->getName() == "sin" || F->getName() == "sinf") {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
            return;
          }
        }
        else if (F->getName() == "cos" || F->getName() == "cosf") {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
            return;
          }
        }
        break;
      case Intrinsic::vastart:  visitVAStart(I); return;
      case Intrinsic::vaend:    visitVAEnd(I); return;
      case Intrinsic::vacopy:   visitVACopy(I); return;
      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;

      case Intrinsic::setjmp:
        RenameFn = "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
        break;
      case Intrinsic::longjmp:
        RenameFn = "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
        break;
      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;

      case Intrinsic::readport:
      case Intrinsic::readio: {
        std::vector<MVT::ValueType> VTs;
        VTs.push_back(TLI.getValueType(I.getType()));
        VTs.push_back(MVT::Other);
        std::vector<SDOperand> Ops;
        Ops.push_back(getRoot());
        Ops.push_back(getValue(I.getOperand(1)));
        Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ?
                          ISD::READPORT : ISD::READIO, VTs, Ops);

        setValue(&I, Tmp);
        DAG.setRoot(Tmp.getValue(1));
        return;
      }
      case Intrinsic::writeport:
      case Intrinsic::writeio:
        DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ?
                                ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
                                getRoot(), getValue(I.getOperand(1)),
                                getValue(I.getOperand(2))));
        return;
      case Intrinsic::dbg_stoppoint:
      case Intrinsic::dbg_region_start:
      case Intrinsic::dbg_region_end:
      case Intrinsic::dbg_func_start:
      case Intrinsic::dbg_declare:
        if (I.getType() != Type::VoidTy)
          setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
        return;

      case Intrinsic::isunordered:
        setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
                                  getValue(I.getOperand(2)), ISD::SETUO));
        return;

      case Intrinsic::sqrt:
        setValue(&I, DAG.getNode(ISD::FSQRT,
                                 getValue(I.getOperand(1)).getValueType(),
                                 getValue(I.getOperand(1))));
        return;

      case Intrinsic::pcmarker:
        Tmp = getValue(I.getOperand(1));
        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
        return;
      case Intrinsic::cttz:
        setValue(&I, DAG.getNode(ISD::CTTZ,
                                 getValue(I.getOperand(1)).getValueType(),
                                 getValue(I.getOperand(1))));
        return;
      case Intrinsic::ctlz:
        setValue(&I, DAG.getNode(ISD::CTLZ,
                                 getValue(I.getOperand(1)).getValueType(),
                                 getValue(I.getOperand(1))));
        return;
      case Intrinsic::ctpop:
        setValue(&I, DAG.getNode(ISD::CTPOP,
                                 getValue(I.getOperand(1)).getValueType(),
                                 getValue(I.getOperand(1))));
        return;
      default:
        std::cerr << I;
        assert(0 && "This intrinsic is not implemented yet!");
        return;
      }

  SDOperand Callee;
  if (!RenameFn)
    Callee = getValue(I.getOperand(0));
  else
    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
  std::vector<std::pair<SDOperand, const Type*> > Args;

  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
    Value *Arg = I.getOperand(i);
    SDOperand ArgNode = getValue(Arg);
    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
  }

  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());

  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
                    I.isTailCall(), Callee, Args, DAG);
  if (I.getType() != Type::VoidTy)
    setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitMalloc(MallocInst &I) {
  SDOperand Src = getValue(I.getOperand(0));

  MVT::ValueType IntPtr = TLI.getPointerTy();

  if (IntPtr < Src.getValueType())
    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
  else if (IntPtr > Src.getValueType())
    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);

  // Scale the source by the type size.
  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
                    Src, getIntPtrConstant(ElementSize));

  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));

  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
                    DAG.getExternalSymbol("malloc", IntPtr),
                    Args, DAG);
  setValue(&I, Result.first);  // Pointers always fit in registers
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitFree(FreeInst &I) {
  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
                                TLI.getTargetData().getIntPtrType()));
  MVT::ValueType IntPtr = TLI.getPointerTy();
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
  DAG.setRoot(Result.second);
}

// InsertAtEndOfBasicBlock - This method should be implemented by targets that
// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
// instructions are special in various ways, which require special support to
// insert.  The specified MachineInstr is created but not inserted into any
// basic blocks, and the scheduler passes ownership of it to this method.
MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
                                                       MachineBasicBlock *MBB) {
  std::cerr << "If a target marks an instruction with "
               "'usesCustomDAGSchedInserter', it must implement "
               "TargetLowering::InsertAtEndOfBasicBlock!\n";
  abort();
  return 0;  
}

SDOperand TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op,
                                        SelectionDAG &DAG) {
  return DAG.getNode(ISD::RET, MVT::Other, Chain, Op);
}

SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
                                       SDOperand VAListP, Value *VAListV,
                                       SelectionDAG &DAG) {
  // We have no sane default behavior, just emit a useful error message and bail
  // out.
  std::cerr << "Variable arguments handling not implemented on this target!\n";
  abort();
  return SDOperand();
}

SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
                                     SelectionDAG &DAG) {
  // Default to a noop.
  return Chain;
}

SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
                                      SDOperand SrcP, Value *SrcV,
                                      SDOperand DestP, Value *DestV,
                                      SelectionDAG &DAG) {
  // Default to copying the input list.
  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
                              SrcP, DAG.getSrcValue(SrcV));
  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
                                 Val, DestP, DAG.getSrcValue(DestV));
  return Result;
}

std::pair<SDOperand,SDOperand>
TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
                           const Type *ArgTy, SelectionDAG &DAG) {
  // We have no sane default behavior, just emit a useful error message and bail
  // out.
  std::cerr << "Variable arguments handling not implemented on this target!\n";
  abort();
  return std::make_pair(SDOperand(), SDOperand());
}


void SelectionDAGLowering::visitVAStart(CallInst &I) {
  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
                               I.getOperand(1), DAG));
}

void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
                   I.getType(), DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitVAEnd(CallInst &I) {
  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
                             I.getOperand(1), DAG));
}

void SelectionDAGLowering::visitVACopy(CallInst &I) {
  SDOperand Result =
    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
  DAG.setRoot(Result);
}


// It is always conservatively correct for llvm.returnaddress and
// llvm.frameaddress to return 0.
std::pair<SDOperand, SDOperand>
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
                                        unsigned Depth, SelectionDAG &DAG) {
  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
}

SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  assert(0 && "LowerOperation not implemented for this target!");
  abort();
  return SDOperand();
}

void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
  std::vector<SDOperand> Ops;
  Ops.push_back(getRoot());
  Ops.push_back(getValue(I.getOperand(1)));
  Ops.push_back(getValue(I.getOperand(2)));
  Ops.push_back(getValue(I.getOperand(3)));
  Ops.push_back(getValue(I.getOperand(4)));
  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
}

//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//

unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
}

void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
  // FIXME: we only modify the CFG to split critical edges.  This
  // updates dom and loop info.
}


bool SelectionDAGISel::runOnFunction(Function &Fn) {
  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
  RegMap = MF.getSSARegMap();
  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");

  // First pass, split all critical edges for PHI nodes with incoming values
  // that are constants, this way the load of the constant into a vreg will not
  // be placed into MBBs that are used some other way.
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = BB->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI)
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        if (isa<Constant>(PN->getIncomingValue(i)))
          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
  }

  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);

  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
    SelectBasicBlock(I, MF, FuncInfo);

  return true;
}


SDOperand SelectionDAGISel::
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
  SDOperand Op = SDL.getValue(V);
  assert((Op.getOpcode() != ISD::CopyFromReg ||
          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
         "Copy from a reg to the same reg!");
  
  // If this type is not legal, we must make sure to not create an invalid
  // register use.
  MVT::ValueType SrcVT = Op.getValueType();
  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
  SelectionDAG &DAG = SDL.DAG;
  if (SrcVT == DestVT) {
    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
  } else if (SrcVT < DestVT) {
    // The src value is promoted to the register.
    if (MVT::isFloatingPoint(SrcVT))
      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
    else
      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
  } else  {
    // The src value is expanded into multiple registers.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
                               Op, DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
                               Op, DAG.getConstant(1, MVT::i32));
    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
    return DAG.getCopyToReg(Op, Reg+1, Hi);
  }
}

void SelectionDAGISel::
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
               std::vector<SDOperand> &UnorderedChains) {
  // If this is the entry block, emit arguments.
  Function &F = *BB->getParent();
  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
  SDOperand OldRoot = SDL.DAG.getRoot();
  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);

  unsigned a = 0;
  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
       AI != E; ++AI, ++a)
    if (!AI->use_empty()) {
      SDL.setValue(AI, Args[a]);
      
      // If this argument is live outside of the entry block, insert a copy from
      // whereever we got it to the vreg that other BB's will reference it as.
      if (FuncInfo.ValueMap.count(AI)) {
        SDOperand Copy =
          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
        UnorderedChains.push_back(Copy);
      }
    }

  // Next, if the function has live ins that need to be copied into vregs,
  // emit the copies now, into the top of the block.
  MachineFunction &MF = SDL.DAG.getMachineFunction();
  if (MF.livein_begin() != MF.livein_end()) {
    SSARegMap *RegMap = MF.getSSARegMap();
    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
         E = MF.livein_end(); LI != E; ++LI)
      if (LI->second)
        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
                         LI->first, RegMap->getRegClass(LI->second));
  }
    
  // Finally, if the target has anything special to do, allow it to do so.
  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
}


void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
                                    FunctionLoweringInfo &FuncInfo) {
  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);

  std::vector<SDOperand> UnorderedChains;

  // Lower any arguments needed in this block if this is the entry block.
  if (LLVMBB == &LLVMBB->getParent()->front())
    LowerArguments(LLVMBB, SDL, UnorderedChains);

  BB = FuncInfo.MBBMap[LLVMBB];
  SDL.setCurrentBasicBlock(BB);

  // Lower all of the non-terminator instructions.
  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
       I != E; ++I)
    SDL.visit(*I);

  // Ensure that all instructions which are used outside of their defining
  // blocks are available as virtual registers.
  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
    if (!I->use_empty() && !isa<PHINode>(I)) {
      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
      if (VMI != FuncInfo.ValueMap.end())
        UnorderedChains.push_back(
                           CopyValueToVirtualRegister(SDL, I, VMI->second));
    }

  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
  // ensure constants are generated when needed.  Remember the virtual registers
  // that need to be added to the Machine PHI nodes as input.  We cannot just
  // directly add them, because expansion might result in multiple MBB's for one
  // BB.  As such, the start of the BB might correspond to a different MBB than
  // the end.
  //

  // Emit constants only once even if used by multiple PHI nodes.
  std::map<Constant*, unsigned> ConstantsOut;

  // Check successor nodes PHI nodes that expect a constant to be available from
  // this block.
  TerminatorInst *TI = LLVMBB->getTerminator();
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
    BasicBlock *SuccBB = TI->getSuccessor(succ);
    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
    PHINode *PN;

    // At this point we know that there is a 1-1 correspondence between LLVM PHI
    // nodes and Machine PHI nodes, but the incoming operands have not been
    // emitted yet.
    for (BasicBlock::iterator I = SuccBB->begin();
         (PN = dyn_cast<PHINode>(I)); ++I)
      if (!PN->use_empty()) {
        unsigned Reg;
        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
          unsigned &RegOut = ConstantsOut[C];
          if (RegOut == 0) {
            RegOut = FuncInfo.CreateRegForValue(C);
            UnorderedChains.push_back(
                             CopyValueToVirtualRegister(SDL, C, RegOut));
          }
          Reg = RegOut;
        } else {
          Reg = FuncInfo.ValueMap[PHIOp];
          if (Reg == 0) {
            assert(isa<AllocaInst>(PHIOp) &&
                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
                   "Didn't codegen value into a register!??");
            Reg = FuncInfo.CreateRegForValue(PHIOp);
            UnorderedChains.push_back(
                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
          }
        }

        // Remember that this register needs to added to the machine PHI node as
        // the input for this MBB.
        unsigned NumElements =
          TLI.getNumElements(TLI.getValueType(PN->getType()));
        for (unsigned i = 0, e = NumElements; i != e; ++i)
          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
      }
  }
  ConstantsOut.clear();

  // Turn all of the unordered chains into one factored node.
  if (!UnorderedChains.empty()) {
    UnorderedChains.push_back(SDL.getRoot());
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
  }

  // Lower the terminator after the copies are emitted.
  SDL.visit(*LLVMBB->getTerminator());

  // Make sure the root of the DAG is up-to-date.
  DAG.setRoot(SDL.getRoot());
}

void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
                                        FunctionLoweringInfo &FuncInfo) {
  SelectionDAG DAG(TLI, MF);
  CurDAG = &DAG;
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;

  // First step, lower LLVM code to some DAG.  This DAG may use operations and
  // types that are not supported by the target.
  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);

  // Run the DAG combiner in pre-legalize mode.
  DAG.Combine(false);
  
  DEBUG(std::cerr << "Lowered selection DAG:\n");
  DEBUG(DAG.dump());

  // Second step, hack on the DAG until it only uses operations and types that
  // the target supports.
  DAG.Legalize();

  DEBUG(std::cerr << "Legalized selection DAG:\n");
  DEBUG(DAG.dump());

  // Run the DAG combiner in post-legalize mode.
  DAG.Combine(true);
  
  if (ViewDAGs) DAG.viewGraph();
  
  // Third, instruction select all of the operations to machine code, adding the
  // code to the MachineBasicBlock.
  InstructionSelectBasicBlock(DAG);

  DEBUG(std::cerr << "Selected machine code:\n");
  DEBUG(BB->dump());

  // Next, now that we know what the last MBB the LLVM BB expanded is, update
  // PHI nodes in successors.
  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
    MachineInstr *PHI = PHINodesToUpdate[i].first;
    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
           "This is not a machine PHI node that we are updating!");
    PHI->addRegOperand(PHINodesToUpdate[i].second);
    PHI->addMachineBasicBlockOperand(BB);
  }

  // Finally, add the CFG edges from the last selected MBB to the successor
  // MBBs.
  TerminatorInst *TI = LLVMBB->getTerminator();
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
    BB->addSuccessor(Succ0MBB);
  }
}