llvm.org GIT mirror llvm / release_16 lib / CodeGen / SelectionDAG / ScheduleDAG.cpp
release_16

Tree @release_16 (Download .tar.gz)

ScheduleDAG.cpp @release_16raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by James M. Laskey and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a simple two pass scheduler.  The first pass attempts to push
// backward any lengthy instructions and critical paths.  The second pass packs
// instructions into semi-optimal time slots.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <iostream>
using namespace llvm;

namespace {
  // Style of scheduling to use.
  enum ScheduleChoices {
    noScheduling,
    simpleScheduling,
  };
} // namespace

cl::opt<ScheduleChoices> ScheduleStyle("sched",
  cl::desc("Choose scheduling style"),
  cl::init(noScheduling),
  cl::values(
    clEnumValN(noScheduling, "none",
              "Trivial emission with no analysis"),
    clEnumValN(simpleScheduling, "simple",
              "Minimize critical path and maximize processor utilization"),
   clEnumValEnd));


#ifndef NDEBUG
static cl::opt<bool>
ViewDAGs("view-sched-dags", cl::Hidden,
         cl::desc("Pop up a window to show sched dags as they are processed"));
#else
static const bool ViewDAGs = 0;
#endif

namespace {
//===----------------------------------------------------------------------===//
///
/// BitsIterator - Provides iteration through individual bits in a bit vector.
///
template<class T>
class BitsIterator {
private:
  T Bits;                               // Bits left to iterate through

public:
  /// Ctor.
  BitsIterator(T Initial) : Bits(Initial) {}
  
  /// Next - Returns the next bit set or zero if exhausted.
  inline T Next() {
    // Get the rightmost bit set
    T Result = Bits & -Bits;
    // Remove from rest
    Bits &= ~Result;
    // Return single bit or zero
    return Result;
  }
};
  
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
///
/// ResourceTally - Manages the use of resources over time intervals.  Each
/// item (slot) in the tally vector represents the resources used at a given
/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
/// available.  An assumption is made that the tally is large enough to schedule 
/// all current instructions (asserts otherwise.)
///
template<class T>
class ResourceTally {
private:
  std::vector<T> Tally;                 // Resources used per slot
  typedef typename std::vector<T>::iterator Iter;
                                        // Tally iterator 
  
  /// AllInUse - Test to see if all of the resources in the slot are busy (set.)
  inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
    return (*Cursor & ResourceSet) == ResourceSet;
  }

  /// Skip - Skip over slots that use all of the specified resource (all are
  /// set.)
  Iter Skip(Iter Cursor, unsigned ResourceSet) {
    assert(ResourceSet && "At least one resource bit needs to bet set");
    
    // Continue to the end
    while (true) {
      // Break out if one of the resource bits is not set
      if (!AllInUse(Cursor, ResourceSet)) return Cursor;
      // Try next slot
      Cursor++;
      assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
    }
  }
  
  /// FindSlots - Starting from Begin, locate N consecutive slots where at least 
  /// one of the resource bits is available.  Returns the address of first slot.
  Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
                                         unsigned &Resource) {
    // Track position      
    Iter Cursor = Begin;
    
    // Try all possible slots forward
    while (true) {
      // Skip full slots
      Cursor = Skip(Cursor, ResourceSet);
      // Determine end of interval
      Iter End = Cursor + N;
      assert(End <= Tally.end() && "Tally is not large enough for schedule");
      
      // Iterate thru each resource
      BitsIterator<T> Resources(ResourceSet & ~*Cursor);
      while (unsigned Res = Resources.Next()) {
        // Check if resource is available for next N slots
        // Break out if resource is busy
        Iter Interval = Cursor;
        for (; Interval < End && !(*Interval & Res); Interval++) {}
        
        // If available for interval, return where and which resource
        if (Interval == End) {
          Resource = Res;
          return Cursor;
        }
        // Otherwise, check if worth checking other resources
        if (AllInUse(Interval, ResourceSet)) {
          // Start looking beyond interval
          Cursor = Interval;
          break;
        }
      }
      Cursor++;
    }
  }
  
  /// Reserve - Mark busy (set) the specified N slots.
  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
    // Determine end of interval
    Iter End = Begin + N;
    assert(End <= Tally.end() && "Tally is not large enough for schedule");
 
    // Set resource bit in each slot
    for (; Begin < End; Begin++)
      *Begin |= Resource;
  }

public:
  /// Initialize - Resize and zero the tally to the specified number of time
  /// slots.
  inline void Initialize(unsigned N) {
    Tally.assign(N, 0);   // Initialize tally to all zeros.
  }
  
  // FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
  // ResourceSet for choices.
  unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
    // Which resource used
    unsigned Resource;
    // Find slots for instruction.
    Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
    // Reserve the slots
    Reserve(Where, N, Resource);
    // Return time slot (index)
    return Where - Tally.begin();
  }

};
//===----------------------------------------------------------------------===//

// Forward
class NodeInfo;
typedef NodeInfo *NodeInfoPtr;
typedef std::vector<NodeInfoPtr>           NIVector;
typedef std::vector<NodeInfoPtr>::iterator NIIterator;

//===----------------------------------------------------------------------===//
///
/// Node group -  This struct is used to manage flagged node groups.
///
class NodeGroup {
private:
  NIVector      Members;                // Group member nodes
  int           Pending;                // Number of visits pending before
                                        //    adding to order  

public:
  // Ctor.
  NodeGroup() : Pending(0) {}
  
  // Accessors
  inline NodeInfo *getLeader() {
    return Members.empty() ? NULL : Members.front();
  }
  inline int getPending() const { return Pending; }
  inline void setPending(int P)  { Pending = P; }
  inline int addPending(int I)  { return Pending += I; }
  
  // Pass thru
  inline bool group_empty() { return Members.empty(); }
  inline NIIterator group_begin() { return Members.begin(); }
  inline NIIterator group_end() { return Members.end(); }
  inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); }
  inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
    return Members.insert(Pos, NI);
  }
  inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) {
    Members.insert(Pos, First, Last);
  }

  static void Add(NodeInfo *D, NodeInfo *U);
  static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
///
/// NodeInfo - This struct tracks information used to schedule the a node.
///
class NodeInfo {
private:
  int           Pending;                // Number of visits pending before
                                        //    adding to order
public:
  SDNode        *Node;                  // DAG node
  unsigned      Latency;                // Cycles to complete instruction
  unsigned      ResourceSet;            // Bit vector of usable resources
  bool          IsCall;                 // Is function call
  unsigned      Slot;                   // Node's time slot
  NodeGroup     *Group;                 // Grouping information
  unsigned      VRBase;                 // Virtual register base
#ifndef NDEBUG
  unsigned      Preorder;               // Index before scheduling
#endif

  // Ctor.
  NodeInfo(SDNode *N = NULL)
  : Pending(0)
  , Node(N)
  , Latency(0)
  , ResourceSet(0)
  , IsCall(false)
  , Slot(0)
  , Group(NULL)
  , VRBase(0)
#ifndef NDEBUG
  , Preorder(0)
#endif
  {}
  
  // Accessors
  inline bool isInGroup() const {
    assert(!Group || !Group->group_empty() && "Group with no members");
    return Group != NULL;
  }
  inline bool isGroupLeader() const {
     return isInGroup() && Group->getLeader() == this;
  }
  inline int getPending() const {
    return Group ? Group->getPending() : Pending;
  }
  inline void setPending(int P) {
    if (Group) Group->setPending(P);
    else       Pending = P;
  }
  inline int addPending(int I) {
    if (Group) return Group->addPending(I);
    else       return Pending += I;
  }
};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
///
/// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
/// If the node is in a group then iterate over the members of the group,
/// otherwise just the node info.
///
class NodeGroupIterator {
private:
  NodeInfo   *NI;                       // Node info
  NIIterator NGI;                       // Node group iterator
  NIIterator NGE;                       // Node group iterator end
  
public:
  // Ctor.
  NodeGroupIterator(NodeInfo *N) : NI(N) {
    // If the node is in a group then set up the group iterator.  Otherwise
    // the group iterators will trip first time out.
    if (N->isInGroup()) {
      // get Group
      NodeGroup *Group = NI->Group;
      NGI = Group->group_begin();
      NGE = Group->group_end();
      // Prevent this node from being used (will be in members list
      NI = NULL;
    }
  }
  
  /// next - Return the next node info, otherwise NULL.
  ///
  NodeInfo *next() {
    // If members list
    if (NGI != NGE) return *NGI++;
    // Use node as the result (may be NULL)
    NodeInfo *Result = NI;
    // Only use once
    NI = NULL;
    // Return node or NULL
    return Result;
  }
};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
///
/// NodeGroupOpIterator - Iterates over all the operands of a node.  If the node
/// is a member of a group, this iterates over all the operands of all the
/// members of the group.
///
class NodeGroupOpIterator {
private:
  NodeInfo            *NI;              // Node containing operands
  NodeGroupIterator   GI;               // Node group iterator
  SDNode::op_iterator OI;               // Operand iterator
  SDNode::op_iterator OE;               // Operand iterator end
  
  /// CheckNode - Test if node has more operands.  If not get the next node
  /// skipping over nodes that have no operands.
  void CheckNode() {
    // Only if operands are exhausted first
    while (OI == OE) {
      // Get next node info
      NodeInfo *NI = GI.next();
      // Exit if nodes are exhausted
      if (!NI) return;
      // Get node itself
      SDNode *Node = NI->Node;
      // Set up the operand iterators
      OI = Node->op_begin();
      OE = Node->op_end();
    }
  }
  
public:
  // Ctor.
  NodeGroupOpIterator(NodeInfo *N) : NI(N), GI(N) {}
  
  /// isEnd - Returns true when not more operands are available.
  ///
  inline bool isEnd() { CheckNode(); return OI == OE; }
  
  /// next - Returns the next available operand.
  ///
  inline SDOperand next() {
    assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
    return *OI++;
  }
};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
///
/// SimpleSched - Simple two pass scheduler.
///
class SimpleSched {
private:
  // TODO - get ResourceSet from TII
  enum {
    RSInteger = 0x3,                    // Two integer units
    RSFloat = 0xC,                      // Two float units
    RSLoadStore = 0x30,                 // Two load store units
    RSBranch = 0x400,                   // One branch unit
    RSOther = 0                         // Processing unit independent
  };
  
  MachineBasicBlock *BB;                // Current basic block
  SelectionDAG &DAG;                    // DAG of the current basic block
  const TargetMachine &TM;              // Target processor
  const TargetInstrInfo &TII;           // Target instruction information
  const MRegisterInfo &MRI;             // Target processor register information
  SSARegMap *RegMap;                    // Virtual/real register map
  MachineConstantPool *ConstPool;       // Target constant pool
  unsigned NodeCount;                   // Number of nodes in DAG
  NodeInfo *Info;                       // Info for nodes being scheduled
  std::map<SDNode *, NodeInfo *> Map;   // Map nodes to info
  NIVector Ordering;                    // Emit ordering of nodes
  ResourceTally<unsigned> Tally;        // Resource usage tally
  unsigned NSlots;                      // Total latency
  static const unsigned NotFound = ~0U; // Search marker
  
public:

  // Ctor.
  SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
    : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
      MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
      ConstPool(BB->getParent()->getConstantPool()),
      NodeCount(0), Info(NULL), Map(), Tally(), NSlots(0) {
    assert(&TII && "Target doesn't provide instr info?");
    assert(&MRI && "Target doesn't provide register info?");
  }
  
  // Run - perform scheduling.
  MachineBasicBlock *Run() {
    Schedule();
    return BB;
  }
  
private:
  /// getNI - Returns the node info for the specified node.
  ///
  inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
  
  /// getVR - Returns the virtual register number of the node.
  ///
  inline unsigned getVR(SDOperand Op) {
    NodeInfo *NI = getNI(Op.Val);
    assert(NI->VRBase != 0 && "Node emitted out of order - late");
    return NI->VRBase + Op.ResNo;
  }

  static bool isFlagDefiner(SDNode *A);
  static bool isFlagUser(SDNode *A);
  static bool isDefiner(NodeInfo *A, NodeInfo *B);
  static bool isPassiveNode(SDNode *Node);
  void IncludeNode(NodeInfo *NI);
  void VisitAll();
  void Schedule();
  void IdentifyGroups();
  void GatherSchedulingInfo();
  void PrepareNodeInfo();
  bool isStrongDependency(NodeInfo *A, NodeInfo *B);
  bool isWeakDependency(NodeInfo *A, NodeInfo *B);
  void ScheduleBackward();
  void ScheduleForward();
  void EmitAll();
  void EmitNode(NodeInfo *NI);
  static unsigned CountResults(SDNode *Node);
  static unsigned CountOperands(SDNode *Node);
  unsigned CreateVirtualRegisters(MachineInstr *MI,
                                  unsigned NumResults,
                                  const TargetInstrDescriptor &II);

  void printChanges(unsigned Index);
  void printSI(std::ostream &O, NodeInfo *NI) const;
  void print(std::ostream &O) const;
  inline void dump(const char *tag) const { std::cerr << tag; dump(); }
  void dump() const;
};
//===----------------------------------------------------------------------===//

} // namespace

//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
/// Add - Adds a definer and user pair to a node group.
///
void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
  // Get current groups
  NodeGroup *DGroup = D->Group;
  NodeGroup *UGroup = U->Group;
  // If both are members of groups
  if (DGroup && UGroup) {
    // There may have been another edge connecting 
    if (DGroup == UGroup) return;
    // Add the pending users count
    DGroup->addPending(UGroup->getPending());
    // For each member of the users group
    NodeGroupIterator UNGI(U);
    while (NodeInfo *UNI = UNGI.next() ) {
      // Change the group
      UNI->Group = DGroup;
      // For each member of the definers group
      NodeGroupIterator DNGI(D);
      while (NodeInfo *DNI = DNGI.next() ) {
        // Remove internal edges
        DGroup->addPending(-CountInternalUses(DNI, UNI));
      }
    }
    // Merge the two lists
    DGroup->group_insert(DGroup->group_end(),
                         UGroup->group_begin(), UGroup->group_end());
  } else if (DGroup) {
    // Make user member of definers group
    U->Group = DGroup;
    // Add users uses to definers group pending
    DGroup->addPending(U->Node->use_size());
    // For each member of the definers group
    NodeGroupIterator DNGI(D);
    while (NodeInfo *DNI = DNGI.next() ) {
      // Remove internal edges
      DGroup->addPending(-CountInternalUses(DNI, U));
    }
    DGroup->group_push_back(U);
  } else if (UGroup) {
    // Make definer member of users group
    D->Group = UGroup;
    // Add definers uses to users group pending
    UGroup->addPending(D->Node->use_size());
    // For each member of the users group
    NodeGroupIterator UNGI(U);
    while (NodeInfo *UNI = UNGI.next() ) {
      // Remove internal edges
      UGroup->addPending(-CountInternalUses(D, UNI));
    }
    UGroup->group_insert(UGroup->group_begin(), D);
  } else {
    D->Group = U->Group = DGroup = new NodeGroup();
    DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
                       CountInternalUses(D, U));
    DGroup->group_push_back(D);
    DGroup->group_push_back(U);
  }
}

/// CountInternalUses - Returns the number of edges between the two nodes.
///
unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
  unsigned N = 0;
  for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
    SDOperand Op = U->Node->getOperand(M);
    if (Op.Val == D->Node) N++;
  }

  return N;
}
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
/// isFlagDefiner - Returns true if the node defines a flag result.
bool SimpleSched::isFlagDefiner(SDNode *A) {
  unsigned N = A->getNumValues();
  return N && A->getValueType(N - 1) == MVT::Flag;
}

/// isFlagUser - Returns true if the node uses a flag result.
///
bool SimpleSched::isFlagUser(SDNode *A) {
  unsigned N = A->getNumOperands();
  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
}

/// isDefiner - Return true if node A is a definer for B.
///
bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
  // While there are A nodes
  NodeGroupIterator NII(A);
  while (NodeInfo *NI = NII.next()) {
    // Extract node
    SDNode *Node = NI->Node;
    // While there operands in nodes of B
    NodeGroupOpIterator NGOI(B);
    while (!NGOI.isEnd()) {
      SDOperand Op = NGOI.next();
      // If node from A defines a node in B
      if (Node == Op.Val) return true;
    }
  }
  return false;
}

/// isPassiveNode - Return true if the node is a non-scheduled leaf.
///
bool SimpleSched::isPassiveNode(SDNode *Node) {
  if (isa<ConstantSDNode>(Node))       return true;
  if (isa<RegisterSDNode>(Node))       return true;
  if (isa<GlobalAddressSDNode>(Node))  return true;
  if (isa<BasicBlockSDNode>(Node))     return true;
  if (isa<FrameIndexSDNode>(Node))     return true;
  if (isa<ConstantPoolSDNode>(Node))   return true;
  if (isa<ExternalSymbolSDNode>(Node)) return true;
  return false;
}

/// IncludeNode - Add node to NodeInfo vector.
///
void SimpleSched::IncludeNode(NodeInfo *NI) {
  // Get node
  SDNode *Node = NI->Node;
  // Ignore entry node
if (Node->getOpcode() == ISD::EntryToken) return;
  // Check current count for node
  int Count = NI->getPending();
  // If the node is already in list
  if (Count < 0) return;
  // Decrement count to indicate a visit
  Count--;
  // If count has gone to zero then add node to list
  if (!Count) {
    // Add node
    if (NI->isInGroup()) {
      Ordering.push_back(NI->Group->getLeader());
    } else {
      Ordering.push_back(NI);
    }
    // indicate node has been added
    Count--;
  }
  // Mark as visited with new count 
  NI->setPending(Count);
}

/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
/// Note that the ordering in the Nodes vector is reversed.
void SimpleSched::VisitAll() {
  // Add first element to list
  Ordering.push_back(getNI(DAG.getRoot().Val));
  
  // Iterate through all nodes that have been added
  for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
    // Visit all operands
    NodeGroupOpIterator NGI(Ordering[i]);
    while (!NGI.isEnd()) {
      // Get next operand
      SDOperand Op = NGI.next();
      // Get node
      SDNode *Node = Op.Val;
      // Ignore passive nodes
      if (isPassiveNode(Node)) continue;
      // Check out node
      IncludeNode(getNI(Node));
    }
  }

  // Add entry node last (IncludeNode filters entry nodes)
  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
    Ordering.push_back(getNI(DAG.getEntryNode().Val));
    
  // FIXME - Reverse the order
  for (unsigned i = 0, N = Ordering.size(), Half = N >> 1; i < Half; i++) {
    unsigned j = N - i - 1;
    NodeInfo *tmp = Ordering[i];
    Ordering[i] = Ordering[j];
    Ordering[j] = tmp;
  }
}

/// IdentifyGroups - Put flagged nodes into groups.
///
void SimpleSched::IdentifyGroups() {
  for (unsigned i = 0, N = NodeCount; i < N; i++) {
    NodeInfo* NI = &Info[i];
    SDNode *Node = NI->Node;

    // For each operand (in reverse to only look at flags)
    for (unsigned N = Node->getNumOperands(); 0 < N--;) {
      // Get operand
      SDOperand Op = Node->getOperand(N);
      // No more flags to walk
      if (Op.getValueType() != MVT::Flag) break;
      // Add to node group
      NodeGroup::Add(getNI(Op.Val), NI);
    }
  }
}

/// GatherSchedulingInfo - Get latency and resource information about each node.
///
void SimpleSched::GatherSchedulingInfo() {
  // Track if groups are present
  bool AreGroups = false;
  
  // For each node
  for (unsigned i = 0, N = NodeCount; i < N; i++) {
    // Get node info
    NodeInfo* NI = &Info[i];
    SDNode *Node = NI->Node;
    
    // Test for groups
    if (NI->isInGroup()) AreGroups = true;

    // FIXME: Pretend by using value type to choose metrics
    MVT::ValueType VT = Node->getValueType(0);
    
    // If machine opcode
    if (Node->isTargetOpcode()) {
      MachineOpCode TOpc = Node->getTargetOpcode();
      // FIXME: This is an ugly (but temporary!) hack to test the scheduler
      // before we have real target info.
      // FIXME NI->Latency = std::max(1, TII.maxLatency(TOpc));
      // FIXME NI->ResourceSet = TII.resources(TOpc);
      if (TII.isCall(TOpc)) {
        NI->ResourceSet = RSBranch;
        NI->Latency = 40;
        NI->IsCall = true;
      } else if (TII.isLoad(TOpc)) {
        NI->ResourceSet = RSLoadStore;
        NI->Latency = 5;
      } else if (TII.isStore(TOpc)) {
        NI->ResourceSet = RSLoadStore;
        NI->Latency = 2;
      } else if (MVT::isInteger(VT)) {
        NI->ResourceSet = RSInteger;
        NI->Latency = 2;
      } else if (MVT::isFloatingPoint(VT)) {
        NI->ResourceSet = RSFloat;
        NI->Latency = 3;
      } else {
        NI->ResourceSet = RSOther;
        NI->Latency = 0;
      }
    } else {
      if (MVT::isInteger(VT)) {
        NI->ResourceSet = RSInteger;
        NI->Latency = 2;
      } else if (MVT::isFloatingPoint(VT)) {
        NI->ResourceSet = RSFloat;
        NI->Latency = 3;
      } else {
        NI->ResourceSet = RSOther;
        NI->Latency = 0;
      }
    }
    
    // Add one slot for the instruction itself
    NI->Latency++;
    
    // Sum up all the latencies for max tally size
    NSlots += NI->Latency;
  }
  
  // Unify metrics if in a group
  if (AreGroups) {
    for (unsigned i = 0, N = NodeCount; i < N; i++) {
      NodeInfo* NI = &Info[i];
      
      if (NI->isGroupLeader()) {
        NodeGroup *Group = NI->Group;
        unsigned Latency = 0;
        unsigned MaxLat = 0;
        unsigned ResourceSet = 0;
        bool IsCall = false;
        
        for (NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
             NGI != NGE; NGI++) {
          NodeInfo* NGNI = *NGI;
          Latency += NGNI->Latency;
          IsCall = IsCall || NGNI->IsCall;
          
          if (MaxLat < NGNI->Latency) {
            MaxLat = NGNI->Latency;
            ResourceSet = NGNI->ResourceSet;
          }
          
          NGNI->Latency = 0;
          NGNI->ResourceSet = 0;
          NGNI->IsCall = false;
        }
        
        NI->Latency = Latency;
        NI->ResourceSet = ResourceSet;
        NI->IsCall = IsCall;
      }
    }
  }
}

/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
/// 
void SimpleSched::PrepareNodeInfo() {
  // Allocate node information
  Info = new NodeInfo[NodeCount];
  // Get base of all nodes table
  SelectionDAG::allnodes_iterator AllNodes = DAG.allnodes_begin();
  
  // For each node being scheduled
  for (unsigned i = 0, N = NodeCount; i < N; i++) {
    // Get next node from DAG all nodes table
    SDNode *Node = AllNodes[i];
    // Fast reference to node schedule info
    NodeInfo* NI = &Info[i];
    // Set up map
    Map[Node] = NI;
    // Set node
    NI->Node = Node;
    // Set pending visit count
    NI->setPending(Node->use_size());    
  }
}

/// isStrongDependency - Return true if node A has results used by node B. 
/// I.E., B must wait for latency of A.
bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
  // If A defines for B then it's a strong dependency
  return isDefiner(A, B);
}

/// isWeakDependency Return true if node A produces a result that will
/// conflict with operands of B.  It is assumed that we have called
/// isStrongDependency prior.
bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
  // TODO check for conflicting real registers and aliases
#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
  return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
#else
  return A->Node->getOpcode() == ISD::EntryToken;
#endif
}

/// ScheduleBackward - Schedule instructions so that any long latency
/// instructions and the critical path get pushed back in time. Time is run in
/// reverse to allow code reuse of the Tally and eliminate the overhead of
/// biasing every slot indices against NSlots.
void SimpleSched::ScheduleBackward() {
  // Size and clear the resource tally
  Tally.Initialize(NSlots);
  // Get number of nodes to schedule
  unsigned N = Ordering.size();
  
  // For each node being scheduled
  for (unsigned i = N; 0 < i--;) {
    NodeInfo *NI = Ordering[i];
    // Track insertion
    unsigned Slot = NotFound;
    
    // Compare against those previously scheduled nodes
    unsigned j = i + 1;
    for (; j < N; j++) {
      // Get following instruction
      NodeInfo *Other = Ordering[j];
      
      // Check dependency against previously inserted nodes
      if (isStrongDependency(NI, Other)) {
        Slot = Other->Slot + Other->Latency;
        break;
      } else if (isWeakDependency(NI, Other)) {
        Slot = Other->Slot;
        break;
      }
    }
    
    // If independent of others (or first entry)
    if (Slot == NotFound) Slot = 0;
    
    // Find a slot where the needed resources are available
    if (NI->ResourceSet)
      Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet);
      
    // Set node slot
    NI->Slot = Slot;
    
    // Insert sort based on slot
    j = i + 1;
    for (; j < N; j++) {
      // Get following instruction
      NodeInfo *Other = Ordering[j];
      // Should we look further (remember slots are in reverse time)
      if (Slot >= Other->Slot) break;
      // Shuffle other into ordering
      Ordering[j - 1] = Other;
    }
    // Insert node in proper slot
    if (j != i + 1) Ordering[j - 1] = NI;
  }
}

/// ScheduleForward - Schedule instructions to maximize packing.
///
void SimpleSched::ScheduleForward() {
  // Size and clear the resource tally
  Tally.Initialize(NSlots);
  // Get number of nodes to schedule
  unsigned N = Ordering.size();
  
  // For each node being scheduled
  for (unsigned i = 0; i < N; i++) {
    NodeInfo *NI = Ordering[i];
    // Track insertion
    unsigned Slot = NotFound;
    
    // Compare against those previously scheduled nodes
    unsigned j = i;
    for (; 0 < j--;) {
      // Get following instruction
      NodeInfo *Other = Ordering[j];
      
      // Check dependency against previously inserted nodes
      if (isStrongDependency(Other, NI)) {
        Slot = Other->Slot + Other->Latency;
        break;
      } else if (Other->IsCall || isWeakDependency(Other, NI)) {
        Slot = Other->Slot;
        break;
      }
    }
    
    // If independent of others (or first entry)
    if (Slot == NotFound) Slot = 0;
    
    // Find a slot where the needed resources are available
    if (NI->ResourceSet)
      Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet);
      
    // Set node slot
    NI->Slot = Slot;
    
    // Insert sort based on slot
    j = i;
    for (; 0 < j--;) {
      // Get prior instruction
      NodeInfo *Other = Ordering[j];
      // Should we look further
      if (Slot >= Other->Slot) break;
      // Shuffle other into ordering
      Ordering[j + 1] = Other;
    }
    // Insert node in proper slot
    if (j != i) Ordering[j + 1] = NI;
  }
}

/// EmitAll - Emit all nodes in schedule sorted order.
///
void SimpleSched::EmitAll() {
  // For each node in the ordering
  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
    // Get the scheduling info
    NodeInfo *NI = Ordering[i];
    // Iterate through nodes
    NodeGroupIterator NGI(Ordering[i]);
    if (NI->isInGroup()) {
      if (NI->isGroupLeader()) {
        NodeGroupIterator NGI(Ordering[i]);
        while (NodeInfo *NI = NGI.next()) EmitNode(NI);
      }
    } else {
      EmitNode(NI);
    }
  }
}

/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the machine instrs.)
unsigned SimpleSched::CountResults(SDNode *Node) {
  unsigned N = Node->getNumValues();
  while (N && Node->getValueType(N - 1) == MVT::Flag)
    --N;
  if (N && Node->getValueType(N - 1) == MVT::Other)
    --N;    // Skip over chain result.
  return N;
}

/// CountOperands  The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then flag operands.  Compute the
/// number of actual operands that  will go into the machine instr.
unsigned SimpleSched::CountOperands(SDNode *Node) {
  unsigned N = Node->getNumOperands();
  while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
    --N;
  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
    --N; // Ignore chain if it exists.
  return N;
}

/// CreateVirtualRegisters - Add result register values for things that are
/// defined by this instruction.
unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI,
                                             unsigned NumResults,
                                             const TargetInstrDescriptor &II) {
  // Create the result registers for this node and add the result regs to
  // the machine instruction.
  const TargetOperandInfo *OpInfo = II.OpInfo;
  unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
  MI->addRegOperand(ResultReg, MachineOperand::Def);
  for (unsigned i = 1; i != NumResults; ++i) {
    assert(OpInfo[i].RegClass && "Isn't a register operand!");
    MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass),
                      MachineOperand::Def);
  }
  return ResultReg;
}

/// EmitNode - Generate machine code for an node and needed dependencies.
///
void SimpleSched::EmitNode(NodeInfo *NI) {
  unsigned VRBase = 0;                 // First virtual register for node
  SDNode *Node = NI->Node;
  
  // If machine instruction
  if (Node->isTargetOpcode()) {
    unsigned Opc = Node->getTargetOpcode();
    const TargetInstrDescriptor &II = TII.get(Opc);

    unsigned NumResults = CountResults(Node);
    unsigned NodeOperands = CountOperands(Node);
    unsigned NumMIOperands = NodeOperands + NumResults;
#ifndef NDEBUG
    assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
           "#operands for dag node doesn't match .td file!"); 
#endif

    // Create the new machine instruction.
    MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
    
    // Add result register values for things that are defined by this
    // instruction.
    
    // If the node is only used by a CopyToReg and the dest reg is a vreg, use
    // the CopyToReg'd destination register instead of creating a new vreg.
    if (NumResults == 1) {
      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
           UI != E; ++UI) {
        SDNode *Use = *UI;
        if (Use->getOpcode() == ISD::CopyToReg && 
            Use->getOperand(2).Val == Node) {
          unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
          if (MRegisterInfo::isVirtualRegister(Reg)) {
            VRBase = Reg;
            MI->addRegOperand(Reg, MachineOperand::Def);
            break;
          }
        }
      }
    }
    
    // Otherwise, create new virtual registers.
    if (NumResults && VRBase == 0)
      VRBase = CreateVirtualRegisters(MI, NumResults, II);
    
    // Emit all of the actual operands of this instruction, adding them to the
    // instruction as appropriate.
    for (unsigned i = 0; i != NodeOperands; ++i) {
      if (Node->getOperand(i).isTargetOpcode()) {
        // Note that this case is redundant with the final else block, but we
        // include it because it is the most common and it makes the logic
        // simpler here.
        assert(Node->getOperand(i).getValueType() != MVT::Other &&
               Node->getOperand(i).getValueType() != MVT::Flag &&
               "Chain and flag operands should occur at end of operand list!");

        // Get/emit the operand.
        unsigned VReg = getVR(Node->getOperand(i));
        MI->addRegOperand(VReg, MachineOperand::Use);
        
        // Verify that it is right.
        assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
        assert(II.OpInfo[i+NumResults].RegClass &&
               "Don't have operand info for this instruction!");
        assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
               "Register class of operand and regclass of use don't agree!");
      } else if (ConstantSDNode *C =
                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
        MI->addZeroExtImm64Operand(C->getValue());
      } else if (RegisterSDNode*R =
                 dyn_cast<RegisterSDNode>(Node->getOperand(i))) {
        MI->addRegOperand(R->getReg(), MachineOperand::Use);
      } else if (GlobalAddressSDNode *TGA =
                       dyn_cast<GlobalAddressSDNode>(Node->getOperand(i))) {
        MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
      } else if (BasicBlockSDNode *BB =
                       dyn_cast<BasicBlockSDNode>(Node->getOperand(i))) {
        MI->addMachineBasicBlockOperand(BB->getBasicBlock());
      } else if (FrameIndexSDNode *FI =
                       dyn_cast<FrameIndexSDNode>(Node->getOperand(i))) {
        MI->addFrameIndexOperand(FI->getIndex());
      } else if (ConstantPoolSDNode *CP = 
                    dyn_cast<ConstantPoolSDNode>(Node->getOperand(i))) {
        unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
        MI->addConstantPoolIndexOperand(Idx);
      } else if (ExternalSymbolSDNode *ES = 
                 dyn_cast<ExternalSymbolSDNode>(Node->getOperand(i))) {
        MI->addExternalSymbolOperand(ES->getSymbol(), false);
      } else {
        assert(Node->getOperand(i).getValueType() != MVT::Other &&
               Node->getOperand(i).getValueType() != MVT::Flag &&
               "Chain and flag operands should occur at end of operand list!");
        unsigned VReg = getVR(Node->getOperand(i));
        MI->addRegOperand(VReg, MachineOperand::Use);
        
        // Verify that it is right.
        assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
        assert(II.OpInfo[i+NumResults].RegClass &&
               "Don't have operand info for this instruction!");
        assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
               "Register class of operand and regclass of use don't agree!");
      }
    }
    
    // Now that we have emitted all operands, emit this instruction itself.
    if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
      BB->insert(BB->end(), MI);
    } else {
      // Insert this instruction into the end of the basic block, potentially
      // taking some custom action.
      BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
    }
  } else {
    switch (Node->getOpcode()) {
    default:
      Node->dump(); 
      assert(0 && "This target-independent node should have been selected!");
    case ISD::EntryToken: // fall thru
    case ISD::TokenFactor:
      break;
    case ISD::CopyToReg: {
      unsigned InReg = getVR(Node->getOperand(2));
      unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
      if (InReg != DestReg)   // Coallesced away the copy?
        MRI.copyRegToReg(*BB, BB->end(), DestReg, InReg,
                         RegMap->getRegClass(InReg));
      break;
    }
    case ISD::CopyFromReg: {
      unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
      if (MRegisterInfo::isVirtualRegister(SrcReg)) {
        VRBase = SrcReg;  // Just use the input register directly!
        break;
      }

      // If the node is only used by a CopyToReg and the dest reg is a vreg, use
      // the CopyToReg'd destination register instead of creating a new vreg.
      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
           UI != E; ++UI) {
        SDNode *Use = *UI;
        if (Use->getOpcode() == ISD::CopyToReg && 
            Use->getOperand(2).Val == Node) {
          unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
          if (MRegisterInfo::isVirtualRegister(DestReg)) {
            VRBase = DestReg;
            break;
          }
        }
      }

      // Figure out the register class to create for the destreg.
      const TargetRegisterClass *TRC = 0;
      if (VRBase) {
        TRC = RegMap->getRegClass(VRBase);
      } else {

        // Pick the register class of the right type that contains this physreg.
        for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
             E = MRI.regclass_end(); I != E; ++I)
          if ((*I)->getType() == Node->getValueType(0) &&
              (*I)->contains(SrcReg)) {
            TRC = *I;
            break;
          }
        assert(TRC && "Couldn't find register class for reg copy!");
      
        // Create the reg, emit the copy.
        VRBase = RegMap->createVirtualRegister(TRC);
      }
      MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
      break;
    }
    }
  }

  assert(NI->VRBase == 0 && "Node emitted out of order - early");
  NI->VRBase = VRBase;
}

/// Schedule - Order nodes according to selected style.
///
void SimpleSched::Schedule() {
  // Number the nodes
  NodeCount = DAG.allnodes_size();
  // Set up minimum info for scheduling.
  PrepareNodeInfo();
  // Construct node groups for flagged nodes
  IdentifyGroups();
  // Breadth first walk of DAG
  VisitAll();

#ifndef NDEBUG
  static unsigned Count = 0;
  Count++;
  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
    NodeInfo *NI = Ordering[i];
    NI->Preorder = i;
  }
#endif  
  
  // Don't waste time if is only entry and return
  if (NodeCount > 3 && ScheduleStyle != noScheduling) {
    // Get latency and resource requirements
    GatherSchedulingInfo();
    
    // Push back long instructions and critical path
    ScheduleBackward();
    
    // Pack instructions to maximize resource utilization
    ScheduleForward();
  }
  
  DEBUG(printChanges(Count));
  
  // Emit in scheduled order
  EmitAll();
}

/// printChanges - Hilight changes in order caused by scheduling.
///
void SimpleSched::printChanges(unsigned Index) {
#ifndef NDEBUG
  // Get the ordered node count
  unsigned N = Ordering.size();
  // Determine if any changes
  unsigned i = 0;
  for (; i < N; i++) {
    NodeInfo *NI = Ordering[i];
    if (NI->Preorder != i) break;
  }
  
  if (i < N) {
    std::cerr << Index << ". New Ordering\n";
    
    for (i = 0; i < N; i++) {
      NodeInfo *NI = Ordering[i];
      std::cerr << "  " << NI->Preorder << ". ";
      printSI(std::cerr, NI);
      std::cerr << "\n";
      if (NI->isGroupLeader()) {
        NodeGroup *Group = NI->Group;
        for (NIIterator NII = Group->group_begin(), E = Group->group_end();
             NII != E; NII++) {
          std::cerr << "          ";
          printSI(std::cerr, *NII);
          std::cerr << "\n";
        }
      }
    }
  } else {
    std::cerr << Index << ". No Changes\n";
  }
#endif
}

/// printSI - Print schedule info.
///
void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
#ifndef NDEBUG
  SDNode *Node = NI->Node;
  O << " "
    << std::hex << Node << std::dec
    << ", RS=" << NI->ResourceSet
    << ", Lat=" << NI->Latency
    << ", Slot=" << NI->Slot
    << ", ARITY=(" << Node->getNumOperands() << ","
                   << Node->getNumValues() << ")"
    << " " << Node->getOperationName(&DAG);
  if (isFlagDefiner(Node)) O << "<#";
  if (isFlagUser(Node)) O << ">#";
#endif
}

/// print - Print ordering to specified output stream.
///
void SimpleSched::print(std::ostream &O) const {
#ifndef NDEBUG
  using namespace std;
  O << "Ordering\n";
  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
    NodeInfo *NI = Ordering[i];
    printSI(O, NI);
    O << "\n";
    if (NI->isGroupLeader()) {
      NodeGroup *Group = NI->Group;
      for (NIIterator NII = Group->group_begin(), E = Group->group_end();
           NII != E; NII++) {
        O << "    ";
        printSI(O, *NII);
        O << "\n";
      }
    }
  }
#endif
}

/// dump - Print ordering to std::cerr.
///
void SimpleSched::dump() const {
  print(std::cerr);
}
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
  if (ViewDAGs) SD.viewGraph();
  BB = SimpleSched(SD, BB).Run();  
}