llvm.org GIT mirror llvm / release_1 lib / Target / X86 / X86ISelSimple.cpp
release_1

Tree @release_1 (Download .tar.gz)

X86ISelSimple.cpp @release_1raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines a simple peephole instruction selector for the x86 target
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"

/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block.  This is the version for when you
/// have a destination register in mind.
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator &I,
                                      int Opcode, unsigned NumOperands,
                                      unsigned DestReg) {
  assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
  I = MBB->insert(I, MI)+1;
  return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
}

/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block.
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator &I,
                                      int Opcode, unsigned NumOperands) {
  assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
  I = MBB->insert(I, MI)+1;
  return MachineInstrBuilder(MI);
}


namespace {
  struct ISel : public FunctionPass, InstVisitor<ISel> {
    TargetMachine &TM;
    MachineFunction *F;                 // The function we are compiling into
    MachineBasicBlock *BB;              // The current MBB we are compiling
    int VarArgsFrameIndex;              // FrameIndex for start of varargs area

    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs

    // MBBMap - Mapping between LLVM BB -> Machine BB
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;

    ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}

    /// runOnFunction - Top level implementation of instruction selection for
    /// the entire function.
    ///
    bool runOnFunction(Function &Fn) {
      F = &MachineFunction::construct(&Fn, TM);

      // Create all of the machine basic blocks for the function...
      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));

      BB = &F->front();

      // Copy incoming arguments off of the stack...
      LoadArgumentsToVirtualRegs(Fn);

      // Instruction select everything except PHI nodes
      visit(Fn);

      // Select the PHI nodes
      SelectPHINodes();

      RegMap.clear();
      MBBMap.clear();
      F = 0;
      // We always build a machine code representation for the function
      return true;
    }

    virtual const char *getPassName() const {
      return "X86 Simple Instruction Selection";
    }

    /// visitBasicBlock - This method is called when we are visiting a new basic
    /// block.  This simply creates a new MachineBasicBlock to emit code into
    /// and adds it to the current MachineFunction.  Subsequent visit* for
    /// instructions will be invoked for all instructions in the basic block.
    ///
    void visitBasicBlock(BasicBlock &LLVM_BB) {
      BB = MBBMap[&LLVM_BB];
    }

    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
    /// from the stack into virtual registers.
    ///
    void LoadArgumentsToVirtualRegs(Function &F);

    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
    /// because we have to generate our sources into the source basic blocks,
    /// not the current one.
    ///
    void SelectPHINodes();

    // Visitation methods for various instructions.  These methods simply emit
    // fixed X86 code for each instruction.
    //

    // Control flow operators
    void visitReturnInst(ReturnInst &RI);
    void visitBranchInst(BranchInst &BI);

    struct ValueRecord {
      Value *Val;
      unsigned Reg;
      const Type *Ty;
      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
    };
    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
                const std::vector<ValueRecord> &Args);
    void visitCallInst(CallInst &I);
    void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);

    // Arithmetic operators
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
                    unsigned DestReg, const Type *DestTy,
                    unsigned Op0Reg, unsigned Op1Reg);
    void doMultiplyConst(MachineBasicBlock *MBB, 
                         MachineBasicBlock::iterator &MBBI,
                         unsigned DestReg, const Type *DestTy,
                         unsigned Op0Reg, unsigned Op1Val);
    void visitMul(BinaryOperator &B);

    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
    void visitDivRem(BinaryOperator &B);

    // Bitwise operators
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }

    // Comparison operators...
    void visitSetCondInst(SetCondInst &I);
    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
                            MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator &MBBI);
    
    // Memory Instructions
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitGetElementPtrInst(GetElementPtrInst &I);
    void visitAllocaInst(AllocaInst &I);
    void visitMallocInst(MallocInst &I);
    void visitFreeInst(FreeInst &I);
    
    // Other operators
    void visitShiftInst(ShiftInst &I);
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
    void visitCastInst(CastInst &I);
    void visitVANextInst(VANextInst &I);
    void visitVAArgInst(VAArgInst &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "Cannot instruction select: " << I;
      abort();
    }

    /// promote32 - Make a value 32-bits wide, and put it somewhere.
    ///
    void promote32(unsigned targetReg, const ValueRecord &VR);

    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
    /// constant expression GEP support.
    ///
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
                          Value *Src, User::op_iterator IdxBegin,
                          User::op_iterator IdxEnd, unsigned TargetReg);

    /// emitCastOperation - Common code shared between visitCastInst and
    /// constant expression cast support.
    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
                           Value *Src, const Type *DestTy, unsigned TargetReg);

    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
    /// and constant expression support.
    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
                                   MachineBasicBlock::iterator &IP,
                                   Value *Op0, Value *Op1,
                                   unsigned OperatorClass, unsigned TargetReg);

    void emitDivRemOperation(MachineBasicBlock *BB,
                             MachineBasicBlock::iterator &IP,
                             unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
                             const Type *Ty, unsigned TargetReg);

    /// emitSetCCOperation - Common code shared between visitSetCondInst and
    /// constant expression support.
    void emitSetCCOperation(MachineBasicBlock *BB,
                            MachineBasicBlock::iterator &IP,
                            Value *Op0, Value *Op1, unsigned Opcode,
                            unsigned TargetReg);
 

    /// copyConstantToRegister - Output the instructions required to put the
    /// specified constant into the specified register.
    ///
    void copyConstantToRegister(MachineBasicBlock *MBB,
                                MachineBasicBlock::iterator &MBBI,
                                Constant *C, unsigned Reg);

    /// makeAnotherReg - This method returns the next register number we haven't
    /// yet used.
    ///
    /// Long values are handled somewhat specially.  They are always allocated
    /// as pairs of 32 bit integer values.  The register number returned is the
    /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
    /// of the long value.
    ///
    unsigned makeAnotherReg(const Type *Ty) {
      assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
             "Current target doesn't have X86 reg info??");
      const X86RegisterInfo *MRI =
        static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
        const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
        // Create the lower part
        F->getSSARegMap()->createVirtualRegister(RC);
        // Create the upper part.
        return F->getSSARegMap()->createVirtualRegister(RC)-1;
      }

      // Add the mapping of regnumber => reg class to MachineFunction
      const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
      return F->getSSARegMap()->createVirtualRegister(RC);
    }

    /// getReg - This method turns an LLVM value into a register number.  This
    /// is guaranteed to produce the same register number for a particular value
    /// every time it is queried.
    ///
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
    unsigned getReg(Value *V) {
      // Just append to the end of the current bb.
      MachineBasicBlock::iterator It = BB->end();
      return getReg(V, BB, It);
    }
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator &IPt) {
      unsigned &Reg = RegMap[V];
      if (Reg == 0) {
        Reg = makeAnotherReg(V->getType());
        RegMap[V] = Reg;
      }

      // If this operand is a constant, emit the code to copy the constant into
      // the register here...
      //
      if (Constant *C = dyn_cast<Constant>(V)) {
        copyConstantToRegister(MBB, IPt, C, Reg);
        RegMap.erase(V);  // Assign a new name to this constant if ref'd again
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
        // Move the address of the global into the register
        BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
        RegMap.erase(V);  // Assign a new name to this address if ref'd again
      }

      return Reg;
    }
  };
}

/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
/// Representation.
///
enum TypeClass {
  cByte, cShort, cInt, cFP, cLong
};

/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
  switch (Ty->getPrimitiveID()) {
  case Type::SByteTyID:
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
  case Type::ShortTyID:
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
  case Type::IntTyID:
  case Type::UIntTyID:
  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2

  case Type::FloatTyID:
  case Type::DoubleTyID:  return cFP;        // Floating Point is #3

  case Type::LongTyID:
  case Type::ULongTyID:   return cLong;      // Longs are class #4
  default:
    assert(0 && "Invalid type to getClass!");
    return cByte;  // not reached
  }
}

// getClassB - Just like getClass, but treat boolean values as bytes.
static inline TypeClass getClassB(const Type *Ty) {
  if (Ty == Type::BoolTy) return cByte;
  return getClass(Ty);
}


/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
                                  MachineBasicBlock::iterator &IP,
                                  Constant *C, unsigned R) {
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    unsigned Class = 0;
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
      emitGEPOperation(MBB, IP, CE->getOperand(0),
                       CE->op_begin()+1, CE->op_end(), R);
      return;
    case Instruction::Cast:
      emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
      return;

    case Instruction::Xor: ++Class; // FALL THROUGH
    case Instruction::Or:  ++Class; // FALL THROUGH
    case Instruction::And: ++Class; // FALL THROUGH
    case Instruction::Sub: ++Class; // FALL THROUGH
    case Instruction::Add:
      emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                                Class, R);
      return;

    case Instruction::Mul: {
      unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
      unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
      doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
      return;
    }
    case Instruction::Div:
    case Instruction::Rem: {
      unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
      unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
      emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
                          CE->getOpcode() == Instruction::Div,
                          CE->getType(), R);
      return;
    }

    case Instruction::SetNE:
    case Instruction::SetEQ:
    case Instruction::SetLT:
    case Instruction::SetGT:
    case Instruction::SetLE:
    case Instruction::SetGE:
      emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                         CE->getOpcode(), R);
      return;

    default:
      std::cerr << "Offending expr: " << C << "\n";
      assert(0 && "Constant expression not yet handled!\n");
    }
  }

  if (C->getType()->isIntegral()) {
    unsigned Class = getClassB(C->getType());

    if (Class == cLong) {
      // Copy the value into the register pair.
      uint64_t Val = cast<ConstantInt>(C)->getRawValue();
      BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
      BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
      return;
    }

    assert(Class <= cInt && "Type not handled yet!");

    static const unsigned IntegralOpcodeTab[] = {
      X86::MOVir8, X86::MOVir16, X86::MOVir32
    };

    if (C->getType() == Type::BoolTy) {
      BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
    } else {
      ConstantInt *CI = cast<ConstantInt>(C);
      BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
    }
  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    double Value = CFP->getValue();
    if (Value == +0.0)
      BMI(MBB, IP, X86::FLD0, 0, R);
    else if (Value == +1.0)
      BMI(MBB, IP, X86::FLD1, 0, R);
    else {
      // Otherwise we need to spill the constant to memory...
      MachineConstantPool *CP = F->getConstantPool();
      unsigned CPI = CP->getConstantPoolIndex(CFP);
      const Type *Ty = CFP->getType();

      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
      unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
      addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
    }

  } else if (isa<ConstantPointerNull>(C)) {
    // Copy zero (null pointer) to the register.
    BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
    unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
    BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
  } else {
    std::cerr << "Offending constant: " << C << "\n";
    assert(0 && "Type not handled yet!");
  }
}

/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
/// the stack into virtual registers.
///
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
  // Emit instructions to load the arguments...  On entry to a function on the
  // X86, the stack frame looks like this:
  //
  // [ESP] -- return address
  // [ESP + 4] -- first argument (leftmost lexically)
  // [ESP + 8] -- second argument, if first argument is four bytes in size
  //    ... 
  //
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
  MachineFrameInfo *MFI = F->getFrameInfo();

  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
    unsigned Reg = getReg(*I);
    
    int FI;          // Frame object index
    switch (getClassB(I->getType())) {
    case cByte:
      FI = MFI->CreateFixedObject(1, ArgOffset);
      addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
      break;
    case cShort:
      FI = MFI->CreateFixedObject(2, ArgOffset);
      addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
      break;
    case cInt:
      FI = MFI->CreateFixedObject(4, ArgOffset);
      addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
      break;
    case cLong:
      FI = MFI->CreateFixedObject(8, ArgOffset);
      addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
      addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
      ArgOffset += 4;   // longs require 4 additional bytes
      break;
    case cFP:
      unsigned Opcode;
      if (I->getType() == Type::FloatTy) {
        Opcode = X86::FLDr32;
        FI = MFI->CreateFixedObject(4, ArgOffset);
      } else {
        Opcode = X86::FLDr64;
        FI = MFI->CreateFixedObject(8, ArgOffset);
        ArgOffset += 4;   // doubles require 4 additional bytes
      }
      addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
      break;
    default:
      assert(0 && "Unhandled argument type!");
    }
    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
  }

  // If the function takes variable number of arguments, add a frame offset for
  // the start of the first vararg value... this is used to expand
  // llvm.va_start.
  if (Fn.getFunctionType()->isVarArg())
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
}


/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void ISel::SelectPHINodes() {
  const TargetInstrInfo &TII = TM.getInstrInfo();
  const Function &LF = *F->getFunction();  // The LLVM function...
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
    const BasicBlock *BB = I;
    MachineBasicBlock *MBB = MBBMap[I];

    // Loop over all of the PHI nodes in the LLVM basic block...
    unsigned NumPHIs = 0;
    for (BasicBlock::const_iterator I = BB->begin();
         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {

      // Create a new machine instr PHI node, and insert it.
      unsigned PHIReg = getReg(*PN);
      MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
      MBB->insert(MBB->begin()+NumPHIs++, PhiMI);

      MachineInstr *LongPhiMI = 0;
      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
        LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
        MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
      }

      // PHIValues - Map of blocks to incoming virtual registers.  We use this
      // so that we only initialize one incoming value for a particular block,
      // even if the block has multiple entries in the PHI node.
      //
      std::map<MachineBasicBlock*, unsigned> PHIValues;

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
        unsigned ValReg;
        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
          PHIValues.lower_bound(PredMBB);

        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
          // We already inserted an initialization of the register for this
          // predecessor.  Recycle it.
          ValReg = EntryIt->second;

        } else {        
          // Get the incoming value into a virtual register.
          //
          Value *Val = PN->getIncomingValue(i);

          // If this is a constant or GlobalValue, we may have to insert code
          // into the basic block to compute it into a virtual register.
          if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
            // Because we don't want to clobber any values which might be in
            // physical registers with the computation of this constant (which
            // might be arbitrarily complex if it is a constant expression),
            // just insert the computation at the top of the basic block.
            MachineBasicBlock::iterator PI = PredMBB->begin();

            // Skip over any PHI nodes though!
            while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
              ++PI;

            ValReg = getReg(Val, PredMBB, PI);
          } else {
            ValReg = getReg(Val);
          }

          // Remember that we inserted a value for this PHI for this predecessor
          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
        }

        PhiMI->addRegOperand(ValReg);
        PhiMI->addMachineBasicBlockOperand(PredMBB);
        if (LongPhiMI) {
          LongPhiMI->addRegOperand(ValReg+1);
          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
        }
      }
    }
  }
}

// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
// the conditional branch instruction which is the only user of the cc
// instruction.  This is the case if the conditional branch is the only user of
// the setcc, and if the setcc is in the same basic block as the conditional
// branch.  We also don't handle long arguments below, so we reject them here as
// well.
//
static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
    if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
        SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
      const Type *Ty = SCI->getOperand(0)->getType();
      if (Ty != Type::LongTy && Ty != Type::ULongTy)
        return SCI;
    }
  return 0;
}

// Return a fixed numbering for setcc instructions which does not depend on the
// order of the opcodes.
//
static unsigned getSetCCNumber(unsigned Opcode) {
  switch(Opcode) {
  default: assert(0 && "Unknown setcc instruction!");
  case Instruction::SetEQ: return 0;
  case Instruction::SetNE: return 1;
  case Instruction::SetLT: return 2;
  case Instruction::SetGE: return 3;
  case Instruction::SetGT: return 4;
  case Instruction::SetLE: return 5;
  }
}

// LLVM  -> X86 signed  X86 unsigned
// -----    ----------  ------------
// seteq -> sete        sete
// setne -> setne       setne
// setlt -> setl        setb
// setge -> setge       setae
// setgt -> setg        seta
// setle -> setle       setbe
// ----
//          sets                       // Used by comparison with 0 optimization
//          setns
static const unsigned SetCCOpcodeTab[2][8] = {
  { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
    0, 0 },
  { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
    X86::SETSr, X86::SETNSr },
};

// EmitComparison - This function emits a comparison of the two operands,
// returning the extended setcc code to use.
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
                              MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator &IP) {
  // The arguments are already supposed to be of the same type.
  const Type *CompTy = Op0->getType();
  unsigned Class = getClassB(CompTy);
  unsigned Op0r = getReg(Op0, MBB, IP);

  // Special case handling of: cmp R, i
  if (Class == cByte || Class == cShort || Class == cInt)
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
      uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();

      // Mask off any upper bits of the constant, if there are any...
      Op1v &= (1ULL << (8 << Class)) - 1;

      // If this is a comparison against zero, emit more efficient code.  We
      // can't handle unsigned comparisons against zero unless they are == or
      // !=.  These should have been strength reduced already anyway.
      if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
        static const unsigned TESTTab[] = {
          X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
        };
        BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);

        if (OpNum == 2) return 6;   // Map jl -> js
        if (OpNum == 3) return 7;   // Map jg -> jns
        return OpNum;
      }

      static const unsigned CMPTab[] = {
        X86::CMPri8, X86::CMPri16, X86::CMPri32
      };

      BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
      return OpNum;
    }

  unsigned Op1r = getReg(Op1, MBB, IP);
  switch (Class) {
  default: assert(0 && "Unknown type class!");
    // Emit: cmp <var1>, <var2> (do the comparison).  We can
    // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
    // 32-bit.
  case cByte:
    BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
    break;
  case cShort:
    BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
    break;
  case cInt:
    BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
    break;
  case cFP:
    BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
    BMI(MBB, IP, X86::FNSTSWr8, 0);
    BMI(MBB, IP, X86::SAHF, 1);
    break;

  case cLong:
    if (OpNum < 2) {    // seteq, setne
      unsigned LoTmp = makeAnotherReg(Type::IntTy);
      unsigned HiTmp = makeAnotherReg(Type::IntTy);
      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
      BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
      BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
      BMI(MBB, IP, X86::ORrr32,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
      break;  // Allow the sete or setne to be generated from flags set by OR
    } else {
      // Emit a sequence of code which compares the high and low parts once
      // each, then uses a conditional move to handle the overflow case.  For
      // example, a setlt for long would generate code like this:
      //
      // AL = lo(op1) < lo(op2)   // Signedness depends on operands
      // BL = hi(op1) < hi(op2)   // Always unsigned comparison
      // dest = hi(op1) == hi(op2) ? AL : BL;
      //

      // FIXME: This would be much better if we had hierarchical register
      // classes!  Until then, hardcode registers so that we can deal with their
      // aliases (because we don't have conditional byte moves).
      //
      BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
      BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
      BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
      BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
      BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
      BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
      BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
      // NOTE: visitSetCondInst knows that the value is dumped into the BL
      // register at this point for long values...
      return OpNum;
    }
  }
  return OpNum;
}


/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
/// register, then move it to wherever the result should be. 
///
void ISel::visitSetCondInst(SetCondInst &I) {
  if (canFoldSetCCIntoBranch(&I)) return;  // Fold this into a branch...

  unsigned DestReg = getReg(I);
  MachineBasicBlock::iterator MII = BB->end();
  emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
                     DestReg);
}

/// emitSetCCOperation - Common code shared between visitSetCondInst and
/// constant expression support.
void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator &IP,
                              Value *Op0, Value *Op1, unsigned Opcode,
                              unsigned TargetReg) {
  unsigned OpNum = getSetCCNumber(Opcode);
  OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);

  const Type *CompTy = Op0->getType();
  unsigned CompClass = getClassB(CompTy);
  bool isSigned = CompTy->isSigned() && CompClass != cFP;

  if (CompClass != cLong || OpNum < 2) {
    // Handle normal comparisons with a setcc instruction...
    BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
  } else {
    // Handle long comparisons by copying the value which is already in BL into
    // the register we want...
    BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
  }
}




/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
  bool isUnsigned = VR.Ty->isUnsigned();

  // Make sure we have the register number for this value...
  unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;

  switch (getClassB(VR.Ty)) {
  case cByte:
    // Extend value into target register (8->32)
    if (isUnsigned)
      BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
    else
      BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
    break;
  case cShort:
    // Extend value into target register (16->32)
    if (isUnsigned)
      BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
    else
      BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
    break;
  case cInt:
    // Move value into target register (32->32)
    BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
    break;
  default:
    assert(0 && "Unpromotable operand class in promote32");
  }
}

/// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
/// we have the following possibilities:
///
///   ret void: No return value, simply emit a 'ret' instruction
///   ret sbyte, ubyte : Extend value into EAX and return
///   ret short, ushort: Extend value into EAX and return
///   ret int, uint    : Move value into EAX and return
///   ret pointer      : Move value into EAX and return
///   ret long, ulong  : Move value into EAX/EDX and return
///   ret float/double : Top of FP stack
///
void ISel::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() == 0) {
    BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
    return;
  }

  Value *RetVal = I.getOperand(0);
  unsigned RetReg = getReg(RetVal);
  switch (getClassB(RetVal->getType())) {
  case cByte:   // integral return values: extend or move into EAX and return
  case cShort:
  case cInt:
    promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
    // Declare that EAX is live on exit
    BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
    break;
  case cFP:                   // Floats & Doubles: Return in ST(0)
    BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
    // Declare that top-of-stack is live on exit
    BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
    break;
  case cLong:
    BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
    BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
    // Declare that EAX & EDX are live on exit
    BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
      .addReg(X86::ESP);
    break;
  default:
    visitInstruction(I);
  }
  // Emit a 'ret' instruction
  BuildMI(BB, X86::RET, 0);
}

// getBlockAfter - Return the basic block which occurs lexically after the
// specified one.
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
  Function::iterator I = BB; ++I;  // Get iterator to next block
  return I != BB->getParent()->end() ? &*I : 0;
}

/// visitBranchInst - Handle conditional and unconditional branches here.  Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
  BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one

  if (!BI.isConditional()) {  // Unconditional branch?
    if (BI.getSuccessor(0) != NextBB)
      BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
    return;
  }

  // See if we can fold the setcc into the branch itself...
  SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
  if (SCI == 0) {
    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
    // computed some other way...
    unsigned condReg = getReg(BI.getCondition());
    BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
    if (BI.getSuccessor(1) == NextBB) {
      if (BI.getSuccessor(0) != NextBB)
        BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
    } else {
      BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
      
      if (BI.getSuccessor(0) != NextBB)
        BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
    }
    return;
  }

  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
  MachineBasicBlock::iterator MII = BB->end();
  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);

  const Type *CompTy = SCI->getOperand(0)->getType();
  bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
  

  // LLVM  -> X86 signed  X86 unsigned
  // -----    ----------  ------------
  // seteq -> je          je
  // setne -> jne         jne
  // setlt -> jl          jb
  // setge -> jge         jae
  // setgt -> jg          ja
  // setle -> jle         jbe
  // ----
  //          js                  // Used by comparison with 0 optimization
  //          jns

  static const unsigned OpcodeTab[2][8] = {
    { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
    { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
      X86::JS, X86::JNS },
  };
  
  if (BI.getSuccessor(0) != NextBB) {
    BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
    if (BI.getSuccessor(1) != NextBB)
      BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
  } else {
    // Change to the inverse condition...
    if (BI.getSuccessor(1) != NextBB) {
      OpNum ^= 1;
      BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
    }
  }
}


/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate.  For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
///
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
                  const std::vector<ValueRecord> &Args) {

  // Count how many bytes are to be pushed on the stack...
  unsigned NumBytes = 0;

  if (!Args.empty()) {
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
      switch (getClassB(Args[i].Ty)) {
      case cByte: case cShort: case cInt:
        NumBytes += 4; break;
      case cLong:
        NumBytes += 8; break;
      case cFP:
        NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
        break;
      default: assert(0 && "Unknown class!");
      }

    // Adjust the stack pointer for the new arguments...
    BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);

    // Arguments go on the stack in reverse order, as specified by the ABI.
    unsigned ArgOffset = 0;
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
      switch (getClassB(Args[i].Ty)) {
      case cByte:
      case cShort: {
        // Promote arg to 32 bits wide into a temporary register...
        unsigned R = makeAnotherReg(Type::UIntTy);
        promote32(R, Args[i]);
        addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
                     X86::ESP, ArgOffset).addReg(R);
        break;
      }
      case cInt:
        addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
                     X86::ESP, ArgOffset).addReg(ArgReg);
        break;
      case cLong:
        addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
                     X86::ESP, ArgOffset).addReg(ArgReg);
        addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
                     X86::ESP, ArgOffset+4).addReg(ArgReg+1);
        ArgOffset += 4;        // 8 byte entry, not 4.
        break;
        
      case cFP:
        if (Args[i].Ty == Type::FloatTy) {
          addRegOffset(BuildMI(BB, X86::FSTr32, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
        } else {
          assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
          addRegOffset(BuildMI(BB, X86::FSTr64, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
          ArgOffset += 4;       // 8 byte entry, not 4.
        }
        break;

      default: assert(0 && "Unknown class!");
      }
      ArgOffset += 4;
    }
  } else {
    BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
  }

  BB->push_back(CallMI);

  BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);

  // If there is a return value, scavenge the result from the location the call
  // leaves it in...
  //
  if (Ret.Ty != Type::VoidTy) {
    unsigned DestClass = getClassB(Ret.Ty);
    switch (DestClass) {
    case cByte:
    case cShort:
    case cInt: {
      // Integral results are in %eax, or the appropriate portion
      // thereof.
      static const unsigned regRegMove[] = {
        X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
      };
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
      BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
      break;
    }
    case cFP:     // Floating-point return values live in %ST(0)
      BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
      break;
    case cLong:   // Long values are left in EDX:EAX
      BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
      BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
      break;
    default: assert(0 && "Unknown class!");
    }
  }
}


/// visitCallInst - Push args on stack and do a procedure call instruction.
void ISel::visitCallInst(CallInst &CI) {
  MachineInstr *TheCall;
  if (Function *F = CI.getCalledFunction()) {
    // Is it an intrinsic function call?
    if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
      return;
    }

    // Emit a CALL instruction with PC-relative displacement.
    TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
  } else {  // Emit an indirect call...
    unsigned Reg = getReg(CI.getCalledValue());
    TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
  }

  std::vector<ValueRecord> Args;
  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
    Args.push_back(ValueRecord(CI.getOperand(i)));

  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
}         


void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
  unsigned TmpReg1, TmpReg2;
  switch (ID) {
  case LLVMIntrinsic::va_start:
    // Get the address of the first vararg value...
    TmpReg1 = getReg(CI);
    addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
    return;

  case LLVMIntrinsic::va_copy:
    TmpReg1 = getReg(CI);
    TmpReg2 = getReg(CI.getOperand(1));
    BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
    return;
  case LLVMIntrinsic::va_end: return;   // Noop on X86

  case LLVMIntrinsic::longjmp:
  case LLVMIntrinsic::siglongjmp:
    BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true); 
    return;

  case LLVMIntrinsic::setjmp:
  case LLVMIntrinsic::sigsetjmp:
    // Setjmp always returns zero...
    BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
    return;
  default: assert(0 && "Unknown intrinsic for X86!");
  }
}


/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
/// Xor.
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
  unsigned DestReg = getReg(B);
  MachineBasicBlock::iterator MI = BB->end();
  emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
                            OperatorClass, DestReg);
}

/// emitSimpleBinaryOperation - Implement simple binary operators for integral
/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
/// Or, 4 for Xor.
///
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
///
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
                                     MachineBasicBlock::iterator &IP,
                                     Value *Op0, Value *Op1,
                                     unsigned OperatorClass, unsigned DestReg) {
  unsigned Class = getClassB(Op0->getType());

  // sub 0, X -> neg X
  if (OperatorClass == 1 && Class != cLong)
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
      if (CI->isNullValue()) {
        unsigned op1Reg = getReg(Op1, MBB, IP);
        switch (Class) {
        default: assert(0 && "Unknown class for this function!");
        case cByte:
          BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
          return;
        case cShort:
          BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
          return;
        case cInt:
          BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
          return;
        }
      }

  if (!isa<ConstantInt>(Op1) || Class == cLong) {
    static const unsigned OpcodeTab[][4] = {
      // Arithmetic operators
      { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD },  // ADD
      { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB },  // SUB
      
      // Bitwise operators
      { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 },  // AND
      { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 },  // OR
      { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 },  // XOR
    };
    
    bool isLong = false;
    if (Class == cLong) {
      isLong = true;
      Class = cInt;          // Bottom 32 bits are handled just like ints
    }
    
    unsigned Opcode = OpcodeTab[OperatorClass][Class];
    assert(Opcode && "Floating point arguments to logical inst?");
    unsigned Op0r = getReg(Op0, MBB, IP);
    unsigned Op1r = getReg(Op1, MBB, IP);
    BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
    
    if (isLong) {        // Handle the upper 32 bits of long values...
      static const unsigned TopTab[] = {
        X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
      };
      BMI(MBB, IP, TopTab[OperatorClass], 2,
          DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
    }
    return;
  }

  // Special case: op Reg, <const>
  ConstantInt *Op1C = cast<ConstantInt>(Op1);
  unsigned Op0r = getReg(Op0, MBB, IP);

  // xor X, -1 -> not X
  if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
    static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
    BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
    return;
  }

  // add X, -1 -> dec X
  if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
    static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
    BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
    return;
  }

  // add X, 1 -> inc X
  if (OperatorClass == 0 && Op1C->equalsInt(1)) {
    static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
    BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
    return;
  }
  
  static const unsigned OpcodeTab[][3] = {
    // Arithmetic operators
    { X86::ADDri8, X86::ADDri16, X86::ADDri32 },  // ADD
    { X86::SUBri8, X86::SUBri16, X86::SUBri32 },  // SUB
    
    // Bitwise operators
    { X86::ANDri8, X86::ANDri16, X86::ANDri32 },  // AND
    { X86:: ORri8, X86:: ORri16, X86:: ORri32 },  // OR
    { X86::XORri8, X86::XORri16, X86::XORri32 },  // XOR
  };
  
  assert(Class < 3 && "General code handles 64-bit integer types!");
  unsigned Opcode = OpcodeTab[OperatorClass][Class];
  uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
  
  // Mask off any upper bits of the constant, if there are any...
  Op1v &= (1ULL << (8 << Class)) - 1;
  BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
}

/// doMultiply - Emit appropriate instructions to multiply together the
/// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
/// result should be given as DestTy.
///
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
                      unsigned DestReg, const Type *DestTy,
                      unsigned op0Reg, unsigned op1Reg) {
  unsigned Class = getClass(DestTy);
  switch (Class) {
  case cFP:              // Floating point multiply
    BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
    return;
  case cInt:
  case cShort:
    BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
      .addReg(op0Reg).addReg(op1Reg);
    return;
  case cByte:
    // Must use the MUL instruction, which forces use of AL...
    BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
    BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
    BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
    return;
  default:
  case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
  }
}

// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
  if (Val == 0) return 0;
  unsigned Count = 0;
  while (Val != 1) {
    if (Val & 1) return 0;
    Val >>= 1;
    ++Count;
  }
  return Count+1;
}

void ISel::doMultiplyConst(MachineBasicBlock *MBB,
                           MachineBasicBlock::iterator &IP,
                           unsigned DestReg, const Type *DestTy,
                           unsigned op0Reg, unsigned ConstRHS) {
  unsigned Class = getClass(DestTy);

  // If the element size is exactly a power of 2, use a shift to get it.
  if (unsigned Shift = ExactLog2(ConstRHS)) {
    switch (Class) {
    default: assert(0 && "Unknown class for this function!");
    case cByte:
      BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
      return;
    case cShort:
      BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
      return;
    case cInt:
      BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
      return;
    }
  }
  
  if (Class == cShort) {
    BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
    return;
  } else if (Class == cInt) {
    BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
    return;
  }

  // Most general case, emit a normal multiply...
  static const unsigned MOVirTab[] = {
    X86::MOVir8, X86::MOVir16, X86::MOVir32
  };

  unsigned TmpReg = makeAnotherReg(DestTy);
  BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
  
  // Emit a MUL to multiply the register holding the index by
  // elementSize, putting the result in OffsetReg.
  doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
}

/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
  unsigned Op0Reg  = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  // Simple scalar multiply?
  if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
      unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
      MachineBasicBlock::iterator MBBI = BB->end();
      doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
    } else {
      unsigned Op1Reg  = getReg(I.getOperand(1));
      MachineBasicBlock::iterator MBBI = BB->end();
      doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
    }
  } else {
    unsigned Op1Reg  = getReg(I.getOperand(1));

    // Long value.  We have to do things the hard way...
    // Multiply the two low parts... capturing carry into EDX
    BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
    BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg);  // AL*BL

    unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
    BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX);     // AL*BL
    BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32

    MachineBasicBlock::iterator MBBI = BB->end();
    unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
    BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);

    unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
    BuildMI(BB, X86::ADDrr32, 2,                         // AH*BL+(AL*BL >> 32)
            AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
    
    MBBI = BB->end();
    unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
    BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
    
    BuildMI(BB, X86::ADDrr32, 2,               // AL*BH + AH*BL + (AL*BL >> 32)
            DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
  }
}


/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register.  Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
  unsigned Op0Reg = getReg(I.getOperand(0));
  unsigned Op1Reg = getReg(I.getOperand(1));
  unsigned ResultReg = getReg(I);

  MachineBasicBlock::iterator IP = BB->end();
  emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
                      I.getType(), ResultReg);
}

void ISel::emitDivRemOperation(MachineBasicBlock *BB,
                               MachineBasicBlock::iterator &IP,
                               unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
                               const Type *Ty, unsigned ResultReg) {
  unsigned Class = getClass(Ty);
  switch (Class) {
  case cFP:              // Floating point divide
    if (isDiv) {
      BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
    } else {               // Floating point remainder...
      MachineInstr *TheCall =
        BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
      std::vector<ValueRecord> Args;
      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
    }
    return;
  case cLong: {
    static const char *FnName[] =
      { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };

    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
    MachineInstr *TheCall =
      BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);

    std::vector<ValueRecord> Args;
    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
    return;
  }
  case cByte: case cShort: case cInt:
    break;          // Small integrals, handled below...
  default: assert(0 && "Unknown class!");
  }

  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
  static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
  static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
  static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };

  static const unsigned DivOpcode[][4] = {
    { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 },  // Unsigned division
    { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 },  // Signed division
  };

  bool isSigned   = Ty->isSigned();
  unsigned Reg    = Regs[Class];
  unsigned ExtReg = ExtRegs[Class];

  // Put the first operand into one of the A registers...
  BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);

  if (isSigned) {
    // Emit a sign extension instruction...
    unsigned ShiftResult = makeAnotherReg(Ty);
    BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
    BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
  } else {
    // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
    BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
  }

  // Emit the appropriate divide or remainder instruction...
  BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);

  // Figure out which register we want to pick the result out of...
  unsigned DestReg = isDiv ? Reg : ExtReg;
  
  // Put the result into the destination register...
  BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
}


/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst(ShiftInst &I) {
  unsigned SrcReg = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
  bool isSigned = I.getType()->isSigned();
  unsigned Class = getClass(I.getType());
  
  static const unsigned ConstantOperand[][4] = {
    { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 },  // SHR
    { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 },  // SAR
    { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 },  // SHL
    { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 },  // SAL = SHL
  };

  static const unsigned NonConstantOperand[][4] = {
    { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 },  // SHR
    { X86::SARrr8, X86::SARrr16, X86::SARrr32 },  // SAR
    { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 },  // SHL
    { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 },  // SAL = SHL
  };

  // Longs, as usual, are handled specially...
  if (Class == cLong) {
    // If we have a constant shift, we can generate much more efficient code
    // than otherwise...
    //
    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
      unsigned Amount = CUI->getValue();
      if (Amount < 32) {
        const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
        if (isLeftShift) {
          BuildMI(BB, Opc[3], 3, 
                  DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
          BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
        } else {
          BuildMI(BB, Opc[3], 3,
                  DestReg).addReg(SrcReg  ).addReg(SrcReg+1).addZImm(Amount);
          BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
        }
      } else {                 // Shifting more than 32 bits
        Amount -= 32;
        if (isLeftShift) {
          BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
          BuildMI(BB, X86::MOVir32, 1,DestReg  ).addZImm(0);
        } else {
          unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
          BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
          BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
        }
      }
    } else {
      unsigned TmpReg = makeAnotherReg(Type::IntTy);

      if (!isLeftShift && isSigned) {
        // If this is a SHR of a Long, then we need to do funny sign extension
        // stuff.  TmpReg gets the value to use as the high-part if we are
        // shifting more than 32 bits.
        BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
      } else {
        // Other shifts use a fixed zero value if the shift is more than 32
        // bits.
        BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
      }

      // Initialize CL with the shift amount...
      unsigned ShiftAmount = getReg(I.getOperand(1));
      BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);

      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
      if (isLeftShift) {
        // TmpReg2 = shld inHi, inLo
        BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
        // TmpReg3 = shl  inLo, CL
        BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);

        // Set the flags to indicate whether the shift was by more than 32 bits.
        BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);

        // DestHi = (>32) ? TmpReg3 : TmpReg2;
        BuildMI(BB, X86::CMOVNErr32, 2, 
                DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
        // DestLo = (>32) ? TmpReg : TmpReg3;
        BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
      } else {
        // TmpReg2 = shrd inLo, inHi
        BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
        // TmpReg3 = s[ah]r  inHi, CL
        BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
                       .addReg(SrcReg+1);

        // Set the flags to indicate whether the shift was by more than 32 bits.
        BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);

        // DestLo = (>32) ? TmpReg3 : TmpReg2;
        BuildMI(BB, X86::CMOVNErr32, 2, 
                DestReg).addReg(TmpReg2).addReg(TmpReg3);

        // DestHi = (>32) ? TmpReg : TmpReg3;
        BuildMI(BB, X86::CMOVNErr32, 2, 
                DestReg+1).addReg(TmpReg3).addReg(TmpReg);
      }
    }
    return;
  }

  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");

    const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
    BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
  } else {                  // The shift amount is non-constant.
    BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));

    const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
    BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
  }
}


/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
/// instruction.  The load and store instructions are the only place where we
/// need to worry about the memory layout of the target machine.
///
void ISel::visitLoadInst(LoadInst &I) {
  unsigned SrcAddrReg = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  unsigned Class = getClassB(I.getType());

  if (Class == cLong) {
    addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
    addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
    return;
  }

  static const unsigned Opcodes[] = {
    X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
  };
  unsigned Opcode = Opcodes[Class];
  if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
  addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
}

/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
/// instruction.
///
void ISel::visitStoreInst(StoreInst &I) {
  unsigned ValReg      = getReg(I.getOperand(0));
  unsigned AddressReg  = getReg(I.getOperand(1));
 
  const Type *ValTy = I.getOperand(0)->getType();
  unsigned Class = getClassB(ValTy);

  if (Class == cLong) {
    addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
    addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
    return;
  }

  static const unsigned Opcodes[] = {
    X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
  };
  unsigned Opcode = Opcodes[Class];
  if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
  addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
}


/// visitCastInst - Here we have various kinds of copying with or without
/// sign extension going on.
void ISel::visitCastInst(CastInst &CI) {
  Value *Op = CI.getOperand(0);
  // If this is a cast from a 32-bit integer to a Long type, and the only uses
  // of the case are GEP instructions, then the cast does not need to be
  // generated explicitly, it will be folded into the GEP.
  if (CI.getType() == Type::LongTy &&
      (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
    bool AllUsesAreGEPs = true;
    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
      if (!isa<GetElementPtrInst>(*I)) {
        AllUsesAreGEPs = false;
        break;
      }        

    // No need to codegen this cast if all users are getelementptr instrs...
    if (AllUsesAreGEPs) return;
  }

  unsigned DestReg = getReg(CI);
  MachineBasicBlock::iterator MI = BB->end();
  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
}

/// emitCastOperation - Common code shared between visitCastInst and
/// constant expression cast support.
void ISel::emitCastOperation(MachineBasicBlock *BB,
                             MachineBasicBlock::iterator &IP,
                             Value *Src, const Type *DestTy,
                             unsigned DestReg) {
  unsigned SrcReg = getReg(Src, BB, IP);
  const Type *SrcTy = Src->getType();
  unsigned SrcClass = getClassB(SrcTy);
  unsigned DestClass = getClassB(DestTy);

  // Implement casts to bool by using compare on the operand followed by set if
  // not zero on the result.
  if (DestTy == Type::BoolTy) {
    switch (SrcClass) {
    case cByte:
      BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
      break;
    case cShort:
      BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
      break;
    case cInt:
      BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
      break;
    case cLong: {
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
      BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
      break;
    }
    case cFP:
      assert(0 && "FIXME: implement cast FP to bool");
      abort();
    }

    // If the zero flag is not set, then the value is true, set the byte to
    // true.
    BMI(BB, IP, X86::SETNEr, 1, DestReg);
    return;
  }

  static const unsigned RegRegMove[] = {
    X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
  };

  // Implement casts between values of the same type class (as determined by
  // getClass) by using a register-to-register move.
  if (SrcClass == DestClass) {
    if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
      BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
    } else if (SrcClass == cFP) {
      if (SrcTy == Type::FloatTy) {  // double -> float
        assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
        BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
      } else {                       // float -> double
        assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
               "Unknown cFP member!");
        // Truncate from double to float by storing to memory as short, then
        // reading it back.
        unsigned FltAlign = TM.getTargetData().getFloatAlignment();
        int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
        addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
        addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
      }
    } else if (SrcClass == cLong) {
      BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
      BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
    } else {
      assert(0 && "Cannot handle this type of cast instruction!");
      abort();
    }
    return;
  }

  // Handle cast of SMALLER int to LARGER int using a move with sign extension
  // or zero extension, depending on whether the source type was signed.
  if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
      SrcClass < DestClass) {
    bool isLong = DestClass == cLong;
    if (isLong) DestClass = cInt;

    static const unsigned Opc[][4] = {
      { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
      { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 }  // u
    };
    
    bool isUnsigned = SrcTy->isUnsigned();
    BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
        DestReg).addReg(SrcReg);

    if (isLong) {  // Handle upper 32 bits as appropriate...
      if (isUnsigned)     // Zero out top bits...
        BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
      else                // Sign extend bottom half...
        BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
    }
    return;
  }

  // Special case long -> int ...
  if (SrcClass == cLong && DestClass == cInt) {
    BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
    return;
  }
  
  // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
  // move out of AX or AL.
  if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
      && SrcClass > DestClass) {
    static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
    BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
    BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
    return;
  }

  // Handle casts from integer to floating point now...
  if (DestClass == cFP) {
    // Promote the integer to a type supported by FLD.  We do this because there
    // are no unsigned FLD instructions, so we must promote an unsigned value to
    // a larger signed value, then use FLD on the larger value.
    //
    const Type *PromoteType = 0;
    unsigned PromoteOpcode;
    switch (SrcTy->getPrimitiveID()) {
    case Type::BoolTyID:
    case Type::SByteTyID:
      // We don't have the facilities for directly loading byte sized data from
      // memory (even signed).  Promote it to 16 bits.
      PromoteType = Type::ShortTy;
      PromoteOpcode = X86::MOVSXr16r8;
      break;
    case Type::UByteTyID:
      PromoteType = Type::ShortTy;
      PromoteOpcode = X86::MOVZXr16r8;
      break;
    case Type::UShortTyID:
      PromoteType = Type::IntTy;
      PromoteOpcode = X86::MOVZXr32r16;
      break;
    case Type::UIntTyID: {
      // Make a 64 bit temporary... and zero out the top of it...
      unsigned TmpReg = makeAnotherReg(Type::LongTy);
      BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
      BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
      SrcTy = Type::LongTy;
      SrcClass = cLong;
      SrcReg = TmpReg;
      break;
    }
    case Type::ULongTyID:
      assert("FIXME: not implemented: cast ulong X to fp type!");
    default:  // No promotion needed...
      break;
    }
    
    if (PromoteType) {
      unsigned TmpReg = makeAnotherReg(PromoteType);
      BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
          1, TmpReg).addReg(SrcReg);
      SrcTy = PromoteType;
      SrcClass = getClass(PromoteType);
      SrcReg = TmpReg;
    }

    // Spill the integer to memory and reload it from there...
    int FrameIdx =
      F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());

    if (SrcClass == cLong) {
      addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
      addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
                        FrameIdx, 4).addReg(SrcReg+1);
    } else {
      static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
      addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
    }

    static const unsigned Op2[] =
      { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
    addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
    return;
  }

  // Handle casts from floating point to integer now...
  if (SrcClass == cFP) {
    // Change the floating point control register to use "round towards zero"
    // mode when truncating to an integer value.
    //
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
    addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);

    // Load the old value of the high byte of the control word...
    unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
    addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);

    // Set the high part to be round to zero...
    addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);

    // Reload the modified control word now...
    addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
    
    // Restore the memory image of control word to original value
    addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
                      CWFrameIdx, 1).addReg(HighPartOfCW);

    // We don't have the facilities for directly storing byte sized data to
    // memory.  Promote it to 16 bits.  We also must promote unsigned values to
    // larger classes because we only have signed FP stores.
    unsigned StoreClass  = DestClass;
    const Type *StoreTy  = DestTy;
    if (StoreClass == cByte || DestTy->isUnsigned())
      switch (StoreClass) {
      case cByte:  StoreTy = Type::ShortTy; StoreClass = cShort; break;
      case cShort: StoreTy = Type::IntTy;   StoreClass = cInt;   break;
      case cInt:   StoreTy = Type::LongTy;  StoreClass = cLong;  break;
      // The following treatment of cLong may not be perfectly right,
      // but it survives chains of casts of the form
      // double->ulong->double.
      case cLong:  StoreTy = Type::LongTy;  StoreClass = cLong;  break;
      default: assert(0 && "Unknown store class!");
      }

    // Spill the integer to memory and reload it from there...
    int FrameIdx =
      F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());

    static const unsigned Op1[] =
      { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
    addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);

    if (DestClass == cLong) {
      addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
      addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
    } else {
      static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
      addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
    }

    // Reload the original control word now...
    addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
    return;
  }

  // Anything we haven't handled already, we can't (yet) handle at all.
  assert(0 && "Unhandled cast instruction!");
  abort();
}

/// visitVANextInst - Implement the va_next instruction...
///
void ISel::visitVANextInst(VANextInst &I) {
  unsigned VAList = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  unsigned Size;
  switch (I.getArgType()->getPrimitiveID()) {
  default:
    std::cerr << I;
    assert(0 && "Error: bad type for va_next instruction!");
    return;
  case Type::PointerTyID:
  case Type::UIntTyID:
  case Type::IntTyID:
    Size = 4;
    break;
  case Type::ULongTyID:
  case Type::LongTyID:
  case Type::DoubleTyID:
    Size = 8;
    break;
  }

  // Increment the VAList pointer...
  BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
}

void ISel::visitVAArgInst(VAArgInst &I) {
  unsigned VAList = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  switch (I.getType()->getPrimitiveID()) {
  default:
    std::cerr << I;
    assert(0 && "Error: bad type for va_next instruction!");
    return;
  case Type::PointerTyID:
  case Type::UIntTyID:
  case Type::IntTyID:
    addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
    break;
  case Type::ULongTyID:
  case Type::LongTyID:
    addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
    addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
    break;
  case Type::DoubleTyID:
    addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
    break;
  }
}


void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
  unsigned outputReg = getReg(I);
  MachineBasicBlock::iterator MI = BB->end();
  emitGEPOperation(BB, MI, I.getOperand(0),
                   I.op_begin()+1, I.op_end(), outputReg);
}

void ISel::emitGEPOperation(MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator &IP,
                            Value *Src, User::op_iterator IdxBegin,
                            User::op_iterator IdxEnd, unsigned TargetReg) {
  const TargetData &TD = TM.getTargetData();
  const Type *Ty = Src->getType();
  unsigned BaseReg = getReg(Src, MBB, IP);

  // GEPs have zero or more indices; we must perform a struct access
  // or array access for each one.
  for (GetElementPtrInst::op_iterator oi = IdxBegin,
         oe = IdxEnd; oi != oe; ++oi) {
    Value *idx = *oi;
    unsigned NextReg = BaseReg;
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
      // It's a struct access.  idx is the index into the structure,
      // which names the field. This index must have ubyte type.
      const ConstantUInt *CUI = cast<ConstantUInt>(idx);
      assert(CUI->getType() == Type::UByteTy
              && "Funny-looking structure index in GEP");
      // Use the TargetData structure to pick out what the layout of
      // the structure is in memory.  Since the structure index must
      // be constant, we can get its value and use it to find the
      // right byte offset from the StructLayout class's list of
      // structure member offsets.
      unsigned idxValue = CUI->getValue();
      unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
      if (FieldOff) {
        NextReg = makeAnotherReg(Type::UIntTy);
        // Emit an ADD to add FieldOff to the basePtr.
        BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
      }
      // The next type is the member of the structure selected by the
      // index.
      Ty = StTy->getElementTypes()[idxValue];
    } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
      // It's an array or pointer access: [ArraySize x ElementType].

      // idx is the index into the array.  Unlike with structure
      // indices, we may not know its actual value at code-generation
      // time.
      assert(idx->getType() == Type::LongTy && "Bad GEP array index!");

      // Most GEP instructions use a [cast (int/uint) to LongTy] as their
      // operand on X86.  Handle this case directly now...
      if (CastInst *CI = dyn_cast<CastInst>(idx))
        if (CI->getOperand(0)->getType() == Type::IntTy ||
            CI->getOperand(0)->getType() == Type::UIntTy)
          idx = CI->getOperand(0);

      // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
      // must find the size of the pointed-to type (Not coincidentally, the next
      // type is the type of the elements in the array).
      Ty = SqTy->getElementType();
      unsigned elementSize = TD.getTypeSize(Ty);

      // If idxReg is a constant, we don't need to perform the multiply!
      if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
        if (!CSI->isNullValue()) {
          unsigned Offset = elementSize*CSI->getValue();
          NextReg = makeAnotherReg(Type::UIntTy);
          BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
        }
      } else if (elementSize == 1) {
        // If the element size is 1, we don't have to multiply, just add
        unsigned idxReg = getReg(idx, MBB, IP);
        NextReg = makeAnotherReg(Type::UIntTy);
        BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
      } else {
        unsigned idxReg = getReg(idx, MBB, IP);
        unsigned OffsetReg = makeAnotherReg(Type::UIntTy);

        doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);

        // Emit an ADD to add OffsetReg to the basePtr.
        NextReg = makeAnotherReg(Type::UIntTy);
        BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
      }
    }
    // Now that we are here, further indices refer to subtypes of this
    // one, so we don't need to worry about BaseReg itself, anymore.
    BaseReg = NextReg;
  }
  // After we have processed all the indices, the result is left in
  // BaseReg.  Move it to the register where we were expected to
  // put the answer.  A 32-bit move should do it, because we are in
  // ILP32 land.
  BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
}


/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
/// frame manager, otherwise do it the hard way.
///
void ISel::visitAllocaInst(AllocaInst &I) {
  // Find the data size of the alloca inst's getAllocatedType.
  const Type *Ty = I.getAllocatedType();
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);

  // If this is a fixed size alloca in the entry block for the function,
  // statically stack allocate the space.
  //
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
    if (I.getParent() == I.getParent()->getParent()->begin()) {
      TySize *= CUI->getValue();   // Get total allocated size...
      unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
      
      // Create a new stack object using the frame manager...
      int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
      addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
      return;
    }
  }
  
  // Create a register to hold the temporary result of multiplying the type size
  // constant by the variable amount.
  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
  unsigned SrcReg1 = getReg(I.getArraySize());
  
  // TotalSizeReg = mul <numelements>, <TypeSize>
  MachineBasicBlock::iterator MBBI = BB->end();
  doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);

  // AddedSize = add <TotalSizeReg>, 15
  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);

  // AlignedSize = and <AddedSize>, ~15
  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
  
  // Subtract size from stack pointer, thereby allocating some space.
  BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);

  // Put a pointer to the space into the result register, by copying
  // the stack pointer.
  BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);

  // Inform the Frame Information that we have just allocated a variable-sized
  // object.
  F->getFrameInfo()->CreateVariableSizedObject();
}

/// visitMallocInst - Malloc instructions are code generated into direct calls
/// to the library malloc.
///
void ISel::visitMallocInst(MallocInst &I) {
  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
  unsigned Arg;

  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
  } else {
    Arg = makeAnotherReg(Type::UIntTy);
    unsigned Op0Reg = getReg(I.getOperand(0));
    MachineBasicBlock::iterator MBBI = BB->end();
    doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
  }

  std::vector<ValueRecord> Args;
  Args.push_back(ValueRecord(Arg, Type::UIntTy));
  MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
                                  1).addExternalSymbol("malloc", true);
  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
}


/// visitFreeInst - Free instructions are code gen'd to call the free libc
/// function.
///
void ISel::visitFreeInst(FreeInst &I) {
  std::vector<ValueRecord> Args;
  Args.push_back(ValueRecord(I.getOperand(0)));
  MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
                                  1).addExternalSymbol("free", true);
  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
}
   

/// createX86SimpleInstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion.  The
/// generated code sucks but the implementation is nice and simple.
///
FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM) {
  return new ISel(TM);
}