llvm.org GIT mirror llvm / release_1 lib / Target / X86 / X86CodeEmitter.cpp
release_1

Tree @release_1 (Download .tar.gz)

X86CodeEmitter.cpp @release_1raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the X86 machine instructions into
// actual executable machine code.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Function.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Config/alloca.h"

namespace {
  Statistic<>
  NumEmitted("x86-emitter", "Number of machine instructions emitted");

  class JITResolver {
    MachineCodeEmitter &MCE;

    // LazyCodeGenMap - Keep track of call sites for functions that are to be
    // lazily resolved.
    std::map<unsigned, Function*> LazyCodeGenMap;

    // LazyResolverMap - Keep track of the lazy resolver created for a
    // particular function so that we can reuse them if necessary.
    std::map<Function*, unsigned> LazyResolverMap;
  public:
    JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
    unsigned getLazyResolver(Function *F);
    unsigned addFunctionReference(unsigned Address, Function *F);
    
  private:
    unsigned emitStubForFunction(Function *F);
    static void CompilationCallback();
    unsigned resolveFunctionReference(unsigned RetAddr);
  };

  JITResolver *TheJITResolver;
}


/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address.  Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
  LazyCodeGenMap[Address] = F;  
  return (intptr_t)&JITResolver::CompilationCallback;
}

unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
  std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
  assert(I != LazyCodeGenMap.end() && "Not in map!");
  Function *F = I->second;
  LazyCodeGenMap.erase(I);
  return MCE.forceCompilationOf(F);
}

unsigned JITResolver::getLazyResolver(Function *F) {
  std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
  if (I != LazyResolverMap.end() && I->first == F) return I->second;
  
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";

  unsigned Stub = emitStubForFunction(F);
  LazyResolverMap.insert(I, std::make_pair(F, Stub));
  return Stub;
}

void JITResolver::CompilationCallback() {
  unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
  unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
  assert(StackPtr[1] == RetAddr &&
         "Could not find return address on the stack!");

  // It's a stub if there is an interrupt marker after the call...
  bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;

  // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
  // pointer elimination has been performed.  Having a variable sized alloca
  // disables frame pointer elimination currently, even if it's dead.  This is a
  // gross hack.
  alloca(10+isStub);
  // FIXME FIXME FIXME FIXME

  // The call instruction should have pushed the return value onto the stack...
  RetAddr -= 4;  // Backtrack to the reference itself...

#if 0
  DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
                  << " ESP=0x" << (unsigned)StackPtr << std::dec
                  << ": Resolving call to function: "
                  << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
#endif

  // Sanity check to make sure this really is a call instruction...
  assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
  
  unsigned NewVal = TheJITResolver->resolveFunctionReference(RetAddr);

  // Rewrite the call target... so that we don't fault every time we execute
  // the call.
  *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;    

  if (isStub) {
    // If this is a stub, rewrite the call into an unconditional branch
    // instruction so that two return addresses are not pushed onto the stack
    // when the requested function finally gets called.  This also makes the
    // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
    ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
  }

  // Change the return address to reexecute the call instruction...
  StackPtr[1] -= 5;
}

/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated.  In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
unsigned JITResolver::emitStubForFunction(Function *F) {
  MCE.startFunctionStub(*F, 6);
  MCE.emitByte(0xE8);   // Call with 32 bit pc-rel destination...

  unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
  MCE.emitWord(Address-MCE.getCurrentPCValue()-4);

  MCE.emitByte(0xCD);   // Interrupt - Just a marker identifying the stub!
  return (intptr_t)MCE.finishFunctionStub(*F);
}



namespace {
  class Emitter : public MachineFunctionPass {
    const X86InstrInfo  *II;
    MachineCodeEmitter  &MCE;
    std::map<const BasicBlock*, unsigned> BasicBlockAddrs;
    std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs;
  public:
    Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}

    bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const {
      return "X86 Machine Code Emitter";
    }

  private:
    void emitBasicBlock(MachineBasicBlock &MBB);
    void emitInstruction(MachineInstr &MI);

    void emitPCRelativeBlockAddress(BasicBlock *BB);
    void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
    void emitGlobalAddressForCall(GlobalValue *GV);
    void emitGlobalAddressForPtr(GlobalValue *GV);

    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
    void emitConstant(unsigned Val, unsigned Size);

    void emitMemModRMByte(const MachineInstr &MI,
                          unsigned Op, unsigned RegOpcodeField);

  };
}

/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
/// machine code emitted.  This uses a MachineCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
/// of functions.  This method should returns true if machine code emission is
/// not supported.
///
bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
                                                  MachineCodeEmitter &MCE) {
  PM.add(new Emitter(MCE));
  return false;
}

bool Emitter::runOnMachineFunction(MachineFunction &MF) {
  II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();

  MCE.startFunction(MF);
  MCE.emitConstantPool(MF.getConstantPool());
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    emitBasicBlock(*I);
  MCE.finishFunction(MF);

  // Resolve all forward branches now...
  for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
    unsigned Location = BasicBlockAddrs[BBRefs[i].first];
    unsigned Ref = BBRefs[i].second;
    *(unsigned*)(intptr_t)Ref = Location-Ref-4;
  }
  BBRefs.clear();
  BasicBlockAddrs.clear();
  return false;
}

void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
  if (uint64_t Addr = MCE.getCurrentPCValue())
    BasicBlockAddrs[MBB.getBasicBlock()] = Addr;

  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
    emitInstruction(**I);
}


/// emitPCRelativeBlockAddress - This method emits the PC relative address of
/// the specified basic block, or if the basic block hasn't been emitted yet
/// (because this is a forward branch), it keeps track of the information
/// necessary to resolve this address later (and emits a dummy value).
///
void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) {
  // FIXME: Emit backward branches directly
  BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue()));
  MCE.emitWord(0);   // Emit a dummy value
}

/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
///
void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
  if (isPCRelative)
    MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
  else
    MCE.emitWord(Address);
}

/// emitGlobalAddressForCall - Emit the specified address to the code stream
/// assuming this is part of a function call, which is PC relative.
///
void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
  // Get the address from the backend...
  unsigned Address = MCE.getGlobalValueAddress(GV);
  
  if (Address == 0) {
    // FIXME: this is JIT specific!
    if (TheJITResolver == 0)
      TheJITResolver = new JITResolver(MCE);
    Address = TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
                                                   cast<Function>(GV));
  }
  emitMaybePCRelativeValue(Address, true);
}

/// emitGlobalAddress - Emit the specified address to the code stream assuming
/// this is part of a "take the address of a global" instruction, which is not
/// PC relative.
///
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) {
  // Get the address from the backend...
  unsigned Address = MCE.getGlobalValueAddress(GV);

  // If the machine code emitter doesn't know what the address IS yet, we have
  // to take special measures.
  //
  if (Address == 0) {
    // FIXME: this is JIT specific!
    if (TheJITResolver == 0)
      TheJITResolver = new JITResolver(MCE);
    Address = TheJITResolver->getLazyResolver((Function*)GV);
  }

  emitMaybePCRelativeValue(Address, false);
}



/// N86 namespace - Native X86 Register numbers... used by X86 backend.
///
namespace N86 {
  enum {
    EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
  };
}


// getX86RegNum - This function maps LLVM register identifiers to their X86
// specific numbering, which is used in various places encoding instructions.
//
static unsigned getX86RegNum(unsigned RegNo) {
  switch(RegNo) {
  case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
  case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
  case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
  case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
  case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
  case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
  case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
  case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;

  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
    return RegNo-X86::ST0;
  default:
    assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
           "Unknown physical register!");
    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
    return 0;
  }
}

inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
                                      unsigned RM) {
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
  return RM | (RegOpcode << 3) | (Mod << 6);
}

void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
}

void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
  // SIB byte is in the same format as the ModRMByte...
  MCE.emitByte(ModRMByte(SS, Index, Base));
}

void Emitter::emitConstant(unsigned Val, unsigned Size) {
  // Output the constant in little endian byte order...
  for (unsigned i = 0; i != Size; ++i) {
    MCE.emitByte(Val & 255);
    Val >>= 8;
  }
}

static bool isDisp8(int Value) {
  return Value == (signed char)Value;
}

void Emitter::emitMemModRMByte(const MachineInstr &MI,
                               unsigned Op, unsigned RegOpcodeField) {
  const MachineOperand &Disp     = MI.getOperand(Op+3);
  if (MI.getOperand(Op).isConstantPoolIndex()) {
    // Emit a direct address reference [disp32] where the displacement of the
    // constant pool entry is controlled by the MCE.
    MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
    unsigned Index = MI.getOperand(Op).getConstantPoolIndex();
    unsigned Address = MCE.getConstantPoolEntryAddress(Index);
    MCE.emitWord(Address+Disp.getImmedValue());
    return;
  }

  const MachineOperand &BaseReg  = MI.getOperand(Op);
  const MachineOperand &Scale    = MI.getOperand(Op+1);
  const MachineOperand &IndexReg = MI.getOperand(Op+2);

  // Is a SIB byte needed?
  if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
    if (BaseReg.getReg() == 0) {  // Just a displacement?
      // Emit special case [disp32] encoding
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
      emitConstant(Disp.getImmedValue(), 4);
    } else {
      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
      if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
        // Emit simple indirect register encoding... [EAX] f.e.
        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
      } else if (isDisp8(Disp.getImmedValue())) {
        // Emit the disp8 encoding... [REG+disp8]
        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
        emitConstant(Disp.getImmedValue(), 1);
      } else {
        // Emit the most general non-SIB encoding: [REG+disp32]
        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
        emitConstant(Disp.getImmedValue(), 4);
      }
    }

  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
    assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");

    bool ForceDisp32 = false;
    bool ForceDisp8  = false;
    if (BaseReg.getReg() == 0) {
      // If there is no base register, we emit the special case SIB byte with
      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
      ForceDisp32 = true;
    } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
      // Emit no displacement ModR/M byte
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
    } else if (isDisp8(Disp.getImmedValue())) {
      // Emit the disp8 encoding...
      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    } else {
      // Emit the normal disp32 encoding...
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
    }

    // Calculate what the SS field value should be...
    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
    unsigned SS = SSTable[Scale.getImmedValue()];

    if (BaseReg.getReg() == 0) {
      // Handle the SIB byte for the case where there is no base.  The
      // displacement has already been output.
      assert(IndexReg.getReg() && "Index register must be specified!");
      emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
    } else {
      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
      unsigned IndexRegNo;
      if (IndexReg.getReg())
	IndexRegNo = getX86RegNum(IndexReg.getReg());
      else
	IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
      emitSIBByte(SS, IndexRegNo, BaseRegNo);
    }

    // Do we need to output a displacement?
    if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
      if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
        emitConstant(Disp.getImmedValue(), 1);
      else
        emitConstant(Disp.getImmedValue(), 4);
    }
  }
}

static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) {
  switch (Desc.TSFlags & X86II::ArgMask) {
  case X86II::Arg8:   return 1;
  case X86II::Arg16:  return 2;
  case X86II::Arg32:  return 4;
  case X86II::ArgF32: return 4;
  case X86II::ArgF64: return 8;
  case X86II::ArgF80: return 10;
  default: assert(0 && "Memory size not set!");
    return 0;
  }
}

void Emitter::emitInstruction(MachineInstr &MI) {
  NumEmitted++;  // Keep track of the # of mi's emitted

  unsigned Opcode = MI.getOpcode();
  const TargetInstrDescriptor &Desc = II->get(Opcode);

  // Emit instruction prefixes if necessary
  if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...

  switch (Desc.TSFlags & X86II::Op0Mask) {
  case X86II::TB:
    MCE.emitByte(0x0F);   // Two-byte opcode prefix
    break;
  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
    MCE.emitByte(0xD8+
		 (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
		                   >> X86II::Op0Shift));
    break; // Two-byte opcode prefix
  default: assert(0 && "Invalid prefix!");
  case 0: break;  // No prefix!
  }

  unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
  switch (Desc.TSFlags & X86II::FormMask) {
  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
  case X86II::Pseudo:
    if (Opcode != X86::IMPLICIT_USE && Opcode != X86::IMPLICIT_DEF)
      std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
    break;

  case X86II::RawFrm:
    MCE.emitByte(BaseOpcode);
    if (MI.getNumOperands() == 1) {
      MachineOperand &MO = MI.getOperand(0);
      if (MO.isPCRelativeDisp()) {
        // Conditional branch... FIXME: this should use an MBB destination!
        emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue()));
      } else if (MO.isGlobalAddress()) {
        assert(MO.isPCRelative() && "Call target is not PC Relative?");
        emitGlobalAddressForCall(MO.getGlobal());
      } else if (MO.isExternalSymbol()) {
        unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
        assert(Address && "Unknown external symbol!");
        emitMaybePCRelativeValue(Address, MO.isPCRelative());
      } else {
	assert(0 && "Unknown RawFrm operand!");
      }
    }
    break;

  case X86II::AddRegFrm:
    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
    if (MI.getNumOperands() == 2) {
      MachineOperand &MO1 = MI.getOperand(1);
      if (MO1.isImmediate() || MO1.getVRegValueOrNull() ||
	  MO1.isGlobalAddress() || MO1.isExternalSymbol()) {
	unsigned Size = sizeOfPtr(Desc);
	if (Value *V = MO1.getVRegValueOrNull()) {
	  assert(Size == 4 && "Don't know how to emit non-pointer values!");
          emitGlobalAddressForPtr(cast<GlobalValue>(V));
	} else if (MO1.isGlobalAddress()) {
	  assert(Size == 4 && "Don't know how to emit non-pointer values!");
          assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
          emitGlobalAddressForPtr(MO1.getGlobal());
	} else if (MO1.isExternalSymbol()) {
	  assert(Size == 4 && "Don't know how to emit non-pointer values!");

          unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
          assert(Address && "Unknown external symbol!");
          emitMaybePCRelativeValue(Address, MO1.isPCRelative());
	} else {
	  emitConstant(MO1.getImmedValue(), Size);
	}
      }
    }
    break;

  case X86II::MRMDestReg: {
    MCE.emitByte(BaseOpcode);
    MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode));
    emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg()));
    if (MI.getNumOperands() == 4)
      emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc));
    break;
  }
  case X86II::MRMDestMem:
    MCE.emitByte(BaseOpcode);
    emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
    break;

  case X86II::MRMSrcReg:
    MCE.emitByte(BaseOpcode);

    if (MI.getNumOperands() == 2) {
      emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
                       getX86RegNum(MI.getOperand(0).getReg()));
    } else if (MI.getOperand(2).isImmediate()) {
      emitRegModRMByte(MI.getOperand(1).getReg(),
                       getX86RegNum(MI.getOperand(0).getReg()));

      emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
    } else {
      emitRegModRMByte(MI.getOperand(2).getReg(),
                       getX86RegNum(MI.getOperand(0).getReg()));
    }
    break;

  case X86II::MRMSrcMem:
    MCE.emitByte(BaseOpcode);
    emitMemModRMByte(MI, MI.getNumOperands()-4,
                     getX86RegNum(MI.getOperand(0).getReg()));
    break;

  case X86II::MRMS0r: case X86II::MRMS1r:
  case X86II::MRMS2r: case X86II::MRMS3r:
  case X86II::MRMS4r: case X86II::MRMS5r:
  case X86II::MRMS6r: case X86II::MRMS7r:
    MCE.emitByte(BaseOpcode);
    emitRegModRMByte(MI.getOperand(0).getReg(),
                     (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);

    if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
      unsigned Size = sizeOfPtr(Desc);
      emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
    }
    break;

  case X86II::MRMS0m: case X86II::MRMS1m:
  case X86II::MRMS2m: case X86II::MRMS3m:
  case X86II::MRMS4m: case X86II::MRMS5m:
  case X86II::MRMS6m: case X86II::MRMS7m: 
    MCE.emitByte(BaseOpcode);
    emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m);

    if (MI.getNumOperands() == 5) {
      unsigned Size = sizeOfPtr(Desc);
      emitConstant(MI.getOperand(4).getImmedValue(), Size);
    }
    break;
  }
}