llvm.org GIT mirror llvm / release_1 lib / Target / X86 / Printer.cpp
release_1

Tree @release_1 (Download .tar.gz)

Printer.cpp @release_1raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal
// representation of machine-dependent LLVM code to Intel-format
// assembly language. This printer is the output mechanism used
// by `llc' and `lli -print-machineinstrs' on X86.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "Support/Statistic.h"
#include "Support/StringExtras.h"
#include "Support/CommandLine.h"

namespace {
  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");

  // FIXME: This should be automatically picked up by autoconf from the C
  // frontend
  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));

  struct Printer : public MachineFunctionPass {
    /// Output stream on which we're printing assembly code.
    ///
    std::ostream &O;

    /// Target machine description which we query for reg. names, data
    /// layout, etc.
    ///
    TargetMachine &TM;

    /// Name-mangler for global names.
    ///
    Mangler *Mang;

    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }

    /// We name each basic block in a Function with a unique number, so
    /// that we can consistently refer to them later. This is cleared
    /// at the beginning of each call to runOnMachineFunction().
    ///
    typedef std::map<const Value *, unsigned> ValueMapTy;
    ValueMapTy NumberForBB;

    /// Cache of mangled name for current function. This is
    /// recalculated at the beginning of each call to
    /// runOnMachineFunction().
    ///
    std::string CurrentFnName;

    virtual const char *getPassName() const {
      return "X86 Assembly Printer";
    }

    void checkImplUses (const TargetInstrDescriptor &Desc);
    void printMachineInstruction(const MachineInstr *MI);
    void printOp(const MachineOperand &MO,
		 bool elideOffsetKeyword = false);
    void printMemReference(const MachineInstr *MI, unsigned Op);
    void printConstantPool(MachineConstantPool *MCP);
    bool runOnMachineFunction(MachineFunction &F);    
    std::string ConstantExprToString(const ConstantExpr* CE);
    std::string valToExprString(const Value* V);
    bool doInitialization(Module &M);
    bool doFinalization(Module &M);
    void printConstantValueOnly(const Constant* CV);
    void printSingleConstantValue(const Constant* CV);
  };
} // end of anonymous namespace

/// createX86CodePrinterPass - Returns a pass that prints the X86
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description.  This should work
/// regardless of whether the function is in SSA form.
///
FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
  return new Printer(o, tm);
}

/// valToExprString - Helper function for ConstantExprToString().
/// Appends result to argument string S.
/// 
std::string Printer::valToExprString(const Value* V) {
  std::string S;
  bool failed = false;
  if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
    if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
      S += std::string(CB == ConstantBool::True ? "1" : "0");
    else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
      S += itostr(CI->getValue());
    else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
      S += utostr(CI->getValue());
    else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
      S += ftostr(CFP->getValue());
    else if (isa<ConstantPointerNull>(CV))
      S += "0";
    else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
      S += valToExprString(CPR->getValue());
    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
      S += ConstantExprToString(CE);
    else
      failed = true;
  } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
    S += Mang->getValueName(GV);
  }
  else
    failed = true;

  if (failed) {
    assert(0 && "Cannot convert value to string");
    S += "<illegal-value>";
  }
  return S;
}

/// ConstantExprToString - Convert a ConstantExpr to an asm expression
/// and return this as a string.
///
std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
  const TargetData &TD = TM.getTargetData();
  switch(CE->getOpcode()) {
  case Instruction::GetElementPtr:
    { // generate a symbolic expression for the byte address
      const Value* ptrVal = CE->getOperand(0);
      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec))
        return "(" + valToExprString(ptrVal) + ") + " + utostr(Offset);
      else
        return valToExprString(ptrVal);
    }

  case Instruction::Cast:
    // Support only non-converting or widening casts for now, that is,
    // ones that do not involve a change in value.  This assertion is
    // not a complete check.
    {
      Constant *Op = CE->getOperand(0);
      const Type *OpTy = Op->getType(), *Ty = CE->getType();
      assert(((isa<PointerType>(OpTy)
	       && (Ty == Type::LongTy || Ty == Type::ULongTy))
	      || (isa<PointerType>(Ty)
		  && (OpTy == Type::LongTy || OpTy == Type::ULongTy)))
	     || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
		  && (OpTy->isLosslesslyConvertibleTo(Ty))))
	     && "FIXME: Don't yet support this kind of constant cast expr");
      return "(" + valToExprString(Op) + ")";
    }

  case Instruction::Add:
    return "(" + valToExprString(CE->getOperand(0)) + ") + ("
               + valToExprString(CE->getOperand(1)) + ")";

  default:
    assert(0 && "Unsupported operator in ConstantExprToString()");
    return "";
  }
}

/// printSingleConstantValue - Print a single constant value.
///
void
Printer::printSingleConstantValue(const Constant* CV)
{
  assert(CV->getType() != Type::VoidTy &&
         CV->getType() != Type::TypeTy &&
         CV->getType() != Type::LabelTy &&
         "Unexpected type for Constant");
  
  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
         && "Aggregate types should be handled outside this function");

  const Type *type = CV->getType();
  O << "\t";
  switch(type->getPrimitiveID())
    {
    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
      O << ".byte";
      break;
    case Type::UShortTyID: case Type::ShortTyID:
      O << ".word";
      break;
    case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
      O << ".long";
      break;
    case Type::ULongTyID: case Type::LongTyID:
      O << ".quad";
      break;
    case Type::FloatTyID:
      O << ".long";
      break;
    case Type::DoubleTyID:
      O << ".quad";
      break;
    case Type::ArrayTyID:
      if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
	  (cast<ArrayType>(type)->getElementType() == Type::SByteTy))
	O << ".string";
      else
	assert (0 && "Can't handle printing this type of array");
      break;
    default:
      assert (0 && "Can't handle printing this type of thing");
      break;
    }
  O << "\t";
  
  if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
    {
      // Constant expression built from operators, constants, and
      // symbolic addrs
      O << ConstantExprToString(CE) << "\n";
    }
  else if (type->isPrimitiveType())
    {
      if (type->isFloatingPoint()) {
	// FP Constants are printed as integer constants to avoid losing
	// precision...
	double Val = cast<ConstantFP>(CV)->getValue();
	if (type == Type::FloatTy) {
	  float FVal = (float)Val;
	  char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
	  O << *(unsigned int*)ProxyPtr;            
	} else if (type == Type::DoubleTy) {
	  char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
	  O << *(uint64_t*)ProxyPtr;            
	} else {
	  assert(0 && "Unknown floating point type!");
	}
        
	O << "\t# " << type->getDescription() << " value: " << Val << "\n";
      } else {
	WriteAsOperand(O, CV, false, false) << "\n";
      }
    }
  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
    {
      // This is a constant address for a global variable or method.
      // Use the name of the variable or method as the address value.
      O << Mang->getValueName(CPR->getValue()) << "\n";
    }
  else if (isa<ConstantPointerNull>(CV))
    {
      // Null pointer value
      O << "0\n";
    }
  else
    {
      assert(0 && "Unknown elementary type for constant");
    }
}

/// isStringCompatible - Can we treat the specified array as a string?
/// Only if it is an array of ubytes or non-negative sbytes.
///
static bool isStringCompatible(const ConstantArray *CVA) {
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
  if (ETy == Type::UByteTy) return true;
  if (ETy != Type::SByteTy) return false;

  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
      return false;

  return true;
}

/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
  return (X&7)+'0';
}

/// getAsCString - Return the specified array as a C compatible
/// string, only if the predicate isStringCompatible is true.
///
static std::string getAsCString(const ConstantArray *CVA) {
  assert(isStringCompatible(CVA) && "Array is not string compatible!");

  std::string Result;
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
  Result = "\"";
  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();

    if (C == '"') {
      Result += "\\\"";
    } else if (C == '\\') {
      Result += "\\\\";
    } else if (isprint(C)) {
      Result += C;
    } else {
      switch(C) {
      case '\b': Result += "\\b"; break;
      case '\f': Result += "\\f"; break;
      case '\n': Result += "\\n"; break;
      case '\r': Result += "\\r"; break;
      case '\t': Result += "\\t"; break;
      default:
        Result += '\\';
        Result += toOctal(C >> 6);
        Result += toOctal(C >> 3);
        Result += toOctal(C >> 0);
        break;
      }
    }
  }
  Result += "\"";
  return Result;
}

// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstantValue() to print each individual value.
void Printer::printConstantValueOnly(const Constant *CV) {  
  const TargetData &TD = TM.getTargetData();

  if (CV->isNullValue()) {
    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";      
  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    if (isStringCompatible(CVA)) {
      // print the string alone and return
      O << "\t.ascii\t" << getAsCString(CVA) << "\n";
    } else { // Not a string.  Print the values in successive locations
      const std::vector<Use> &constValues = CVA->getValues();
      for (unsigned i=0; i < constValues.size(); i++)
        printConstantValueOnly(cast<Constant>(constValues[i].get()));
    }
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    // Print the fields in successive locations. Pad to align if needed!
    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
    const std::vector<Use>& constValues = CVS->getValues();
    unsigned sizeSoFar = 0;
    for (unsigned i=0, N = constValues.size(); i < N; i++) {
      const Constant* field = cast<Constant>(constValues[i].get());

      // Check if padding is needed and insert one or more 0s.
      unsigned fieldSize = TD.getTypeSize(field->getType());
      unsigned padSize = ((i == N-1? cvsLayout->StructSize
                           : cvsLayout->MemberOffsets[i+1])
                          - cvsLayout->MemberOffsets[i]) - fieldSize;
      sizeSoFar += fieldSize + padSize;

      // Now print the actual field value
      printConstantValueOnly(field);

      // Insert the field padding unless it's zero bytes...
      if (padSize)
        O << "\t.zero\t " << padSize << "\n";      
    }
    assert(sizeSoFar == cvsLayout->StructSize &&
           "Layout of constant struct may be incorrect!");
  } else
    printSingleConstantValue(CV);
}

/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void Printer::printConstantPool(MachineConstantPool *MCP) {
  const std::vector<Constant*> &CP = MCP->getConstants();
  const TargetData &TD = TM.getTargetData();
 
  if (CP.empty()) return;

  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    O << "\t.section .rodata\n";
    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
      << "\n";
    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
      << *CP[i] << "\n";
    printConstantValueOnly (CP[i]);
  }
}

/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool Printer::runOnMachineFunction(MachineFunction &MF) {
  // BBNumber is used here so that a given Printer will never give two
  // BBs the same name. (If you have a better way, please let me know!)
  static unsigned BBNumber = 0;

  O << "\n\n";
  // What's my mangled name?
  CurrentFnName = Mang->getValueName(MF.getFunction());

  // Print out constants referenced by the function
  printConstantPool(MF.getConstantPool());

  // Print out labels for the function.
  O << "\t.text\n";
  O << "\t.align 16\n";
  O << "\t.globl\t" << CurrentFnName << "\n";
  if (!EmitCygwin)
    O << "\t.type\t" << CurrentFnName << ", @function\n";
  O << CurrentFnName << ":\n";

  // Number each basic block so that we can consistently refer to them
  // in PC-relative references.
  NumberForBB.clear();
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    NumberForBB[I->getBasicBlock()] = BBNumber++;
  }

  // Print out code for the function.
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    // Print a label for the basic block.
    O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
      << I->getBasicBlock()->getName() << "\n";
    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
	 II != E; ++II) {
      // Print the assembly for the instruction.
      O << "\t";
      printMachineInstruction(*II);
    }
  }

  // We didn't modify anything.
  return false;
}

static bool isScale(const MachineOperand &MO) {
  return MO.isImmediate() &&
    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}

static bool isMem(const MachineInstr *MI, unsigned Op) {
  if (MI->getOperand(Op).isFrameIndex()) return true;
  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
  return Op+4 <= MI->getNumOperands() &&
    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
}



void Printer::printOp(const MachineOperand &MO,
		      bool elideOffsetKeyword /* = false */) {
  const MRegisterInfo &RI = *TM.getRegisterInfo();
  switch (MO.getType()) {
  case MachineOperand::MO_VirtualRegister:
    if (Value *V = MO.getVRegValueOrNull()) {
      O << "<" << V->getName() << ">";
      return;
    }
    // FALLTHROUGH
  case MachineOperand::MO_MachineRegister:
    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
      // Bug Workaround: See note in Printer::doInitialization about %.
      O << "%" << RI.get(MO.getReg()).Name;
    else
      O << "%reg" << MO.getReg();
    return;

  case MachineOperand::MO_SignExtendedImmed:
  case MachineOperand::MO_UnextendedImmed:
    O << (int)MO.getImmedValue();
    return;
  case MachineOperand::MO_PCRelativeDisp: {
    ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
    assert (i != NumberForBB.end()
            && "Could not find a BB in the NumberForBB map!");
    O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
    return;
  }
  case MachineOperand::MO_GlobalAddress:
    if (!elideOffsetKeyword)
      O << "OFFSET ";
    O << Mang->getValueName(MO.getGlobal());
    return;
  case MachineOperand::MO_ExternalSymbol:
    O << MO.getSymbolName();
    return;
  default:
    O << "<unknown operand type>"; return;    
  }
}

static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
  switch (Desc.TSFlags & X86II::ArgMask) {
  default: assert(0 && "Unknown arg size!");
  case X86II::Arg8:   return "BYTE PTR"; 
  case X86II::Arg16:  return "WORD PTR"; 
  case X86II::Arg32:  return "DWORD PTR"; 
  case X86II::Arg64:  return "QWORD PTR"; 
  case X86II::ArgF32:  return "DWORD PTR"; 
  case X86II::ArgF64:  return "QWORD PTR"; 
  case X86II::ArgF80:  return "XWORD PTR"; 
  }
}

void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
  assert(isMem(MI, Op) && "Invalid memory reference!");

  if (MI->getOperand(Op).isFrameIndex()) {
    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
    if (MI->getOperand(Op+3).getImmedValue())
      O << " + " << MI->getOperand(Op+3).getImmedValue();
    O << "]";
    return;
  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
    O << "[.CPI" << CurrentFnName << "_"
      << MI->getOperand(Op).getConstantPoolIndex();
    if (MI->getOperand(Op+3).getImmedValue())
      O << " + " << MI->getOperand(Op+3).getImmedValue();
    O << "]";
    return;
  }

  const MachineOperand &BaseReg  = MI->getOperand(Op);
  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
  const MachineOperand &IndexReg = MI->getOperand(Op+2);
  int DispVal                    = MI->getOperand(Op+3).getImmedValue();

  O << "[";
  bool NeedPlus = false;
  if (BaseReg.getReg()) {
    printOp(BaseReg);
    NeedPlus = true;
  }

  if (IndexReg.getReg()) {
    if (NeedPlus) O << " + ";
    if (ScaleVal != 1)
      O << ScaleVal << "*";
    printOp(IndexReg);
    NeedPlus = true;
  }

  if (DispVal) {
    if (NeedPlus)
      if (DispVal > 0)
	O << " + ";
      else {
	O << " - ";
	DispVal = -DispVal;
      }
    O << DispVal;
  }
  O << "]";
}

/// checkImplUses - Emit the implicit-use registers for the
/// instruction described by DESC, if its PrintImplUses flag is set.
///
void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
  const MRegisterInfo &RI = *TM.getRegisterInfo();
  if (Desc.TSFlags & X86II::PrintImplUses) {
    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
      // Bug Workaround: See note in Printer::doInitialization about %.
      O << ", %" << RI.get(*p).Name;
    }
  }
}

/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in Intel syntax to the current output stream.
///
void Printer::printMachineInstruction(const MachineInstr *MI) {
  unsigned Opcode = MI->getOpcode();
  const TargetInstrInfo &TII = TM.getInstrInfo();
  const TargetInstrDescriptor &Desc = TII.get(Opcode);

  ++EmittedInsts;
  switch (Desc.TSFlags & X86II::FormMask) {
  case X86II::Pseudo:
    // Print pseudo-instructions as comments; either they should have been
    // turned into real instructions by now, or they don't need to be
    // seen by the assembler (e.g., IMPLICIT_USEs.)
    O << "# ";
    if (Opcode == X86::PHI) {
      printOp(MI->getOperand(0));
      O << " = phi ";
      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
	if (i != 1) O << ", ";
	O << "[";
	printOp(MI->getOperand(i));
	O << ", ";
	printOp(MI->getOperand(i+1));
	O << "]";
      }
    } else {
      unsigned i = 0;
      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() || 
                                   MI->getOperand(0).opIsDefAndUse())) {
	printOp(MI->getOperand(0));
	O << " = ";
	++i;
      }
      O << TII.getName(MI->getOpcode());

      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
	O << " ";
	if (MI->getOperand(i).opIsDefOnly() || 
            MI->getOperand(i).opIsDefAndUse()) O << "*";
	printOp(MI->getOperand(i));
	if (MI->getOperand(i).opIsDefOnly() || 
            MI->getOperand(i).opIsDefAndUse()) O << "*";
      }
    }
    O << "\n";
    return;

  case X86II::RawFrm:
    // The accepted forms of Raw instructions are:
    //   1. nop     - No operand required
    //   2. jmp foo - PC relative displacement operand
    //   3. call bar - GlobalAddress Operand or External Symbol Operand
    //
    assert(MI->getNumOperands() == 0 ||
           (MI->getNumOperands() == 1 &&
	    (MI->getOperand(0).isPCRelativeDisp() ||
	     MI->getOperand(0).isGlobalAddress() ||
	     MI->getOperand(0).isExternalSymbol())) &&
           "Illegal raw instruction!");
    O << TII.getName(MI->getOpcode()) << " ";

    if (MI->getNumOperands() == 1) {
      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
    }
    O << "\n";
    return;

  case X86II::AddRegFrm: {
    // There are currently two forms of acceptable AddRegFrm instructions.
    // Either the instruction JUST takes a single register (like inc, dec, etc),
    // or it takes a register and an immediate of the same size as the register
    // (move immediate f.e.).  Note that this immediate value might be stored as
    // an LLVM value, to represent, for example, loading the address of a global
    // into a register.  The initial register might be duplicated if this is a
    // M_2_ADDR_REG instruction
    //
    assert(MI->getOperand(0).isRegister() &&
           (MI->getNumOperands() == 1 || 
            (MI->getNumOperands() == 2 &&
             (MI->getOperand(1).getVRegValueOrNull() ||
              MI->getOperand(1).isImmediate() ||
	      MI->getOperand(1).isRegister() ||
	      MI->getOperand(1).isGlobalAddress() ||
	      MI->getOperand(1).isExternalSymbol()))) &&
           "Illegal form for AddRegFrm instruction!");

    unsigned Reg = MI->getOperand(0).getReg();
    
    O << TII.getName(MI->getOpCode()) << " ";
    printOp(MI->getOperand(0));
    if (MI->getNumOperands() == 2 &&
	(!MI->getOperand(1).isRegister() ||
	 MI->getOperand(1).getVRegValueOrNull() ||
	 MI->getOperand(1).isGlobalAddress() ||
	 MI->getOperand(1).isExternalSymbol())) {
      O << ", ";
      printOp(MI->getOperand(1));
    }
    checkImplUses(Desc);
    O << "\n";
    return;
  }
  case X86II::MRMDestReg: {
    // There are two acceptable forms of MRMDestReg instructions, those with 2,
    // 3 and 4 operands:
    //
    // 2 Operands: this is for things like mov that do not read a second input
    //
    // 3 Operands: in this form, the first two registers (the destination, and
    // the first operand) should be the same, post register allocation.  The 3rd
    // operand is an additional input.  This should be for things like add
    // instructions.
    //
    // 4 Operands: This form is for instructions which are 3 operands forms, but
    // have a constant argument as well.
    //
    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
    assert(MI->getOperand(0).isRegister() &&
           (MI->getNumOperands() == 2 ||
	    (isTwoAddr && MI->getOperand(1).isRegister() &&
	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
	     (MI->getNumOperands() == 3 ||
	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
           && "Bad format for MRMDestReg!");

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(MI->getOperand(0));
    O << ", ";
    printOp(MI->getOperand(1+isTwoAddr));
    if (MI->getNumOperands() == 4) {
      O << ", ";
      printOp(MI->getOperand(3));
    }
    O << "\n";
    return;
  }

  case X86II::MRMDestMem: {
    // These instructions are the same as MRMDestReg, but instead of having a
    // register reference for the mod/rm field, it's a memory reference.
    //
    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");

    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
    printMemReference(MI, 0);
    O << ", ";
    printOp(MI->getOperand(4));
    O << "\n";
    return;
  }

  case X86II::MRMSrcReg: {
    // There are three forms that are acceptable for MRMSrcReg instructions,
    // those with 3 and 2 operands:
    //
    // 3 Operands: in this form, the last register (the second input) is the
    // ModR/M input.  The first two operands should be the same, post register
    // allocation.  This is for things like: add r32, r/m32
    //
    // 3 Operands: in this form, we can have 'INST R, R, imm', which is used for
    // instructions like the IMULri instructions.
    //
    // 2 Operands: this is for things like mov that do not read a second input
    //
    assert(MI->getOperand(0).isRegister() &&
           MI->getOperand(1).isRegister() &&
           (MI->getNumOperands() == 2 || 
            (MI->getNumOperands() == 3 && 
             (MI->getOperand(2).isRegister() ||
              MI->getOperand(2).isImmediate())))
           && "Bad format for MRMSrcReg!");
    if (MI->getNumOperands() == 3 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(MI->getOperand(0));

    // If this is IMULri* instructions, print the non-two-address operand.
    if (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()) {
      O << ", ";
      printOp(MI->getOperand(1));
    }

    O << ", ";
    printOp(MI->getOperand(MI->getNumOperands()-1));
    O << "\n";
    return;
  }

  case X86II::MRMSrcMem: {
    // These instructions are the same as MRMSrcReg, but instead of having a
    // register reference for the mod/rm field, it's a memory reference.
    //
    assert(MI->getOperand(0).isRegister() &&
           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || 
           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && 
            isMem(MI, 2))
           && "Bad format for MRMDestReg!");
    if (MI->getNumOperands() == 2+4 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(MI->getOperand(0));
    O << ", " << sizePtr(Desc) << " ";
    printMemReference(MI, MI->getNumOperands()-4);
    O << "\n";
    return;
  }

  case X86II::MRMS0r: case X86II::MRMS1r:
  case X86II::MRMS2r: case X86II::MRMS3r:
  case X86II::MRMS4r: case X86II::MRMS5r:
  case X86II::MRMS6r: case X86II::MRMS7r: {
    // In this form, the following are valid formats:
    //  1. sete r
    //  2. cmp reg, immediate
    //  2. shl rdest, rinput  <implicit CL or 1>
    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
    //    
    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
    assert((MI->getNumOperands() != 2 ||
            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
           "Bad MRMSxR format!");
    assert((MI->getNumOperands() < 3 ||
	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
           "Bad MRMSxR format!");

    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && 
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(MI->getOperand(0));
    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
      O << ", ";
      printOp(MI->getOperand(MI->getNumOperands()-1));
    }
    checkImplUses(Desc);
    O << "\n";

    return;
  }

  case X86II::MRMS0m: case X86II::MRMS1m:
  case X86II::MRMS2m: case X86II::MRMS3m:
  case X86II::MRMS4m: case X86II::MRMS5m:
  case X86II::MRMS6m: case X86II::MRMS7m: {
    // In this form, the following are valid formats:
    //  1. sete [m]
    //  2. cmp [m], immediate
    //  2. shl [m], rinput  <implicit CL or 1>
    //  3. sbb [m], immediate
    //    
    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
           isMem(MI, 0) && "Bad MRMSxM format!");
    assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
           "Bad MRMSxM format!");
    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
    // is misassembled by gas in intel_syntax mode as its 32-bit
    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
    // opcode bytes instead of the instruction.
    if (MI->getOpCode() == X86::FSTPr80) {
      if ((MI->getOperand(0).getReg() == X86::ESP)
	  && (MI->getOperand(1).getImmedValue() == 1)) {
	int DispVal = MI->getOperand(3).getImmedValue();
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
          unsigned int val = (unsigned int) DispVal;
          O << ".byte 0xdb, 0xbc, 0x24\n\t";
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
	} else { // 1 byte disp.
          unsigned char val = (unsigned char) DispVal;
          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
            << std::dec << "\t# ";
	}
      }
    }
    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
    // misassembled by gas in intel_syntax mode as its 32-bit
    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
    // opcode bytes instead of the instruction.
    if (MI->getOpCode() == X86::FLDr80) {
      if ((MI->getOperand(0).getReg() == X86::ESP)
          && (MI->getOperand(1).getImmedValue() == 1)) {
	int DispVal = MI->getOperand(3).getImmedValue();
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
          unsigned int val = (unsigned int) DispVal;
          O << ".byte 0xdb, 0xac, 0x24\n\t";
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
	} else { // 1 byte disp.
          unsigned char val = (unsigned char) DispVal;
          O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
            << std::dec << "\t# ";
	}
      }
    }
    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
    // invalid opcode, saying "64 bit operations are only supported in
    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
    // [...]", which is wrong. Workaround: Output the raw opcode bytes
    // instead of the instruction.
    if (MI->getOpCode() == X86::FILDr64) {
      if ((MI->getOperand(0).getReg() == X86::ESP)
          && (MI->getOperand(1).getImmedValue() == 1)) {
	int DispVal = MI->getOperand(3).getImmedValue();
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
          unsigned int val = (unsigned int) DispVal;
          O << ".byte 0xdf, 0xac, 0x24\n\t";
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
	} else { // 1 byte disp.
          unsigned char val = (unsigned char) DispVal;
          O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
            << std::dec << "\t# ";
	}
      }
    }
    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
    // an invalid opcode, saying "64 bit operations are only
    // supported in 64 bit modes." libopcodes disassembles it as
    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
    // "fistpll DWORD PTR " instead, which is what libopcodes is
    // expecting to see.
    if (MI->getOpCode() == X86::FISTPr64) {
      O << "fistpll DWORD PTR ";
      printMemReference(MI, 0);
      if (MI->getNumOperands() == 5) {
	O << ", ";
	printOp(MI->getOperand(4));
      }
      O << "\t# ";
    }
    
    O << TII.getName(MI->getOpCode()) << " ";
    O << sizePtr(Desc) << " ";
    printMemReference(MI, 0);
    if (MI->getNumOperands() == 5) {
      O << ", ";
      printOp(MI->getOperand(4));
    }
    O << "\n";
    return;
  }

  default:
    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
  }
}

bool Printer::doInitialization(Module &M) {
  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
  //
  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
  // instruction as a reference to the register named sp, and if you try to
  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
  // before being looked up in the symbol table. This creates spurious
  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
  // mode, and decorate all register names with percent signs.
  O << "\t.intel_syntax\n";
  Mang = new Mangler(M, EmitCygwin);
  return false; // success
}

// SwitchSection - Switch to the specified section of the executable if we are
// not already in it!
//
static void SwitchSection(std::ostream &OS, std::string &CurSection,
                          const char *NewSection) {
  if (CurSection != NewSection) {
    CurSection = NewSection;
    if (!CurSection.empty())
      OS << "\t" << NewSection << "\n";
  }
}

bool Printer::doFinalization(Module &M) {
  const TargetData &TD = TM.getTargetData();
  std::string CurSection;

  // Print out module-level global variables here.
  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
    if (I->hasInitializer()) {   // External global require no code
      O << "\n\n";
      std::string name = Mang->getValueName(I);
      Constant *C = I->getInitializer();
      unsigned Size = TD.getTypeSize(C->getType());
      unsigned Align = TD.getTypeAlignment(C->getType());

      if (C->isNullValue() && 
          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
        SwitchSection(O, CurSection, ".data");
        if (I->hasInternalLinkage())
          O << "\t.local " << name << "\n";
        
        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
          << "," << (unsigned)TD.getTypeAlignment(C->getType());
        O << "\t\t# ";
        WriteAsOperand(O, I, true, true, &M);
        O << "\n";
      } else {
        switch (I->getLinkage()) {
        case GlobalValue::LinkOnceLinkage:
        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
          // Nonnull linkonce -> weak
          O << "\t.weak " << name << "\n";
          SwitchSection(O, CurSection, "");
          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
          break;
        
        case GlobalValue::AppendingLinkage:
          // FIXME: appending linkage variables should go into a section of
          // their name or something.  For now, just emit them as external.
        case GlobalValue::ExternalLinkage:
          // If external or appending, declare as a global symbol
          O << "\t.globl " << name << "\n";
          // FALL THROUGH
        case GlobalValue::InternalLinkage:
          if (C->isNullValue())
            SwitchSection(O, CurSection, ".bss");
          else
            SwitchSection(O, CurSection, ".data");
          break;
        }

        O << "\t.align " << Align << "\n";
        O << "\t.type " << name << ",@object\n";
        O << "\t.size " << name << "," << Size << "\n";
        O << name << ":\t\t\t\t# ";
        WriteAsOperand(O, I, true, true, &M);
        O << " = ";
        WriteAsOperand(O, C, false, false, &M);
        O << "\n";
        printConstantValueOnly(C);
      }
    }

  delete Mang;
  return false; // success
}