llvm.org GIT mirror llvm / master lib / Target / PowerPC / PPCISelLowering.h
master

Tree @master (Download .tar.gz)

PPCISelLowering.h @masterraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H

#include "PPCInstrInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/MachineValueType.h"
#include <utility>

namespace llvm {

  namespace PPCISD {

    // When adding a NEW PPCISD node please add it to the correct position in
    // the enum. The order of elements in this enum matters!
    // Values that are added after this entry:
    //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
    // are considered memory opcodes and are treated differently than entries
    // that come before it. For example, ADD or MUL should be placed before
    // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
    // after it.
    enum NodeType : unsigned {
      // Start the numbering where the builtin ops and target ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// FSEL - Traditional three-operand fsel node.
      ///
      FSEL,

      /// FCFID - The FCFID instruction, taking an f64 operand and producing
      /// and f64 value containing the FP representation of the integer that
      /// was temporarily in the f64 operand.
      FCFID,

      /// Newer FCFID[US] integer-to-floating-point conversion instructions for
      /// unsigned integers and single-precision outputs.
      FCFIDU, FCFIDS, FCFIDUS,

      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
      /// operand, producing an f64 value containing the integer representation
      /// of that FP value.
      FCTIDZ, FCTIWZ,

      /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
      /// unsigned integers with round toward zero.
      FCTIDUZ, FCTIWUZ,

      /// Floating-point-to-interger conversion instructions
      FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR,

      /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
      /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
      VEXTS,

      /// SExtVElems, takes an input vector of a smaller type and sign
      /// extends to an output vector of a larger type.
      SExtVElems,

      /// Reciprocal estimate instructions (unary FP ops).
      FRE, FRSQRTE,

      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
      // three v4f32 operands and producing a v4f32 result.
      VMADDFP, VNMSUBFP,

      /// VPERM - The PPC VPERM Instruction.
      ///
      VPERM,

      /// XXSPLT - The PPC VSX splat instructions
      ///
      XXSPLT,

      /// VECINSERT - The PPC vector insert instruction
      ///
      VECINSERT,

      /// XXREVERSE - The PPC VSX reverse instruction
      ///
      XXREVERSE,

      /// VECSHL - The PPC vector shift left instruction
      ///
      VECSHL,

      /// XXPERMDI - The PPC XXPERMDI instruction
      ///
      XXPERMDI,

      /// The CMPB instruction (takes two operands of i32 or i64).
      CMPB,

      /// Hi/Lo - These represent the high and low 16-bit parts of a global
      /// address respectively.  These nodes have two operands, the first of
      /// which must be a TargetGlobalAddress, and the second of which must be a
      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
      /// though these are usually folded into other nodes.
      Hi, Lo,

      /// The following two target-specific nodes are used for calls through
      /// function pointers in the 64-bit SVR4 ABI.

      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
      /// compute an allocation on the stack.
      DYNALLOC,

      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
      /// compute an offset from native SP to the address  of the most recent
      /// dynamic alloca.
      DYNAREAOFFSET,

      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// These nodes represent PPC shifts.
      ///
      /// For scalar types, only the last `n + 1` bits of the shift amounts
      /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
      /// for exact behaviors.
      ///
      /// For vector types, only the last n bits are used. See vsld.
      SRL, SRA, SHL,

      /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
      /// word and shift left immediate.
      EXTSWSLI,

      /// The combination of sra[wd]i and addze used to implemented signed
      /// integer division by a power of 2. The first operand is the dividend,
      /// and the second is the constant shift amount (representing the
      /// divisor).
      SRA_ADDZE,

      /// CALL - A direct function call.
      /// CALL_NOP is a call with the special NOP which follows 64-bit
      /// SVR4 calls and 32-bit/64-bit AIX calls.
      CALL, CALL_NOP,

      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
      /// MTCTR instruction.
      MTCTR,

      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
      /// BCTRL instruction.
      BCTRL,

      /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
      /// instruction and the TOC reload required on SVR4 PPC64.
      BCTRL_LOAD_TOC,

      /// Return with a flag operand, matched by 'blr'
      RET_FLAG,

      /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
      /// This copies the bits corresponding to the specified CRREG into the
      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
      MFOCRF,

      /// Direct move from a VSX register to a GPR
      MFVSR,

      /// Direct move from a GPR to a VSX register (algebraic)
      MTVSRA,

      /// Direct move from a GPR to a VSX register (zero)
      MTVSRZ,

      /// Direct move of 2 consecutive GPR to a VSX register.
      BUILD_FP128,

      /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
      /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
      /// unsupported for this target.
      /// Merge 2 GPRs to a single SPE register.
      BUILD_SPE64,

      /// Extract SPE register component, second argument is high or low.
      EXTRACT_SPE,

      /// Extract a subvector from signed integer vector and convert to FP.
      /// It is primarily used to convert a (widened) illegal integer vector
      /// type to a legal floating point vector type.
      /// For example v2i32 -> widened to v4i32 -> v2f64
      SINT_VEC_TO_FP,

      /// Extract a subvector from unsigned integer vector and convert to FP.
      /// As with SINT_VEC_TO_FP, used for converting illegal types.
      UINT_VEC_TO_FP,

      // FIXME: Remove these once the ANDI glue bug is fixed:
      /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
      /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
      /// implement truncation of i32 or i64 to i1.
      ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,

      // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
      // target (returns (Lo, Hi)). It takes a chain operand.
      READ_TIME_BASE,

      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
      /// instructions.  For lack of better number, we use the opcode number
      /// encoding for the OPC field to identify the compare.  For example, 838
      /// is VCMPGTSH.
      VCMP,

      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
      /// altivec VCMP*o instructions.  For lack of better number, we use the
      /// opcode number encoding for the OPC field to identify the compare.  For
      /// example, 838 is VCMPGTSH.
      VCMPo,

      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
      /// condition register to branch on, OPC is the branch opcode to use (e.g.
      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
      /// an optional input flag argument.
      COND_BRANCH,

      /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
      /// loops.
      BDNZ, BDZ,

      /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
      /// towards zero.  Used only as part of the long double-to-int
      /// conversion sequence.
      FADDRTZ,

      /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
      MFFS,

      /// TC_RETURN - A tail call return.
      ///   operand #0 chain
      ///   operand #1 callee (register or absolute)
      ///   operand #2 stack adjustment
      ///   operand #3 optional in flag
      TC_RETURN,

      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
      CR6SET,
      CR6UNSET,

      /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
      /// for non-position independent code on PPC32.
      PPC32_GOT,

      /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
      /// local dynamic TLS and position indendepent code on PPC32.
      PPC32_PICGOT,

      /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
      /// TLS model, produces an ADDIS8 instruction that adds the GOT
      /// base to sym\@got\@tprel\@ha.
      ADDIS_GOT_TPREL_HA,

      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
      /// TLS model, produces a LD instruction with base register G8RReg
      /// and offset sym\@got\@tprel\@l.  This completes the addition that
      /// finds the offset of "sym" relative to the thread pointer.
      LD_GOT_TPREL_L,

      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
      /// model, produces an ADD instruction that adds the contents of
      /// G8RReg to the thread pointer.  Symbol contains a relocation
      /// sym\@tls which is to be replaced by the thread pointer and
      /// identifies to the linker that the instruction is part of a
      /// TLS sequence.
      ADD_TLS,

      /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
      /// model, produces an ADDIS8 instruction that adds the GOT base
      /// register to sym\@got\@tlsgd\@ha.
      ADDIS_TLSGD_HA,

      /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
      /// model, produces an ADDI8 instruction that adds G8RReg to
      /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
      /// ADDIS_TLSGD_L_ADDR until after register assignment.
      ADDI_TLSGD_L,

      /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
      /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
      /// ADDIS_TLSGD_L_ADDR until after register assignment.
      GET_TLS_ADDR,

      /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
      /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
      /// register assignment.
      ADDI_TLSGD_L_ADDR,

      /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
      /// model, produces an ADDIS8 instruction that adds the GOT base
      /// register to sym\@got\@tlsld\@ha.
      ADDIS_TLSLD_HA,

      /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
      /// model, produces an ADDI8 instruction that adds G8RReg to
      /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
      /// ADDIS_TLSLD_L_ADDR until after register assignment.
      ADDI_TLSLD_L,

      /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
      /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
      /// ADDIS_TLSLD_L_ADDR until after register assignment.
      GET_TLSLD_ADDR,

      /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
      /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
      /// following register assignment.
      ADDI_TLSLD_L_ADDR,

      /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
      /// model, produces an ADDIS8 instruction that adds X3 to
      /// sym\@dtprel\@ha.
      ADDIS_DTPREL_HA,

      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
      /// model, produces an ADDI8 instruction that adds G8RReg to
      /// sym\@got\@dtprel\@l.
      ADDI_DTPREL_L,

      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
      /// during instruction selection to optimize a BUILD_VECTOR into
      /// operations on splats.  This is necessary to avoid losing these
      /// optimizations due to constant folding.
      VADD_SPLAT,

      /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
      /// operand identifies the operating system entry point.
      SC,

      /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
      CLRBHRB,

      /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
      /// history rolling buffer entry.
      MFBHRBE,

      /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
      RFEBB,

      /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
      /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
      /// or stxvd2x instruction.  The chain is necessary because the
      /// sequence replaces a load and needs to provide the same number
      /// of outputs.
      XXSWAPD,

      /// An SDNode for swaps that are not associated with any loads/stores
      /// and thereby have no chain.
      SWAP_NO_CHAIN,
      
      /// An SDNode for Power9 vector absolute value difference.
      /// operand #0 vector
      /// operand #1 vector
      /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
      /// the most significant bit for signed i32
      ///
      /// Power9 VABSD* instructions are designed to support unsigned integer
      /// vectors (byte/halfword/word), if we want to make use of them for signed
      /// integer vectors, we have to flip their sign bits first. To flip sign bit
      /// for byte/halfword integer vector would become inefficient, but for word
      /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
      /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000) 
      ///               => VABSDUW((XVNEGSP a), (XVNEGSP b))
      VABSD,

      /// QVFPERM = This corresponds to the QPX qvfperm instruction.
      QVFPERM,

      /// QVGPCI = This corresponds to the QPX qvgpci instruction.
      QVGPCI,

      /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
      QVALIGNI,

      /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
      QVESPLATI,

      /// QBFLT = Access the underlying QPX floating-point boolean
      /// representation.
      QBFLT,

      /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
      /// lower (IDX=1) half of v4f32 to v2f64.
      FP_EXTEND_HALF,

      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
      /// i32.
      STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,

      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
      /// or i32.
      LBRX,

      /// STFIWX - The STFIWX instruction.  The first operand is an input token
      /// chain, then an f64 value to store, then an address to store it to.
      STFIWX,

      /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
      /// load which sign-extends from a 32-bit integer value into the
      /// destination 64-bit register.
      LFIWAX,

      /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
      /// load which zero-extends from a 32-bit integer value into the
      /// destination 64-bit register.
      LFIWZX,

      /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
      /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
      /// This can be used for converting loaded integers to floating point.
      LXSIZX,

      /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
      /// chain, then an f64 value to store, then an address to store it to,
      /// followed by a byte-width for the store.
      STXSIX,

      /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
      /// Maps directly to an lxvd2x instruction that will be followed by
      /// an xxswapd.
      LXVD2X,

      /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
      /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
      /// the vector type to load vector in big-endian element order.
      LOAD_VEC_BE,

      /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
      /// v2f32 value into the lower half of a VSR register.
      LD_VSX_LH,

      /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
      /// instructions such as LXVDSX, LXVWSX.
      LD_SPLAT,

      /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
      /// Maps directly to an stxvd2x instruction that will be preceded by
      /// an xxswapd.
      STXVD2X,

      /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
      /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
      /// the vector type to store vector in big-endian element order.
      STORE_VEC_BE,

      /// Store scalar integers from VSR.
      ST_VSR_SCAL_INT,

      /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
      /// The 4xf32 load used for v4i1 constants.
      QVLFSb,

      /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
      /// except they ensure that the compare input is zero-extended for
      /// sub-word versions because the atomic loads zero-extend.
      ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,

      /// GPRC = TOC_ENTRY GA, TOC
      /// Loads the entry for GA from the TOC, where the TOC base is given by
      /// the last operand.
      TOC_ENTRY
    };

  } // end namespace PPCISD

  /// Define some predicates that are used for node matching.
  namespace PPC {

    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUHUM instruction.
    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                              SelectionDAG &DAG);

    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUWUM instruction.
    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                              SelectionDAG &DAG);

    /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUDUM instruction.
    bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                              SelectionDAG &DAG);

    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                            unsigned ShuffleKind, SelectionDAG &DAG);

    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                            unsigned ShuffleKind, SelectionDAG &DAG);

    /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VMRGEW or VMRGOW instruction
    bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
                             unsigned ShuffleKind, SelectionDAG &DAG);
    /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXSLDWI instruction.
    bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                              bool &Swap, bool IsLE);

    /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRH instruction.
    bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);

    /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRW instruction.
    bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);

    /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRD instruction.
    bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);

    /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRQ instruction.
    bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);

    /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXPERMDI instruction.
    bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                              bool &Swap, bool IsLE);

    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
    /// shift amount, otherwise return -1.
    int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
                            SelectionDAG &DAG);

    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a splat of a single element that is suitable for input to
    /// VSPLTB/VSPLTH/VSPLTW.
    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);

    /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
    /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
    /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
    /// vector into the other. This function will also set a couple of
    /// output parameters for how much the source vector needs to be shifted and
    /// what byte number needs to be specified for the instruction to put the
    /// element in the desired location of the target vector.
    bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                         unsigned &InsertAtByte, bool &Swap, bool IsLE);

    /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
    /// appropriate for PPC mnemonics (which have a big endian bias - namely
    /// elements are counted from the left of the vector register).
    unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
                                        SelectionDAG &DAG);

    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    /// formed by using a vspltis[bhw] instruction of the specified element
    /// size, return the constant being splatted.  The ByteSize field indicates
    /// the number of bytes of each element [124] -> [bhw].
    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);

    /// If this is a qvaligni shuffle mask, return the shift
    /// amount, otherwise return -1.
    int isQVALIGNIShuffleMask(SDNode *N);

  } // end namespace PPC

  class PPCTargetLowering : public TargetLowering {
    const PPCSubtarget &Subtarget;

  public:
    explicit PPCTargetLowering(const PPCTargetMachine &TM,
                               const PPCSubtarget &STI);

    /// getTargetNodeName() - This method returns the name of a target specific
    /// DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    bool isSelectSupported(SelectSupportKind Kind) const override {
      // PowerPC does not support scalar condition selects on vectors.
      return (Kind != SelectSupportKind::ScalarCondVectorVal);
    }

    /// getPreferredVectorAction - The code we generate when vector types are
    /// legalized by promoting the integer element type is often much worse
    /// than code we generate if we widen the type for applicable vector types.
    /// The issue with promoting is that the vector is scalaraized, individual
    /// elements promoted and then the vector is rebuilt. So say we load a pair
    /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
    /// loads, moves back into VSR's (or memory ops if we don't have moves) and
    /// then the VPERM for the shuffle. All in all a very slow sequence.
    TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
      const override {
      if (VT.getScalarSizeInBits() % 8 == 0)
        return TypeWidenVector;
      return TargetLoweringBase::getPreferredVectorAction(VT);
    }

    bool useSoftFloat() const override;

    bool hasSPE() const;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
      return MVT::i32;
    }

    bool isCheapToSpeculateCttz() const override {
      return true;
    }

    bool isCheapToSpeculateCtlz() const override {
      return true;
    }

    bool isCtlzFast() const override {
      return true;
    }

    bool hasAndNotCompare(SDValue) const override {
      return true;
    }

    bool preferIncOfAddToSubOfNot(EVT VT) const override;

    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }

    bool supportSplitCSR(MachineFunction *MF) const override {
      return
        MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
        MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
    }

    void initializeSplitCSR(MachineBasicBlock *Entry) const override;

    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

    /// getSetCCResultType - Return the ISD::SETCC ValueType
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    /// Return true if target always beneficiates from combining into FMA for a
    /// given value type. This must typically return false on targets where FMA
    /// takes more cycles to execute than FADD.
    bool enableAggressiveFMAFusion(EVT VT) const override;

    /// getPreIndexedAddressParts - returns true by value, base pointer and
    /// offset pointer and addressing mode by reference if the node's address
    /// can be legally represented as pre-indexed load / store address.
    bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                   SDValue &Offset,
                                   ISD::MemIndexedMode &AM,
                                   SelectionDAG &DAG) const override;

    /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
    /// it can be more efficiently represented as [r+imm].
    bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
                                SelectionDAG &DAG) const;

    /// SelectAddressRegReg - Given the specified addressed, check to see if it
    /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
    /// is non-zero, only accept displacement which is not suitable for [r+imm].
    /// Returns false if it can be represented by [r+imm], which are preferred.
    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
                             SelectionDAG &DAG,
                             unsigned EncodingAlignment = 0) const;

    /// SelectAddressRegImm - Returns true if the address N can be represented
    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    /// is not better represented as reg+reg. If \p EncodingAlignment is
    /// non-zero, only accept displacements suitable for instruction encoding
    /// requirement, i.e. multiples of 4 for DS form.
    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
                             SelectionDAG &DAG,
                             unsigned EncodingAlignment) const;

    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
                                 SelectionDAG &DAG) const;

    Sched::Preference getSchedulingPreference(SDNode *N) const override;

    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// ReplaceNodeResults - Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                          SmallVectorImpl<SDNode *> &Created) const override;

    Register getRegisterByName(const char* RegName, EVT VT,
                               const MachineFunction &MF) const override;

    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    Align getPrefLoopAlignment(MachineLoop *ML) const override;

    bool shouldInsertFencesForAtomic(const Instruction *I) const override {
      return true;
    }

    Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
                                  AtomicOrdering Ord) const override;
    Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
                                   AtomicOrdering Ord) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;
    MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
                                        MachineBasicBlock *MBB,
                                        unsigned AtomicSize,
                                        unsigned BinOpcode,
                                        unsigned CmpOpcode = 0,
                                        unsigned CmpPred = 0) const;
    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
                                                MachineBasicBlock *MBB,
                                                bool is8bit,
                                                unsigned Opcode,
                                                unsigned CmpOpcode = 0,
                                                unsigned CmpPred = 0) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight getSingleConstraintMatchWeight(
      AsmOperandInfo &info, const char *constraint) const override;

    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area.  This is the actual
    /// alignment, not its logarithm.
    unsigned getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "es")
        return InlineAsm::Constraint_es;
      else if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      else if (ConstraintCode == "Q")
        return InlineAsm::Constraint_Q;
      else if (ConstraintCode == "Z")
        return InlineAsm::Constraint_Z;
      else if (ConstraintCode == "Zy")
        return InlineAsm::Constraint_Zy;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;

    /// isLegalICmpImmediate - Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// isLegalAddImmediate - Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    /// isTruncateFree - Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
    /// register X1 to i32 by referencing its sub-register R1.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool isZExtFree(SDValue Val, EVT VT2) const override;

    bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;

    /// Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    bool convertSelectOfConstantsToMath(EVT VT) const override {
      return true;
    }

    bool isDesirableToTransformToIntegerOp(unsigned Opc,
                                           EVT VT) const override {
      // Only handle float load/store pair because float(fpr) load/store
      // instruction has more cycles than integer(gpr) load/store in PPC.
      if (Opc != ISD::LOAD && Opc != ISD::STORE)
        return false;
      if (VT != MVT::f32 && VT != MVT::f64)
        return false;

      return true; 
    }

    // Returns true if the address of the global is stored in TOC entry.
    bool isAccessedAsGotIndirect(SDValue N) const;

    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;

    bool getTgtMemIntrinsic(IntrinsicInfo &Info,
                            const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    /// getOptimalMemOpType - Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    EVT
    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                        const AttributeList &FuncAttributes) const override;

    /// Is unaligned memory access allowed for the given type, and is it fast
    /// relative to software emulation.
    bool allowsMisalignedMemoryAccesses(
        EVT VT, unsigned AddrSpace, unsigned Align = 1,
        MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
        bool *Fast = nullptr) const override;

    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    /// expanded to FMAs when this method returns true, otherwise fmuladd is
    /// expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    // Should we expand the build vector with shuffles?
    bool
    shouldExpandBuildVectorWithShuffles(EVT VT,
                                        unsigned DefinedValues) const override;

    /// createFastISel - This method returns a target-specific FastISel object,
    /// or null if the target does not support "fast" instruction selection.
    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
                             const TargetLibraryInfo *LibInfo) const override;

    /// Returns true if an argument of type Ty needs to be passed in a
    /// contiguous block of registers in calling convention CallConv.
    bool functionArgumentNeedsConsecutiveRegisters(
      Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
      // We support any array type as "consecutive" block in the parameter
      // save area.  The element type defines the alignment requirement and
      // whether the argument should go in GPRs, FPRs, or VRs if available.
      //
      // Note that clang uses this capability both to implement the ELFv2
      // homogeneous float/vector aggregate ABI, and to avoid having to use
      // "byval" when passing aggregates that might fully fit in registers.
      return Ty->isArrayTy();
    }

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    unsigned
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    unsigned
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    /// Override to support customized stack guard loading.
    bool useLoadStackGuardNode() const override;
    void insertSSPDeclarations(Module &M) const override;

    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;

    unsigned getJumpTableEncoding() const override;
    bool isJumpTableRelative() const override;
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                               unsigned JTI,
                                               MCContext &Ctx) const override;

  private:
    struct ReuseLoadInfo {
      SDValue Ptr;
      SDValue Chain;
      SDValue ResChain;
      MachinePointerInfo MPI;
      bool IsDereferenceable = false;
      bool IsInvariant = false;
      unsigned Alignment = 0;
      AAMDNodes AAInfo;
      const MDNode *Ranges = nullptr;

      ReuseLoadInfo() = default;

      MachineMemOperand::Flags MMOFlags() const {
        MachineMemOperand::Flags F = MachineMemOperand::MONone;
        if (IsDereferenceable)
          F |= MachineMemOperand::MODereferenceable;
        if (IsInvariant)
          F |= MachineMemOperand::MOInvariant;
        return F;
      }
    };

    bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
      // Addrspacecasts are always noops.
      return true;
    }

    bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
                             SelectionDAG &DAG,
                             ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
    void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
                         SelectionDAG &DAG) const;

    void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
                                SelectionDAG &DAG, const SDLoc &dl) const;
    SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
                                     const SDLoc &dl) const;

    bool directMoveIsProfitable(const SDValue &Op) const;
    SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
                                     const SDLoc &dl) const;

    SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
                                 const SDLoc &dl) const;

    SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;

    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;

    bool
    IsEligibleForTailCallOptimization(SDValue Callee,
                                      CallingConv::ID CalleeCC,
                                      bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                      SelectionDAG& DAG) const;

    bool
    IsEligibleForTailCallOptimization_64SVR4(
                                    SDValue Callee,
                                    CallingConv::ID CalleeCC,
                                    ImmutableCallSite CS,
                                    bool isVarArg,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                    SelectionDAG& DAG) const;

    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
                                         SDValue Chain, SDValue &LROpOut,
                                         SDValue &FPOpOut,
                                         const SDLoc &dl) const;

    SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;

    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
                           const SDLoc &dl) const;
    SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals) const;
    SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
                       bool isTailCall, bool isVarArg, bool isPatchPoint,
                       bool hasNest, SelectionDAG &DAG,
                       SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
                       SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
                       SDValue &Callee, int SPDiff, unsigned NumBytes,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       SmallVectorImpl<SDValue> &InVals,
                       ImmutableCallSite CS) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
                              SelectionDAG &DAG, SDValue ArgVal,
                              const SDLoc &dl) const;

    SDValue LowerFormalArguments_Darwin(
        SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
        const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
        SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    SDValue LowerFormalArguments_64SVR4(
        SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
        const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
        SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    SDValue LowerFormalArguments_32SVR4(
        SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
        const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
        SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;

    SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
                                       SDValue CallSeqStart,
                                       ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
                                       const SDLoc &dl) const;

    SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
                             CallingConv::ID CallConv, bool isVarArg,
                             bool isTailCall, bool isPatchPoint,
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
                             const SmallVectorImpl<SDValue> &OutVals,
                             const SmallVectorImpl<ISD::InputArg> &Ins,
                             const SDLoc &dl, SelectionDAG &DAG,
                             SmallVectorImpl<SDValue> &InVals,
                             ImmutableCallSite CS) const;
    SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
                             CallingConv::ID CallConv, bool isVarArg,
                             bool isTailCall, bool isPatchPoint,
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
                             const SmallVectorImpl<SDValue> &OutVals,
                             const SmallVectorImpl<ISD::InputArg> &Ins,
                             const SDLoc &dl, SelectionDAG &DAG,
                             SmallVectorImpl<SDValue> &InVals,
                             ImmutableCallSite CS) const;
    SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
                             CallingConv::ID CallConv, bool isVarArg,
                             bool isTailCall, bool isPatchPoint,
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
                             const SmallVectorImpl<SDValue> &OutVals,
                             const SmallVectorImpl<ISD::InputArg> &Ins,
                             const SDLoc &dl, SelectionDAG &DAG,
                             SmallVectorImpl<SDValue> &InVals,
                             ImmutableCallSite CS) const;
    SDValue LowerCall_AIX(SDValue Chain, SDValue Callee,
                          CallingConv::ID CallConv, bool isVarArg,
                          bool isTailCall, bool isPatchPoint,
                          const SmallVectorImpl<ISD::OutputArg> &Outs,
                          const SmallVectorImpl<SDValue> &OutVals,
                          const SmallVectorImpl<ISD::InputArg> &Ins,
                          const SDLoc &dl, SelectionDAG &DAG,
                          SmallVectorImpl<SDValue> &InVals,
                          ImmutableCallSite CS) const;

    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;

    SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
                                 DAGCombinerInfo &DCI) const;

    /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
    /// SETCC with integer subtraction when (1) there is a legal way of doing it
    /// (2) keeping the result of comparison in GPR has performance benefit.
    SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;

    SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;
    SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;
    unsigned combineRepeatedFPDivisors() const override;

    SDValue
    combineElementTruncationToVectorTruncation(SDNode *N,
                                               DAGCombinerInfo &DCI) const;

    /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
    /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
    /// essentially any shuffle of v8i16 vectors that just inserts one element
    /// from one vector into the other.
    SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;

    /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
    /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
    /// essentially v16i8 vector version of VINSERTH.
    SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;

    // Return whether the call instruction can potentially be optimized to a
    // tail call. This will cause the optimizers to attempt to move, or
    // duplicate return instructions to help enable tail call optimizations.
    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
    bool hasBitPreservingFPLogic(EVT VT) const override;
    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
  }; // end class PPCTargetLowering

  namespace PPC {

    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
                             const TargetLibraryInfo *LibInfo);

  } // end namespace PPC

  bool isIntS16Immediate(SDNode *N, int16_t &Imm);
  bool isIntS16Immediate(SDValue Op, int16_t &Imm);

} // end namespace llvm

#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H