llvm.org GIT mirror llvm / master lib / CodeGen / RegAllocFast.cpp
master

Tree @master (Download .tar.gz)

RegAllocFast.cpp @masterraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");

static RegisterRegAlloc
  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);

namespace {

  class RegAllocFast : public MachineFunctionPass {
  public:
    static char ID;

    RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}

  private:
    MachineFrameInfo *MFI;
    MachineRegisterInfo *MRI;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;
    RegisterClassInfo RegClassInfo;

    /// Basic block currently being allocated.
    MachineBasicBlock *MBB;

    /// Maps virtual regs to the frame index where these values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    /// Everything we know about a live virtual register.
    struct LiveReg {
      MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
      unsigned VirtReg;                ///< Virtual register number.
      MCPhysReg PhysReg = 0;           ///< Currently held here.
      unsigned short LastOpNum = 0;    ///< OpNum on LastUse.
      bool Dirty = false;              ///< Register needs spill.

      explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}

      unsigned getSparseSetIndex() const {
        return Register::virtReg2Index(VirtReg);
      }
    };

    using LiveRegMap = SparseSet<LiveReg>;
    /// This map contains entries for each virtual register that is currently
    /// available in a physical register.
    LiveRegMap LiveVirtRegs;

    DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;

    /// Has a bit set for every virtual register for which it was determined
    /// that it is alive across blocks.
    BitVector MayLiveAcrossBlocks;

    /// State of a physical register.
    enum RegState {
      /// A disabled register is not available for allocation, but an alias may
      /// be in use. A register can only be moved out of the disabled state if
      /// all aliases are disabled.
      regDisabled,

      /// A free register is not currently in use and can be allocated
      /// immediately without checking aliases.
      regFree,

      /// A reserved register has been assigned explicitly (e.g., setting up a
      /// call parameter), and it remains reserved until it is used.
      regReserved

      /// A register state may also be a virtual register number, indication
      /// that the physical register is currently allocated to a virtual
      /// register. In that case, LiveVirtRegs contains the inverse mapping.
    };

    /// Maps each physical register to a RegState enum or a virtual register.
    std::vector<unsigned> PhysRegState;

    SmallVector<unsigned, 16> VirtDead;
    SmallVector<MachineInstr *, 32> Coalesced;

    using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
    /// Set of register units that are used in the current instruction, and so
    /// cannot be allocated.
    RegUnitSet UsedInInstr;

    void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);

    /// Mark a physreg as used in this instruction.
    void markRegUsedInInstr(MCPhysReg PhysReg) {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        UsedInInstr.insert(*Units);
    }

    /// Check if a physreg or any of its aliases are used in this instruction.
    bool isRegUsedInInstr(MCPhysReg PhysReg) const {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        if (UsedInInstr.count(*Units))
          return true;
      return false;
    }

    enum : unsigned {
      spillClean = 50,
      spillDirty = 100,
      spillPrefBonus = 20,
      spillImpossible = ~0u
    };

  public:
    StringRef getPassName() const override { return "Fast Register Allocator"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoPHIs);
    }

    MachineFunctionProperties getSetProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    bool runOnMachineFunction(MachineFunction &MF) override;

    void allocateBasicBlock(MachineBasicBlock &MBB);
    void allocateInstruction(MachineInstr &MI);
    void handleDebugValue(MachineInstr &MI);
    void handleThroughOperands(MachineInstr &MI,
                               SmallVectorImpl<unsigned> &VirtDead);
    bool isLastUseOfLocalReg(const MachineOperand &MO) const;

    void addKillFlag(const LiveReg &LRI);
    void killVirtReg(LiveReg &LR);
    void killVirtReg(unsigned VirtReg);
    void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);

    void usePhysReg(MachineOperand &MO);
    void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
                       RegState NewState);
    unsigned calcSpillCost(MCPhysReg PhysReg) const;
    void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);

    LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
    }

    LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
    }

    void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
    void allocVirtRegUndef(MachineOperand &MO);
    MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
                            unsigned Hint);
    LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
                           unsigned Hint);
    void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
    bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);

    unsigned traceCopies(unsigned VirtReg) const;
    unsigned traceCopyChain(unsigned Reg) const;

    int getStackSpaceFor(unsigned VirtReg);
    void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
               MCPhysReg AssignedReg, bool Kill);
    void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
                MCPhysReg PhysReg);

    bool mayLiveOut(unsigned VirtReg);
    bool mayLiveIn(unsigned VirtReg);

    void dumpState();
  };

} // end anonymous namespace

char RegAllocFast::ID = 0;

INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
                false)

void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
  PhysRegState[PhysReg] = NewState;
}

/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  // Already has space allocated?
  if (SS != -1)
    return SS;

  // Allocate a new stack object for this spill location...
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  unsigned Size = TRI->getSpillSize(RC);
  unsigned Align = TRI->getSpillAlignment(RC);
  int FrameIdx = MFI->CreateSpillStackObject(Size, Align);

  // Assign the slot.
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}

/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
    // Cannot be live-out if there are no successors.
    return !MBB->succ_empty();
  }

  // If this block loops back to itself, it would be necessary to check whether
  // the use comes after the def.
  if (MBB->isSuccessor(MBB)) {
    MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
    return true;
  }

  // See if the first \p Limit uses of the register are all in the current
  // block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
    if (UseInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      // Cannot be live-out if there are no successors.
      return !MBB->succ_empty();
    }
  }

  return false;
}

/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFast::mayLiveIn(unsigned VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
    return !MBB->pred_empty();

  // See if the first \p Limit def of the register are all in the current block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
    if (DefInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      return !MBB->pred_empty();
    }
  }

  return false;
}

/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
                         MCPhysReg AssignedReg, bool Kill) {
  LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
                    << " in " << printReg(AssignedReg, TRI));
  int FI = getStackSpaceFor(VirtReg);
  LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
  ++NumStores;

  // If this register is used by DBG_VALUE then insert new DBG_VALUE to
  // identify spilled location as the place to find corresponding variable's
  // value.
  SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
  for (MachineInstr *DBG : LRIDbgValues) {
    MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
    assert(NewDV->getParent() == MBB && "dangling parent pointer");
    (void)NewDV;
    LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
  }
  // Now this register is spilled there is should not be any DBG_VALUE
  // pointing to this register because they are all pointing to spilled value
  // now.
  LRIDbgValues.clear();
}

/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
                          MCPhysReg PhysReg) {
  LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
                    << printReg(PhysReg, TRI) << '\n');
  int FI = getStackSpaceFor(VirtReg);
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
  ++NumLoads;
}

/// Return true if MO is the only remaining reference to its virtual register,
/// and it is guaranteed to be a block-local register.
bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
  // If the register has ever been spilled or reloaded, we conservatively assume
  // it is a global register used in multiple blocks.
  if (StackSlotForVirtReg[MO.getReg()] != -1)
    return false;

  // Check that the use/def chain has exactly one operand - MO.
  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
  if (&*I != &MO)
    return false;
  return ++I == MRI->reg_nodbg_end();
}

/// Set kill flags on last use of a virtual register.
void RegAllocFast::addKillFlag(const LiveReg &LR) {
  if (!LR.LastUse) return;
  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
    if (MO.getReg() == LR.PhysReg)
      MO.setIsKill();
    // else, don't do anything we are problably redefining a
    // subreg of this register and given we don't track which
    // lanes are actually dead, we cannot insert a kill flag here.
    // Otherwise we may end up in a situation like this:
    // ... = (MO) physreg:sub1, implicit killed physreg
    // ... <== Here we would allow later pass to reuse physreg:sub1
    //         which is potentially wrong.
    // LR:sub0 = ...
    // ... = LR.sub1 <== This is going to use physreg:sub1
  }
}

/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(LiveReg &LR) {
  addKillFlag(LR);
  assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
         "Broken RegState mapping");
  setPhysRegState(LR.PhysReg, regFree);
  LR.PhysReg = 0;
}

/// Mark virtreg as no longer available.
void RegAllocFast::killVirtReg(unsigned VirtReg) {
  assert(Register::isVirtualRegister(VirtReg) &&
         "killVirtReg needs a virtual register");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
    killVirtReg(*LRI);
}

/// This method spills the value specified by VirtReg into the corresponding
/// stack slot if needed.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
                                unsigned VirtReg) {
  assert(Register::isVirtualRegister(VirtReg) &&
         "Spilling a physical register is illegal!");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
         "Spilling unmapped virtual register");
  spillVirtReg(MI, *LRI);
}

/// Do the actual work of spilling.
void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
  assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");

  if (LR.Dirty) {
    // If this physreg is used by the instruction, we want to kill it on the
    // instruction, not on the spill.
    bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
    LR.Dirty = false;

    spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);

    if (SpillKill)
      LR.LastUse = nullptr; // Don't kill register again
  }
  killVirtReg(LR);
}

/// Spill all dirty virtregs without killing them.
void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
  if (LiveVirtRegs.empty())
    return;
  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
  // of spilling here is deterministic, if arbitrary.
  for (LiveReg &LR : LiveVirtRegs) {
    if (!LR.PhysReg)
      continue;
    if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
      continue;
    spillVirtReg(MI, LR);
  }
  LiveVirtRegs.clear();
}

/// Handle the direct use of a physical register.  Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
void RegAllocFast::usePhysReg(MachineOperand &MO) {
  // Ignore undef uses.
  if (MO.isUndef())
    return;

  Register PhysReg = MO.getReg();
  assert(Register::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand");

  markRegUsedInInstr(PhysReg);
  switch (PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regReserved:
    PhysRegState[PhysReg] = regFree;
    LLVM_FALLTHROUGH;
  case regFree:
    MO.setIsKill();
    return;
  default:
    // The physreg was allocated to a virtual register. That means the value we
    // wanted has been clobbered.
    llvm_unreachable("Instruction uses an allocated register");
  }

  // Maybe a superregister is reserved?
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regReserved:
      // Either PhysReg is a subregister of Alias and we mark the
      // whole register as free, or PhysReg is the superregister of
      // Alias and we mark all the aliases as disabled before freeing
      // PhysReg.
      // In the latter case, since PhysReg was disabled, this means that
      // its value is defined only by physical sub-registers. This check
      // is performed by the assert of the default case in this loop.
      // Note: The value of the superregister may only be partial
      // defined, that is why regDisabled is a valid state for aliases.
      assert((TRI->isSuperRegister(PhysReg, Alias) ||
              TRI->isSuperRegister(Alias, PhysReg)) &&
             "Instruction is not using a subregister of a reserved register");
      LLVM_FALLTHROUGH;
    case regFree:
      if (TRI->isSuperRegister(PhysReg, Alias)) {
        // Leave the superregister in the working set.
        setPhysRegState(Alias, regFree);
        MO.getParent()->addRegisterKilled(Alias, TRI, true);
        return;
      }
      // Some other alias was in the working set - clear it.
      setPhysRegState(Alias, regDisabled);
      break;
    default:
      llvm_unreachable("Instruction uses an alias of an allocated register");
    }
  }

  // All aliases are disabled, bring register into working set.
  setPhysRegState(PhysReg, regFree);
  MO.setIsKill();
}

/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
                                 MCPhysReg PhysReg, RegState NewState) {
  markRegUsedInInstr(PhysReg);
  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  default:
    spillVirtReg(MI, VirtReg);
    LLVM_FALLTHROUGH;
  case regFree:
  case regReserved:
    setPhysRegState(PhysReg, NewState);
    return;
  }

  // This is a disabled register, disable all aliases.
  setPhysRegState(PhysReg, NewState);
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (unsigned VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    default:
      spillVirtReg(MI, VirtReg);
      LLVM_FALLTHROUGH;
    case regFree:
    case regReserved:
      setPhysRegState(Alias, regDisabled);
      if (TRI->isSuperRegister(PhysReg, Alias))
        return;
      break;
    }
  }
}

/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
  if (isRegUsedInInstr(PhysReg)) {
    LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
                      << " is already used in instr.\n");
    return spillImpossible;
  }
  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regFree:
    return 0;
  case regReserved:
    LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
                      << printReg(PhysReg, TRI) << " is reserved already.\n");
    return spillImpossible;
  default: {
    LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
    assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
           "Missing VirtReg entry");
    return LRI->Dirty ? spillDirty : spillClean;
  }
  }

  // This is a disabled register, add up cost of aliases.
  LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
  unsigned Cost = 0;
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (unsigned VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regFree:
      ++Cost;
      break;
    case regReserved:
      return spillImpossible;
    default: {
      LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
      assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
             "Missing VirtReg entry");
      Cost += LRI->Dirty ? spillDirty : spillClean;
      break;
    }
    }
  }
  return Cost;
}

/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now.  The physical register must not be used
/// for anything else when this is called.
void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
  unsigned VirtReg = LR.VirtReg;
  LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
                    << printReg(PhysReg, TRI) << '\n');
  assert(LR.PhysReg == 0 && "Already assigned a physreg");
  assert(PhysReg != 0 && "Trying to assign no register");
  LR.PhysReg = PhysReg;
  setPhysRegState(PhysReg, VirtReg);
}

static bool isCoalescable(const MachineInstr &MI) {
  return MI.isFullCopy();
}

unsigned RegAllocFast::traceCopyChain(unsigned Reg) const {
  static const unsigned ChainLengthLimit = 3;
  unsigned C = 0;
  do {
    if (Register::isPhysicalRegister(Reg))
      return Reg;
    assert(Register::isVirtualRegister(Reg));

    MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
    if (!VRegDef || !isCoalescable(*VRegDef))
      return 0;
    Reg = VRegDef->getOperand(1).getReg();
  } while (++C <= ChainLengthLimit);
  return 0;
}

/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
unsigned RegAllocFast::traceCopies(unsigned VirtReg) const {
  static const unsigned DefLimit = 3;
  unsigned C = 0;
  for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
    if (isCoalescable(MI)) {
      Register Reg = MI.getOperand(1).getReg();
      Reg = traceCopyChain(Reg);
      if (Reg != 0)
        return Reg;
    }

    if (++C >= DefLimit)
      break;
  }
  return 0;
}

/// Allocates a physical register for VirtReg.
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) {
  const unsigned VirtReg = LR.VirtReg;

  assert(Register::isVirtualRegister(VirtReg) &&
         "Can only allocate virtual registers");

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
                    << " in class " << TRI->getRegClassName(&RC)
                    << " with hint " << printReg(Hint0, TRI) << '\n');

  // Take hint when possible.
  if (Register::isPhysicalRegister(Hint0) && MRI->isAllocatable(Hint0) &&
      RC.contains(Hint0)) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint0);
    if (Cost < spillDirty) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << '\n');
      if (Cost)
        definePhysReg(MI, Hint0, regFree);
      assignVirtToPhysReg(LR, Hint0);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << "occupied\n");
    }
  } else {
    Hint0 = 0;
  }

  // Try other hint.
  unsigned Hint1 = traceCopies(VirtReg);
  if (Register::isPhysicalRegister(Hint1) && MRI->isAllocatable(Hint1) &&
      RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint1);
    if (Cost < spillDirty) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << '\n');
      if (Cost)
        definePhysReg(MI, Hint1, regFree);
      assignVirtToPhysReg(LR, Hint1);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << "occupied\n");
    }
  } else {
    Hint1 = 0;
  }

  MCPhysReg BestReg = 0;
  unsigned BestCost = spillImpossible;
  ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
  for (MCPhysReg PhysReg : AllocationOrder) {
    LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
    unsigned Cost = calcSpillCost(PhysReg);
    LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
    // Immediate take a register with cost 0.
    if (Cost == 0) {
      assignVirtToPhysReg(LR, PhysReg);
      return;
    }

    if (PhysReg == Hint1 || PhysReg == Hint0)
      Cost -= spillPrefBonus;

    if (Cost < BestCost) {
      BestReg = PhysReg;
      BestCost = Cost;
    }
  }

  if (!BestReg) {
    // Nothing we can do: Report an error and keep going with an invalid
    // allocation.
    if (MI.isInlineAsm())
      MI.emitError("inline assembly requires more registers than available");
    else
      MI.emitError("ran out of registers during register allocation");
    definePhysReg(MI, *AllocationOrder.begin(), regFree);
    assignVirtToPhysReg(LR, *AllocationOrder.begin());
    return;
  }

  definePhysReg(MI, BestReg, regFree);
  assignVirtToPhysReg(LR, BestReg);
}

void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
  assert(MO.isUndef() && "expected undef use");
  Register VirtReg = MO.getReg();
  assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");

  LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
  MCPhysReg PhysReg;
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    PhysReg = LRI->PhysReg;
  } else {
    const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
    ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
    assert(!AllocationOrder.empty() && "Allocation order must not be empty");
    PhysReg = AllocationOrder[0];
  }

  unsigned SubRegIdx = MO.getSubReg();
  if (SubRegIdx != 0) {
    PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
    MO.setSubReg(0);
  }
  MO.setReg(PhysReg);
  MO.setIsRenamable(true);
}

/// Allocates a register for VirtReg and mark it as dirty.
MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
                                      unsigned VirtReg, unsigned Hint) {
  assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  if (!LRI->PhysReg) {
    // If there is no hint, peek at the only use of this register.
    if ((!Hint || !Register::isPhysicalRegister(Hint)) &&
        MRI->hasOneNonDBGUse(VirtReg)) {
      const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
      // It's a copy, use the destination register as a hint.
      if (UseMI.isCopyLike())
        Hint = UseMI.getOperand(0).getReg();
    }
    allocVirtReg(MI, *LRI, Hint);
  } else if (LRI->LastUse) {
    // Redefining a live register - kill at the last use, unless it is this
    // instruction defining VirtReg multiple times.
    if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
      addKillFlag(*LRI);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = &MI;
  LRI->LastOpNum = OpNum;
  LRI->Dirty = true;
  markRegUsedInInstr(LRI->PhysReg);
  return LRI->PhysReg;
}

/// Make sure VirtReg is available in a physreg and return it.
RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
                                                   unsigned OpNum,
                                                   unsigned VirtReg,
                                                   unsigned Hint) {
  assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  MachineOperand &MO = MI.getOperand(OpNum);
  if (!LRI->PhysReg) {
    allocVirtReg(MI, *LRI, Hint);
    reload(MI, VirtReg, LRI->PhysReg);
  } else if (LRI->Dirty) {
    if (isLastUseOfLocalReg(MO)) {
      LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
      if (MO.isUse())
        MO.setIsKill();
      else
        MO.setIsDead();
    } else if (MO.isKill()) {
      LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
      MO.setIsKill(false);
    } else if (MO.isDead()) {
      LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
      MO.setIsDead(false);
    }
  } else if (MO.isKill()) {
    // We must remove kill flags from uses of reloaded registers because the
    // register would be killed immediately, and there might be a second use:
    //   %foo = OR killed %x, %x
    // This would cause a second reload of %x into a different register.
    LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
    MO.setIsKill(false);
  } else if (MO.isDead()) {
    LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
    MO.setIsDead(false);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = &MI;
  LRI->LastOpNum = OpNum;
  markRegUsedInInstr(LRI->PhysReg);
  return *LRI;
}

/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
/// may invalidate any operand pointers.  Return true if the operand kills its
/// register.
bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
                              MCPhysReg PhysReg) {
  bool Dead = MO.isDead();
  if (!MO.getSubReg()) {
    MO.setReg(PhysReg);
    MO.setIsRenamable(true);
    return MO.isKill() || Dead;
  }

  // Handle subregister index.
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
  MO.setIsRenamable(true);
  MO.setSubReg(0);

  // A kill flag implies killing the full register. Add corresponding super
  // register kill.
  if (MO.isKill()) {
    MI.addRegisterKilled(PhysReg, TRI, true);
    return true;
  }

  // A <def,read-undef> of a sub-register requires an implicit def of the full
  // register.
  if (MO.isDef() && MO.isUndef())
    MI.addRegisterDefined(PhysReg, TRI);

  return Dead;
}

// Handles special instruction operand like early clobbers and tied ops when
// there are additional physreg defines.
void RegAllocFast::handleThroughOperands(MachineInstr &MI,
                                         SmallVectorImpl<unsigned> &VirtDead) {
  LLVM_DEBUG(dbgs() << "Scanning for through registers:");
  SmallSet<unsigned, 8> ThroughRegs;
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
        (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
      if (ThroughRegs.insert(Reg).second)
        LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
    }
  }

  // If any physreg defines collide with preallocated through registers,
  // we must spill and reallocate.
  LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef()) continue;
    Register Reg = MO.getReg();
    if (!Reg || !Register::isPhysicalRegister(Reg))
      continue;
    markRegUsedInInstr(Reg);
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      if (ThroughRegs.count(PhysRegState[*AI]))
        definePhysReg(MI, *AI, regFree);
    }
  }

  SmallVector<unsigned, 8> PartialDefs;
  LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isUse()) {
      if (!MO.isTied()) continue;
      LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
                        << ") is tied to operand " << MI.findTiedOperandIdx(I)
                        << ".\n");
      LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
      MCPhysReg PhysReg = LR.PhysReg;
      setPhysReg(MI, MO, PhysReg);
      // Note: we don't update the def operand yet. That would cause the normal
      // def-scan to attempt spilling.
    } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
      LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
      // Reload the register, but don't assign to the operand just yet.
      // That would confuse the later phys-def processing pass.
      LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
      PartialDefs.push_back(LR.PhysReg);
    }
  }

  LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (!MO.isEarlyClobber())
      continue;
    // Note: defineVirtReg may invalidate MO.
    MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
    if (setPhysReg(MI, MI.getOperand(I), PhysReg))
      VirtDead.push_back(Reg);
  }

  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
  UsedInInstr.clear();
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
    Register Reg = MO.getReg();
    if (!Reg || !Register::isPhysicalRegister(Reg))
      continue;
    LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
                      << " as used in instr\n");
    markRegUsedInInstr(Reg);
  }

  // Also mark PartialDefs as used to avoid reallocation.
  for (unsigned PartialDef : PartialDefs)
    markRegUsedInInstr(PartialDef);
}

#ifndef NDEBUG
void RegAllocFast::dumpState() {
  for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
    if (PhysRegState[Reg] == regDisabled) continue;
    dbgs() << " " << printReg(Reg, TRI);
    switch(PhysRegState[Reg]) {
    case regFree:
      break;
    case regReserved:
      dbgs() << "*";
      break;
    default: {
      dbgs() << '=' << printReg(PhysRegState[Reg]);
      LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
      assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
             "Missing VirtReg entry");
      if (LRI->Dirty)
        dbgs() << "*";
      assert(LRI->PhysReg == Reg && "Bad inverse map");
      break;
    }
    }
  }
  dbgs() << '\n';
  // Check that LiveVirtRegs is the inverse.
  for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
       e = LiveVirtRegs.end(); i != e; ++i) {
    if (!i->PhysReg)
      continue;
    assert(Register::isVirtualRegister(i->VirtReg) && "Bad map key");
    assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value");
    assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
  }
}
#endif

void RegAllocFast::allocateInstruction(MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // If this is a copy, we may be able to coalesce.
  unsigned CopySrcReg = 0;
  unsigned CopyDstReg = 0;
  unsigned CopySrcSub = 0;
  unsigned CopyDstSub = 0;
  if (MI.isCopy()) {
    CopyDstReg = MI.getOperand(0).getReg();
    CopySrcReg = MI.getOperand(1).getReg();
    CopyDstSub = MI.getOperand(0).getSubReg();
    CopySrcSub = MI.getOperand(1).getSubReg();
  }

  // Track registers used by instruction.
  UsedInInstr.clear();

  // First scan.
  // Mark physreg uses and early clobbers as used.
  // Find the end of the virtreg operands
  unsigned VirtOpEnd = 0;
  bool hasTiedOps = false;
  bool hasEarlyClobbers = false;
  bool hasPartialRedefs = false;
  bool hasPhysDefs = false;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    // Make sure MRI knows about registers clobbered by regmasks.
    if (MO.isRegMask()) {
      MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
      continue;
    }
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Reg) continue;
    if (Register::isVirtualRegister(Reg)) {
      VirtOpEnd = i+1;
      if (MO.isUse()) {
        hasTiedOps = hasTiedOps ||
                            MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
      } else {
        if (MO.isEarlyClobber())
          hasEarlyClobbers = true;
        if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
          hasPartialRedefs = true;
      }
      continue;
    }
    if (!MRI->isAllocatable(Reg)) continue;
    if (MO.isUse()) {
      usePhysReg(MO);
    } else if (MO.isEarlyClobber()) {
      definePhysReg(MI, Reg,
                    (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
      hasEarlyClobbers = true;
    } else
      hasPhysDefs = true;
  }

  // The instruction may have virtual register operands that must be allocated
  // the same register at use-time and def-time: early clobbers and tied
  // operands. If there are also physical defs, these registers must avoid
  // both physical defs and uses, making them more constrained than normal
  // operands.
  // Similarly, if there are multiple defs and tied operands, we must make
  // sure the same register is allocated to uses and defs.
  // We didn't detect inline asm tied operands above, so just make this extra
  // pass for all inline asm.
  if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
      (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
    handleThroughOperands(MI, VirtDead);
    // Don't attempt coalescing when we have funny stuff going on.
    CopyDstReg = 0;
    // Pretend we have early clobbers so the use operands get marked below.
    // This is not necessary for the common case of a single tied use.
    hasEarlyClobbers = true;
  }

  // Second scan.
  // Allocate virtreg uses.
  bool HasUndefUse = false;
  for (unsigned I = 0; I != VirtOpEnd; ++I) {
    MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg()) continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    if (MO.isUse()) {
      if (MO.isUndef()) {
        HasUndefUse = true;
        // There is no need to allocate a register for an undef use.
        continue;
      }

      // Populate MayLiveAcrossBlocks in case the use block is allocated before
      // the def block (removing the vreg uses).
      mayLiveIn(Reg);

      LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
      MCPhysReg PhysReg = LR.PhysReg;
      CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
      if (setPhysReg(MI, MO, PhysReg))
        killVirtReg(LR);
    }
  }

  // Allocate undef operands. This is a separate step because in a situation
  // like  ` = OP undef %X, %X`    both operands need the same register assign
  // so we should perform the normal assignment first.
  if (HasUndefUse) {
    for (MachineOperand &MO : MI.uses()) {
      if (!MO.isReg() || !MO.isUse())
        continue;
      Register Reg = MO.getReg();
      if (!Register::isVirtualRegister(Reg))
        continue;

      assert(MO.isUndef() && "Should only have undef virtreg uses left");
      allocVirtRegUndef(MO);
    }
  }

  // Track registers defined by instruction - early clobbers and tied uses at
  // this point.
  UsedInInstr.clear();
  if (hasEarlyClobbers) {
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg()) continue;
      Register Reg = MO.getReg();
      if (!Reg || !Register::isPhysicalRegister(Reg))
        continue;
      // Look for physreg defs and tied uses.
      if (!MO.isDef() && !MO.isTied()) continue;
      markRegUsedInInstr(Reg);
    }
  }

  unsigned DefOpEnd = MI.getNumOperands();
  if (MI.isCall()) {
    // Spill all virtregs before a call. This serves one purpose: If an
    // exception is thrown, the landing pad is going to expect to find
    // registers in their spill slots.
    // Note: although this is appealing to just consider all definitions
    // as call-clobbered, this is not correct because some of those
    // definitions may be used later on and we do not want to reuse
    // those for virtual registers in between.
    LLVM_DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
    spillAll(MI, /*OnlyLiveOut*/ false);
  }

  // Third scan.
  // Mark all physreg defs as used before allocating virtreg defs.
  for (unsigned I = 0; I != DefOpEnd; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
      continue;
    Register Reg = MO.getReg();

    if (!Reg || !Register::isPhysicalRegister(Reg) || !MRI->isAllocatable(Reg))
      continue;
    definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
  }

  // Fourth scan.
  // Allocate defs and collect dead defs.
  for (unsigned I = 0; I != DefOpEnd; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
      continue;
    Register Reg = MO.getReg();

    // We have already dealt with phys regs in the previous scan.
    if (Register::isPhysicalRegister(Reg))
      continue;
    MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
    if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
      VirtDead.push_back(Reg);
      CopyDstReg = 0; // cancel coalescing;
    } else
      CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
  }

  // Kill dead defs after the scan to ensure that multiple defs of the same
  // register are allocated identically. We didn't need to do this for uses
  // because we are crerating our own kill flags, and they are always at the
  // last use.
  for (unsigned VirtReg : VirtDead)
    killVirtReg(VirtReg);
  VirtDead.clear();

  LLVM_DEBUG(dbgs() << "<< " << MI);
  if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
    LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
    Coalesced.push_back(&MI);
  }
}

void RegAllocFast::handleDebugValue(MachineInstr &MI) {
  MachineOperand &MO = MI.getOperand(0);

  // Ignore DBG_VALUEs that aren't based on virtual registers. These are
  // mostly constants and frame indices.
  if (!MO.isReg())
    return;
  Register Reg = MO.getReg();
  if (!Register::isVirtualRegister(Reg))
    return;

  // See if this virtual register has already been allocated to a physical
  // register or spilled to a stack slot.
  LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    setPhysReg(MI, MO, LRI->PhysReg);
  } else {
    int SS = StackSlotForVirtReg[Reg];
    if (SS != -1) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      updateDbgValueForSpill(MI, SS);
      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
      return;
    }

    // We can't allocate a physreg for a DebugValue, sorry!
    LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
    MO.setReg(0);
  }

  // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
  // that future spills of Reg will have DBG_VALUEs.
  LiveDbgValueMap[Reg].push_back(&MI);
}

void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
  this->MBB = &MBB;
  LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);

  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");

  MachineBasicBlock::iterator MII = MBB.begin();

  // Add live-in registers as live.
  for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
    if (MRI->isAllocatable(LI.PhysReg))
      definePhysReg(MII, LI.PhysReg, regReserved);

  VirtDead.clear();
  Coalesced.clear();

  // Otherwise, sequentially allocate each instruction in the MBB.
  for (MachineInstr &MI : MBB) {
    LLVM_DEBUG(
      dbgs() << "\n>> " << MI << "Regs:";
      dumpState()
    );

    // Special handling for debug values. Note that they are not allowed to
    // affect codegen of the other instructions in any way.
    if (MI.isDebugValue()) {
      handleDebugValue(MI);
      continue;
    }

    allocateInstruction(MI);
  }

  // Spill all physical registers holding virtual registers now.
  LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
  spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);

  // Erase all the coalesced copies. We are delaying it until now because
  // LiveVirtRegs might refer to the instrs.
  for (MachineInstr *MI : Coalesced)
    MBB.erase(MI);
  NumCoalesced += Coalesced.size();

  LLVM_DEBUG(MBB.dump());
}

bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  MRI = &MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  TRI = STI.getRegisterInfo();
  TII = STI.getInstrInfo();
  MFI = &MF.getFrameInfo();
  MRI->freezeReservedRegs(MF);
  RegClassInfo.runOnMachineFunction(MF);
  UsedInInstr.clear();
  UsedInInstr.setUniverse(TRI->getNumRegUnits());

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  unsigned NumVirtRegs = MRI->getNumVirtRegs();
  StackSlotForVirtReg.resize(NumVirtRegs);
  LiveVirtRegs.setUniverse(NumVirtRegs);
  MayLiveAcrossBlocks.clear();
  MayLiveAcrossBlocks.resize(NumVirtRegs);

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineBasicBlock &MBB : MF)
    allocateBasicBlock(MBB);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers.
  MRI->clearVirtRegs();

  StackSlotForVirtReg.clear();
  LiveDbgValueMap.clear();
  return true;
}

FunctionPass *llvm::createFastRegisterAllocator() {
  return new RegAllocFast();
}