llvm.org GIT mirror llvm / master lib / Analysis / VectorUtils.cpp
master

Tree @master (Download .tar.gz)

VectorUtils.cpp @masterraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines vectorizer utilities.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/VectorUtils.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Value.h"

#define DEBUG_TYPE "vectorutils"

using namespace llvm;
using namespace llvm::PatternMatch;

/// Maximum factor for an interleaved memory access.
static cl::opt<unsigned> MaxInterleaveGroupFactor(
    "max-interleave-group-factor", cl::Hidden,
    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
    cl::init(8));

/// Return true if all of the intrinsic's arguments and return type are scalars
/// for the scalar form of the intrinsic, and vectors for the vector form of the
/// intrinsic (except operands that are marked as always being scalar by
/// hasVectorInstrinsicScalarOpd).
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
  switch (ID) {
  case Intrinsic::bswap: // Begin integer bit-manipulation.
  case Intrinsic::bitreverse:
  case Intrinsic::ctpop:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::fshl:
  case Intrinsic::fshr:
  case Intrinsic::sadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::usub_sat:
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat:
  case Intrinsic::sqrt: // Begin floating-point.
  case Intrinsic::sin:
  case Intrinsic::cos:
  case Intrinsic::exp:
  case Intrinsic::exp2:
  case Intrinsic::log:
  case Intrinsic::log10:
  case Intrinsic::log2:
  case Intrinsic::fabs:
  case Intrinsic::minnum:
  case Intrinsic::maxnum:
  case Intrinsic::minimum:
  case Intrinsic::maximum:
  case Intrinsic::copysign:
  case Intrinsic::floor:
  case Intrinsic::ceil:
  case Intrinsic::trunc:
  case Intrinsic::rint:
  case Intrinsic::nearbyint:
  case Intrinsic::round:
  case Intrinsic::pow:
  case Intrinsic::fma:
  case Intrinsic::fmuladd:
  case Intrinsic::powi:
  case Intrinsic::canonicalize:
    return true;
  default:
    return false;
  }
}

/// Identifies if the vector form of the intrinsic has a scalar operand.
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
                                        unsigned ScalarOpdIdx) {
  switch (ID) {
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::powi:
    return (ScalarOpdIdx == 1);
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat:
    return (ScalarOpdIdx == 2);
  default:
    return false;
  }
}

/// Returns intrinsic ID for call.
/// For the input call instruction it finds mapping intrinsic and returns
/// its ID, in case it does not found it return not_intrinsic.
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
                                                const TargetLibraryInfo *TLI) {
  Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
  if (ID == Intrinsic::not_intrinsic)
    return Intrinsic::not_intrinsic;

  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
      ID == Intrinsic::sideeffect)
    return ID;
  return Intrinsic::not_intrinsic;
}

/// Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
  const DataLayout &DL = Gep->getModule()->getDataLayout();
  unsigned LastOperand = Gep->getNumOperands() - 1;
  unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());

  // Walk backwards and try to peel off zeros.
  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
    // Find the type we're currently indexing into.
    gep_type_iterator GEPTI = gep_type_begin(Gep);
    std::advance(GEPTI, LastOperand - 2);

    // If it's a type with the same allocation size as the result of the GEP we
    // can peel off the zero index.
    if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
      break;
    --LastOperand;
  }

  return LastOperand;
}

/// If the argument is a GEP, then returns the operand identified by
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
/// operand, it returns that instead.
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP)
    return Ptr;

  unsigned InductionOperand = getGEPInductionOperand(GEP);

  // Check that all of the gep indices are uniform except for our induction
  // operand.
  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
    if (i != InductionOperand &&
        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
      return Ptr;
  return GEP->getOperand(InductionOperand);
}

/// If a value has only one user that is a CastInst, return it.
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
  Value *UniqueCast = nullptr;
  for (User *U : Ptr->users()) {
    CastInst *CI = dyn_cast<CastInst>(U);
    if (CI && CI->getType() == Ty) {
      if (!UniqueCast)
        UniqueCast = CI;
      else
        return nullptr;
    }
  }
  return UniqueCast;
}

/// Get the stride of a pointer access in a loop. Looks for symbolic
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
  if (!PtrTy || PtrTy->isAggregateType())
    return nullptr;

  // Try to remove a gep instruction to make the pointer (actually index at this
  // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
  // pointer, otherwise, we are analyzing the index.
  Value *OrigPtr = Ptr;

  // The size of the pointer access.
  int64_t PtrAccessSize = 1;

  Ptr = stripGetElementPtr(Ptr, SE, Lp);
  const SCEV *V = SE->getSCEV(Ptr);

  if (Ptr != OrigPtr)
    // Strip off casts.
    while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
      V = C->getOperand();

  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
  if (!S)
    return nullptr;

  V = S->getStepRecurrence(*SE);
  if (!V)
    return nullptr;

  // Strip off the size of access multiplication if we are still analyzing the
  // pointer.
  if (OrigPtr == Ptr) {
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
      if (M->getOperand(0)->getSCEVType() != scConstant)
        return nullptr;

      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();

      // Huge step value - give up.
      if (APStepVal.getBitWidth() > 64)
        return nullptr;

      int64_t StepVal = APStepVal.getSExtValue();
      if (PtrAccessSize != StepVal)
        return nullptr;
      V = M->getOperand(1);
    }
  }

  // Strip off casts.
  Type *StripedOffRecurrenceCast = nullptr;
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
    StripedOffRecurrenceCast = C->getType();
    V = C->getOperand();
  }

  // Look for the loop invariant symbolic value.
  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
  if (!U)
    return nullptr;

  Value *Stride = U->getValue();
  if (!Lp->isLoopInvariant(Stride))
    return nullptr;

  // If we have stripped off the recurrence cast we have to make sure that we
  // return the value that is used in this loop so that we can replace it later.
  if (StripedOffRecurrenceCast)
    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);

  return Stride;
}

/// Given a vector and an element number, see if the scalar value is
/// already around as a register, for example if it were inserted then extracted
/// from the vector.
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
  VectorType *VTy = cast<VectorType>(V->getType());
  unsigned Width = VTy->getNumElements();
  if (EltNo >= Width)  // Out of range access.
    return UndefValue::get(VTy->getElementType());

  if (Constant *C = dyn_cast<Constant>(V))
    return C->getAggregateElement(EltNo);

  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert to a variable element, we don't know what it is.
    if (!isa<ConstantInt>(III->getOperand(2)))
      return nullptr;
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();

    // If this is an insert to the element we are looking for, return the
    // inserted value.
    if (EltNo == IIElt)
      return III->getOperand(1);

    // Otherwise, the insertelement doesn't modify the value, recurse on its
    // vector input.
    return findScalarElement(III->getOperand(0), EltNo);
  }

  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
    int InEl = SVI->getMaskValue(EltNo);
    if (InEl < 0)
      return UndefValue::get(VTy->getElementType());
    if (InEl < (int)LHSWidth)
      return findScalarElement(SVI->getOperand(0), InEl);
    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
  }

  // Extract a value from a vector add operation with a constant zero.
  // TODO: Use getBinOpIdentity() to generalize this.
  Value *Val; Constant *C;
  if (match(V, m_Add(m_Value(Val), m_Constant(C))))
    if (Constant *Elt = C->getAggregateElement(EltNo))
      if (Elt->isNullValue())
        return findScalarElement(Val, EltNo);

  // Otherwise, we don't know.
  return nullptr;
}

/// Get splat value if the input is a splat vector or return nullptr.
/// This function is not fully general. It checks only 2 cases:
/// the input value is (1) a splat constant vector or (2) a sequence
/// of instructions that broadcasts a scalar at element 0.
const llvm::Value *llvm::getSplatValue(const Value *V) {
  if (isa<VectorType>(V->getType()))
    if (auto *C = dyn_cast<Constant>(V))
      return C->getSplatValue();

  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
  Value *Splat;
  if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
                                               m_ZeroInt()),
                               m_Value(), m_ZeroInt())))
    return Splat;

  return nullptr;
}

// This setting is based on its counterpart in value tracking, but it could be
// adjusted if needed.
const unsigned MaxDepth = 6;

bool llvm::isSplatValue(const Value *V, unsigned Depth) {
  assert(Depth <= MaxDepth && "Limit Search Depth");

  if (isa<VectorType>(V->getType())) {
    if (isa<UndefValue>(V))
      return true;
    // FIXME: Constant splat analysis does not allow undef elements.
    if (auto *C = dyn_cast<Constant>(V))
      return C->getSplatValue() != nullptr;
  }

  // FIXME: Constant splat analysis does not allow undef elements.
  Constant *Mask;
  if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
    return Mask->getSplatValue() != nullptr;

  // The remaining tests are all recursive, so bail out if we hit the limit.
  if (Depth++ == MaxDepth)
    return false;

  // If both operands of a binop are splats, the result is a splat.
  Value *X, *Y, *Z;
  if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
    return isSplatValue(X, Depth) && isSplatValue(Y, Depth);

  // If all operands of a select are splats, the result is a splat.
  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
    return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
           isSplatValue(Z, Depth);

  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).

  return false;
}

MapVector<Instruction *, uint64_t>
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
                               const TargetTransformInfo *TTI) {

  // DemandedBits will give us every value's live-out bits. But we want
  // to ensure no extra casts would need to be inserted, so every DAG
  // of connected values must have the same minimum bitwidth.
  EquivalenceClasses<Value *> ECs;
  SmallVector<Value *, 16> Worklist;
  SmallPtrSet<Value *, 4> Roots;
  SmallPtrSet<Value *, 16> Visited;
  DenseMap<Value *, uint64_t> DBits;
  SmallPtrSet<Instruction *, 4> InstructionSet;
  MapVector<Instruction *, uint64_t> MinBWs;

  // Determine the roots. We work bottom-up, from truncs or icmps.
  bool SeenExtFromIllegalType = false;
  for (auto *BB : Blocks)
    for (auto &I : *BB) {
      InstructionSet.insert(&I);

      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
          !TTI->isTypeLegal(I.getOperand(0)->getType()))
        SeenExtFromIllegalType = true;

      // Only deal with non-vector integers up to 64-bits wide.
      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
          !I.getType()->isVectorTy() &&
          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
        // Don't make work for ourselves. If we know the loaded type is legal,
        // don't add it to the worklist.
        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
          continue;

        Worklist.push_back(&I);
        Roots.insert(&I);
      }
    }
  // Early exit.
  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
    return MinBWs;

  // Now proceed breadth-first, unioning values together.
  while (!Worklist.empty()) {
    Value *Val = Worklist.pop_back_val();
    Value *Leader = ECs.getOrInsertLeaderValue(Val);

    if (Visited.count(Val))
      continue;
    Visited.insert(Val);

    // Non-instructions terminate a chain successfully.
    if (!isa<Instruction>(Val))
      continue;
    Instruction *I = cast<Instruction>(Val);

    // If we encounter a type that is larger than 64 bits, we can't represent
    // it so bail out.
    if (DB.getDemandedBits(I).getBitWidth() > 64)
      return MapVector<Instruction *, uint64_t>();

    uint64_t V = DB.getDemandedBits(I).getZExtValue();
    DBits[Leader] |= V;
    DBits[I] = V;

    // Casts, loads and instructions outside of our range terminate a chain
    // successfully.
    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
        !InstructionSet.count(I))
      continue;

    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
    // transform anything that relies on them.
    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
        !I->getType()->isIntegerTy()) {
      DBits[Leader] |= ~0ULL;
      continue;
    }

    // We don't modify the types of PHIs. Reductions will already have been
    // truncated if possible, and inductions' sizes will have been chosen by
    // indvars.
    if (isa<PHINode>(I))
      continue;

    if (DBits[Leader] == ~0ULL)
      // All bits demanded, no point continuing.
      continue;

    for (Value *O : cast<User>(I)->operands()) {
      ECs.unionSets(Leader, O);
      Worklist.push_back(O);
    }
  }

  // Now we've discovered all values, walk them to see if there are
  // any users we didn't see. If there are, we can't optimize that
  // chain.
  for (auto &I : DBits)
    for (auto *U : I.first->users())
      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;

  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
    uint64_t LeaderDemandedBits = 0;
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
      LeaderDemandedBits |= DBits[*MI];

    uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
                     llvm::countLeadingZeros(LeaderDemandedBits);
    // Round up to a power of 2
    if (!isPowerOf2_64((uint64_t)MinBW))
      MinBW = NextPowerOf2(MinBW);

    // We don't modify the types of PHIs. Reductions will already have been
    // truncated if possible, and inductions' sizes will have been chosen by
    // indvars.
    // If we are required to shrink a PHI, abandon this entire equivalence class.
    bool Abort = false;
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
      if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
        Abort = true;
        break;
      }
    if (Abort)
      continue;

    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
      if (!isa<Instruction>(*MI))
        continue;
      Type *Ty = (*MI)->getType();
      if (Roots.count(*MI))
        Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
      if (MinBW < Ty->getScalarSizeInBits())
        MinBWs[cast<Instruction>(*MI)] = MinBW;
    }
  }

  return MinBWs;
}

/// Add all access groups in @p AccGroups to @p List.
template <typename ListT>
static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
  // Interpret an access group as a list containing itself.
  if (AccGroups->getNumOperands() == 0) {
    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
    List.insert(AccGroups);
    return;
  }

  for (auto &AccGroupListOp : AccGroups->operands()) {
    auto *Item = cast<MDNode>(AccGroupListOp.get());
    assert(isValidAsAccessGroup(Item) && "List item must be an access group");
    List.insert(Item);
  }
}

MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
  if (!AccGroups1)
    return AccGroups2;
  if (!AccGroups2)
    return AccGroups1;
  if (AccGroups1 == AccGroups2)
    return AccGroups1;

  SmallSetVector<Metadata *, 4> Union;
  addToAccessGroupList(Union, AccGroups1);
  addToAccessGroupList(Union, AccGroups2);

  if (Union.size() == 0)
    return nullptr;
  if (Union.size() == 1)
    return cast<MDNode>(Union.front());

  LLVMContext &Ctx = AccGroups1->getContext();
  return MDNode::get(Ctx, Union.getArrayRef());
}

MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
                                    const Instruction *Inst2) {
  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();

  if (!MayAccessMem1 && !MayAccessMem2)
    return nullptr;
  if (!MayAccessMem1)
    return Inst2->getMetadata(LLVMContext::MD_access_group);
  if (!MayAccessMem2)
    return Inst1->getMetadata(LLVMContext::MD_access_group);

  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
  if (!MD1 || !MD2)
    return nullptr;
  if (MD1 == MD2)
    return MD1;

  // Use set for scalable 'contains' check.
  SmallPtrSet<Metadata *, 4> AccGroupSet2;
  addToAccessGroupList(AccGroupSet2, MD2);

  SmallVector<Metadata *, 4> Intersection;
  if (MD1->getNumOperands() == 0) {
    assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
    if (AccGroupSet2.count(MD1))
      Intersection.push_back(MD1);
  } else {
    for (const MDOperand &Node : MD1->operands()) {
      auto *Item = cast<MDNode>(Node.get());
      assert(isValidAsAccessGroup(Item) && "List item must be an access group");
      if (AccGroupSet2.count(Item))
        Intersection.push_back(Item);
    }
  }

  if (Intersection.size() == 0)
    return nullptr;
  if (Intersection.size() == 1)
    return cast<MDNode>(Intersection.front());

  LLVMContext &Ctx = Inst1->getContext();
  return MDNode::get(Ctx, Intersection);
}

/// \returns \p I after propagating metadata from \p VL.
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
  Instruction *I0 = cast<Instruction>(VL[0]);
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
  I0->getAllMetadataOtherThanDebugLoc(Metadata);

  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
                    LLVMContext::MD_access_group}) {
    MDNode *MD = I0->getMetadata(Kind);

    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
      const Instruction *IJ = cast<Instruction>(VL[J]);
      MDNode *IMD = IJ->getMetadata(Kind);
      switch (Kind) {
      case LLVMContext::MD_tbaa:
        MD = MDNode::getMostGenericTBAA(MD, IMD);
        break;
      case LLVMContext::MD_alias_scope:
        MD = MDNode::getMostGenericAliasScope(MD, IMD);
        break;
      case LLVMContext::MD_fpmath:
        MD = MDNode::getMostGenericFPMath(MD, IMD);
        break;
      case LLVMContext::MD_noalias:
      case LLVMContext::MD_nontemporal:
      case LLVMContext::MD_invariant_load:
        MD = MDNode::intersect(MD, IMD);
        break;
      case LLVMContext::MD_access_group:
        MD = intersectAccessGroups(Inst, IJ);
        break;
      default:
        llvm_unreachable("unhandled metadata");
      }
    }

    Inst->setMetadata(Kind, MD);
  }

  return Inst;
}

Constant *
llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
                           const InterleaveGroup<Instruction> &Group) {
  // All 1's means mask is not needed.
  if (Group.getNumMembers() == Group.getFactor())
    return nullptr;

  // TODO: support reversed access.
  assert(!Group.isReverse() && "Reversed group not supported.");

  SmallVector<Constant *, 16> Mask;
  for (unsigned i = 0; i < VF; i++)
    for (unsigned j = 0; j < Group.getFactor(); ++j) {
      unsigned HasMember = Group.getMember(j) ? 1 : 0;
      Mask.push_back(Builder.getInt1(HasMember));
    }

  return ConstantVector::get(Mask);
}

Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 
                                     unsigned ReplicationFactor, unsigned VF) {
  SmallVector<Constant *, 16> MaskVec;
  for (unsigned i = 0; i < VF; i++)
    for (unsigned j = 0; j < ReplicationFactor; j++)
      MaskVec.push_back(Builder.getInt32(i));

  return ConstantVector::get(MaskVec);
}

Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
                                     unsigned NumVecs) {
  SmallVector<Constant *, 16> Mask;
  for (unsigned i = 0; i < VF; i++)
    for (unsigned j = 0; j < NumVecs; j++)
      Mask.push_back(Builder.getInt32(j * VF + i));

  return ConstantVector::get(Mask);
}

Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
                                 unsigned Stride, unsigned VF) {
  SmallVector<Constant *, 16> Mask;
  for (unsigned i = 0; i < VF; i++)
    Mask.push_back(Builder.getInt32(Start + i * Stride));

  return ConstantVector::get(Mask);
}

Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
                                     unsigned NumInts, unsigned NumUndefs) {
  SmallVector<Constant *, 16> Mask;
  for (unsigned i = 0; i < NumInts; i++)
    Mask.push_back(Builder.getInt32(Start + i));

  Constant *Undef = UndefValue::get(Builder.getInt32Ty());
  for (unsigned i = 0; i < NumUndefs; i++)
    Mask.push_back(Undef);

  return ConstantVector::get(Mask);
}

/// A helper function for concatenating vectors. This function concatenates two
/// vectors having the same element type. If the second vector has fewer
/// elements than the first, it is padded with undefs.
static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
                                    Value *V2) {
  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
  assert(VecTy1 && VecTy2 &&
         VecTy1->getScalarType() == VecTy2->getScalarType() &&
         "Expect two vectors with the same element type");

  unsigned NumElts1 = VecTy1->getNumElements();
  unsigned NumElts2 = VecTy2->getNumElements();
  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");

  if (NumElts1 > NumElts2) {
    // Extend with UNDEFs.
    Constant *ExtMask =
        createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
    V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
  }

  Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
  return Builder.CreateShuffleVector(V1, V2, Mask);
}

Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
  unsigned NumVecs = Vecs.size();
  assert(NumVecs > 1 && "Should be at least two vectors");

  SmallVector<Value *, 8> ResList;
  ResList.append(Vecs.begin(), Vecs.end());
  do {
    SmallVector<Value *, 8> TmpList;
    for (unsigned i = 0; i < NumVecs - 1; i += 2) {
      Value *V0 = ResList[i], *V1 = ResList[i + 1];
      assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
             "Only the last vector may have a different type");

      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
    }

    // Push the last vector if the total number of vectors is odd.
    if (NumVecs % 2 != 0)
      TmpList.push_back(ResList[NumVecs - 1]);

    ResList = TmpList;
    NumVecs = ResList.size();
  } while (NumVecs > 1);

  return ResList[0];
}

bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
  auto *ConstMask = dyn_cast<Constant>(Mask);
  if (!ConstMask)
    return false;
  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
    return true;
  for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
       ++I) {
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
        continue;
    return false;
  }
  return true;
}


bool llvm::maskIsAllOneOrUndef(Value *Mask) {
  auto *ConstMask = dyn_cast<Constant>(Mask);
  if (!ConstMask)
    return false;
  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
    return true;
  for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
       ++I) {
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
        continue;
    return false;
  }
  return true;
}

/// TODO: This is a lot like known bits, but for
/// vectors.  Is there something we can common this with?
APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {

  const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
  APInt DemandedElts = APInt::getAllOnesValue(VWidth);
  if (auto *CV = dyn_cast<ConstantVector>(Mask))
    for (unsigned i = 0; i < VWidth; i++)
      if (CV->getAggregateElement(i)->isNullValue())
        DemandedElts.clearBit(i);
  return DemandedElts;
}

bool InterleavedAccessInfo::isStrided(int Stride) {
  unsigned Factor = std::abs(Stride);
  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
}

void InterleavedAccessInfo::collectConstStrideAccesses(
    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
    const ValueToValueMap &Strides) {
  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();

  // Since it's desired that the load/store instructions be maintained in
  // "program order" for the interleaved access analysis, we have to visit the
  // blocks in the loop in reverse postorder (i.e., in a topological order).
  // Such an ordering will ensure that any load/store that may be executed
  // before a second load/store will precede the second load/store in
  // AccessStrideInfo.
  LoopBlocksDFS DFS(TheLoop);
  DFS.perform(LI);
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
    for (auto &I : *BB) {
      auto *LI = dyn_cast<LoadInst>(&I);
      auto *SI = dyn_cast<StoreInst>(&I);
      if (!LI && !SI)
        continue;

      Value *Ptr = getLoadStorePointerOperand(&I);
      // We don't check wrapping here because we don't know yet if Ptr will be
      // part of a full group or a group with gaps. Checking wrapping for all
      // pointers (even those that end up in groups with no gaps) will be overly
      // conservative. For full groups, wrapping should be ok since if we would
      // wrap around the address space we would do a memory access at nullptr
      // even without the transformation. The wrapping checks are therefore
      // deferred until after we've formed the interleaved groups.
      int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
                                    /*Assume=*/true, /*ShouldCheckWrap=*/false);

      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
      PointerType *PtrTy = cast<PointerType>(Ptr->getType());
      uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());

      // An alignment of 0 means target ABI alignment.
      MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
      if (!Alignment)
        Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));

      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
    }
}

// Analyze interleaved accesses and collect them into interleaved load and
// store groups.
//
// When generating code for an interleaved load group, we effectively hoist all
// loads in the group to the location of the first load in program order. When
// generating code for an interleaved store group, we sink all stores to the
// location of the last store. This code motion can change the order of load
// and store instructions and may break dependences.
//
// The code generation strategy mentioned above ensures that we won't violate
// any write-after-read (WAR) dependences.
//
// E.g., for the WAR dependence:  a = A[i];      // (1)
//                                A[i] = b;      // (2)
//
// The store group of (2) is always inserted at or below (2), and the load
// group of (1) is always inserted at or above (1). Thus, the instructions will
// never be reordered. All other dependences are checked to ensure the
// correctness of the instruction reordering.
//
// The algorithm visits all memory accesses in the loop in bottom-up program
// order. Program order is established by traversing the blocks in the loop in
// reverse postorder when collecting the accesses.
//
// We visit the memory accesses in bottom-up order because it can simplify the
// construction of store groups in the presence of write-after-write (WAW)
// dependences.
//
// E.g., for the WAW dependence:  A[i] = a;      // (1)
//                                A[i] = b;      // (2)
//                                A[i + 1] = c;  // (3)
//
// We will first create a store group with (3) and (2). (1) can't be added to
// this group because it and (2) are dependent. However, (1) can be grouped
// with other accesses that may precede it in program order. Note that a
// bottom-up order does not imply that WAW dependences should not be checked.
void InterleavedAccessInfo::analyzeInterleaving(
                                 bool EnablePredicatedInterleavedMemAccesses) {
  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
  const ValueToValueMap &Strides = LAI->getSymbolicStrides();

  // Holds all accesses with a constant stride.
  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
  collectConstStrideAccesses(AccessStrideInfo, Strides);

  if (AccessStrideInfo.empty())
    return;

  // Collect the dependences in the loop.
  collectDependences();

  // Holds all interleaved store groups temporarily.
  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
  // Holds all interleaved load groups temporarily.
  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;

  // Search in bottom-up program order for pairs of accesses (A and B) that can
  // form interleaved load or store groups. In the algorithm below, access A
  // precedes access B in program order. We initialize a group for B in the
  // outer loop of the algorithm, and then in the inner loop, we attempt to
  // insert each A into B's group if:
  //
  //  1. A and B have the same stride,
  //  2. A and B have the same memory object size, and
  //  3. A belongs in B's group according to its distance from B.
  //
  // Special care is taken to ensure group formation will not break any
  // dependences.
  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
       BI != E; ++BI) {
    Instruction *B = BI->first;
    StrideDescriptor DesB = BI->second;

    // Initialize a group for B if it has an allowable stride. Even if we don't
    // create a group for B, we continue with the bottom-up algorithm to ensure
    // we don't break any of B's dependences.
    InterleaveGroup<Instruction> *Group = nullptr;
    if (isStrided(DesB.Stride) && 
        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
      Group = getInterleaveGroup(B);
      if (!Group) {
        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
                          << '\n');
        Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
      }
      if (B->mayWriteToMemory())
        StoreGroups.insert(Group);
      else
        LoadGroups.insert(Group);
    }

    for (auto AI = std::next(BI); AI != E; ++AI) {
      Instruction *A = AI->first;
      StrideDescriptor DesA = AI->second;

      // Our code motion strategy implies that we can't have dependences
      // between accesses in an interleaved group and other accesses located
      // between the first and last member of the group. Note that this also
      // means that a group can't have more than one member at a given offset.
      // The accesses in a group can have dependences with other accesses, but
      // we must ensure we don't extend the boundaries of the group such that
      // we encompass those dependent accesses.
      //
      // For example, assume we have the sequence of accesses shown below in a
      // stride-2 loop:
      //
      //  (1, 2) is a group | A[i]   = a;  // (1)
      //                    | A[i-1] = b;  // (2) |
      //                      A[i-3] = c;  // (3)
      //                      A[i]   = d;  // (4) | (2, 4) is not a group
      //
      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
      // but not with (4). If we did, the dependent access (3) would be within
      // the boundaries of the (2, 4) group.
      if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
        // If a dependence exists and A is already in a group, we know that A
        // must be a store since A precedes B and WAR dependences are allowed.
        // Thus, A would be sunk below B. We release A's group to prevent this
        // illegal code motion. A will then be free to form another group with
        // instructions that precede it.
        if (isInterleaved(A)) {
          InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);

          LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
                               "dependence between " << *A << " and "<< *B << '\n');

          StoreGroups.remove(StoreGroup);
          releaseGroup(StoreGroup);
        }

        // If a dependence exists and A is not already in a group (or it was
        // and we just released it), B might be hoisted above A (if B is a
        // load) or another store might be sunk below A (if B is a store). In
        // either case, we can't add additional instructions to B's group. B
        // will only form a group with instructions that it precedes.
        break;
      }

      // At this point, we've checked for illegal code motion. If either A or B
      // isn't strided, there's nothing left to do.
      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
        continue;

      // Ignore A if it's already in a group or isn't the same kind of memory
      // operation as B.
      // Note that mayReadFromMemory() isn't mutually exclusive to
      // mayWriteToMemory in the case of atomic loads. We shouldn't see those
      // here, canVectorizeMemory() should have returned false - except for the
      // case we asked for optimization remarks.
      if (isInterleaved(A) ||
          (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
          (A->mayWriteToMemory() != B->mayWriteToMemory()))
        continue;

      // Check rules 1 and 2. Ignore A if its stride or size is different from
      // that of B.
      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
        continue;

      // Ignore A if the memory object of A and B don't belong to the same
      // address space
      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
        continue;

      // Calculate the distance from A to B.
      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
      if (!DistToB)
        continue;
      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();

      // Check rule 3. Ignore A if its distance to B is not a multiple of the
      // size.
      if (DistanceToB % static_cast<int64_t>(DesB.Size))
        continue;

      // All members of a predicated interleave-group must have the same predicate,
      // and currently must reside in the same BB.
      BasicBlock *BlockA = A->getParent();  
      BasicBlock *BlockB = B->getParent();  
      if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
        continue;

      // The index of A is the index of B plus A's distance to B in multiples
      // of the size.
      int IndexA =
          Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);

      // Try to insert A into B's group.
      if (Group->insertMember(A, IndexA, DesA.Alignment)) {
        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
                          << "    into the interleave group with" << *B
                          << '\n');
        InterleaveGroupMap[A] = Group;

        // Set the first load in program order as the insert position.
        if (A->mayReadFromMemory())
          Group->setInsertPos(A);
      }
    } // Iteration over A accesses.
  }   // Iteration over B accesses.

  // Remove interleaved store groups with gaps.
  for (auto *Group : StoreGroups)
    if (Group->getNumMembers() != Group->getFactor()) {
      LLVM_DEBUG(
          dbgs() << "LV: Invalidate candidate interleaved store group due "
                    "to gaps.\n");
      releaseGroup(Group);
    }
  // Remove interleaved groups with gaps (currently only loads) whose memory
  // accesses may wrap around. We have to revisit the getPtrStride analysis,
  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
  // not check wrapping (see documentation there).
  // FORNOW we use Assume=false;
  // TODO: Change to Assume=true but making sure we don't exceed the threshold
  // of runtime SCEV assumptions checks (thereby potentially failing to
  // vectorize altogether).
  // Additional optional optimizations:
  // TODO: If we are peeling the loop and we know that the first pointer doesn't
  // wrap then we can deduce that all pointers in the group don't wrap.
  // This means that we can forcefully peel the loop in order to only have to
  // check the first pointer for no-wrap. When we'll change to use Assume=true
  // we'll only need at most one runtime check per interleaved group.
  for (auto *Group : LoadGroups) {
    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
    // load would wrap around the address space we would do a memory access at
    // nullptr even without the transformation.
    if (Group->getNumMembers() == Group->getFactor())
      continue;

    // Case 2: If first and last members of the group don't wrap this implies
    // that all the pointers in the group don't wrap.
    // So we check only group member 0 (which is always guaranteed to exist),
    // and group member Factor - 1; If the latter doesn't exist we rely on
    // peeling (if it is a non-reversed accsess -- see Case 3).
    Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
    if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
                      /*ShouldCheckWrap=*/true)) {
      LLVM_DEBUG(
          dbgs() << "LV: Invalidate candidate interleaved group due to "
                    "first group member potentially pointer-wrapping.\n");
      releaseGroup(Group);
      continue;
    }
    Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
    if (LastMember) {
      Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
      if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
                        /*ShouldCheckWrap=*/true)) {
        LLVM_DEBUG(
            dbgs() << "LV: Invalidate candidate interleaved group due to "
                      "last group member potentially pointer-wrapping.\n");
        releaseGroup(Group);
      }
    } else {
      // Case 3: A non-reversed interleaved load group with gaps: We need
      // to execute at least one scalar epilogue iteration. This will ensure
      // we don't speculatively access memory out-of-bounds. We only need
      // to look for a member at index factor - 1, since every group must have
      // a member at index zero.
      if (Group->isReverse()) {
        LLVM_DEBUG(
            dbgs() << "LV: Invalidate candidate interleaved group due to "
                      "a reverse access with gaps.\n");
        releaseGroup(Group);
        continue;
      }
      LLVM_DEBUG(
          dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
      RequiresScalarEpilogue = true;
    }
  }
}

void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
  // If no group had triggered the requirement to create an epilogue loop,
  // there is nothing to do.
  if (!requiresScalarEpilogue())
    return;

  // Avoid releasing a Group twice.
  SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
  for (auto &I : InterleaveGroupMap) {
    InterleaveGroup<Instruction> *Group = I.second;
    if (Group->requiresScalarEpilogue())
      DelSet.insert(Group);
  }
  for (auto *Ptr : DelSet) {
    LLVM_DEBUG(
        dbgs()
        << "LV: Invalidate candidate interleaved group due to gaps that "
           "require a scalar epilogue (not allowed under optsize) and cannot "
           "be masked (not enabled). \n");
    releaseGroup(Ptr);
  }

  RequiresScalarEpilogue = false;
}

template <typename InstT>
void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
  llvm_unreachable("addMetadata can only be used for Instruction");
}

namespace llvm {
template <>
void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
  SmallVector<Value *, 4> VL;
  std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
                 [](std::pair<int, Instruction *> p) { return p.second; });
  propagateMetadata(NewInst, VL);
}
}