llvm.org GIT mirror llvm / fe085f3 include / llvm / Instructions.h
fe085f3

Tree @fe085f3 (Download .tar.gz)

Instructions.h @fe085f3raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class.  This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INSTRUCTIONS_H
#define LLVM_INSTRUCTIONS_H

#include <iterator>

#include "llvm/InstrTypes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ParameterAttributes.h"

namespace llvm {

class BasicBlock;
class ConstantInt;
class PointerType;
class VectorType;
class ConstantRange;
class APInt;
class ParamAttrsList;

//===----------------------------------------------------------------------===//
//                             AllocationInst Class
//===----------------------------------------------------------------------===//

/// AllocationInst - This class is the common base class of MallocInst and
/// AllocaInst.
///
class AllocationInst : public UnaryInstruction {
  unsigned Alignment;
protected:
  AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align,
                 const std::string &Name = "", Instruction *InsertBefore = 0);
  AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align,
                 const std::string &Name, BasicBlock *InsertAtEnd);
public:
  // Out of line virtual method, so the vtable, etc has a home.
  virtual ~AllocationInst();

  /// isArrayAllocation - Return true if there is an allocation size parameter
  /// to the allocation instruction that is not 1.
  ///
  bool isArrayAllocation() const;

  /// getArraySize - Get the number of element allocated, for a simple
  /// allocation of a single element, this will return a constant 1 value.
  ///
  inline const Value *getArraySize() const { return getOperand(0); }
  inline Value *getArraySize() { return getOperand(0); }

  /// getType - Overload to return most specific pointer type
  ///
  inline const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  /// getAllocatedType - Return the type that is being allocated by the
  /// instruction.
  ///
  const Type *getAllocatedType() const;

  /// getAlignment - Return the alignment of the memory that is being allocated
  /// by the instruction.
  ///
  unsigned getAlignment() const { return Alignment; }
  void setAlignment(unsigned Align) {
    assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
    Alignment = Align;
  }

  virtual Instruction *clone() const = 0;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const AllocationInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Malloc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                MallocInst Class
//===----------------------------------------------------------------------===//

/// MallocInst - an instruction to allocated memory on the heap
///
class MallocInst : public AllocationInst {
  MallocInst(const MallocInst &MI);
public:
  explicit MallocInst(const Type *Ty, Value *ArraySize = 0,
                      const std::string &Name = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Malloc, 0, Name, InsertBefore) {}
  MallocInst(const Type *Ty, Value *ArraySize, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Malloc, 0, Name, InsertAtEnd) {}

  MallocInst(const Type *Ty, const std::string &Name,
             Instruction *InsertBefore = 0)
    : AllocationInst(Ty, 0, Malloc, 0, Name, InsertBefore) {}
  MallocInst(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, 0, Malloc, 0, Name, InsertAtEnd) {}

  MallocInst(const Type *Ty, Value *ArraySize, unsigned Align,
             const std::string &Name, BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Malloc, Align, Name, InsertAtEnd) {}
  MallocInst(const Type *Ty, Value *ArraySize, unsigned Align,
                      const std::string &Name = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Malloc, Align, Name, InsertBefore) {}

  virtual MallocInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const MallocInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Malloc);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                AllocaInst Class
//===----------------------------------------------------------------------===//

/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public AllocationInst {
  AllocaInst(const AllocaInst &);
public:
  explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
                      const std::string &Name = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Alloca, 0, Name, InsertBefore) {}
  AllocaInst(const Type *Ty, Value *ArraySize, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Alloca, 0, Name, InsertAtEnd) {}

  AllocaInst(const Type *Ty, const std::string &Name,
             Instruction *InsertBefore = 0)
    : AllocationInst(Ty, 0, Alloca, 0, Name, InsertBefore) {}
  AllocaInst(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, 0, Alloca, 0, Name, InsertAtEnd) {}

  AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
             const std::string &Name = "", Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Alloca, Align, Name, InsertBefore) {}
  AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
             const std::string &Name, BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Alloca, Align, Name, InsertAtEnd) {}

  virtual AllocaInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const AllocaInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Alloca);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                 FreeInst Class
//===----------------------------------------------------------------------===//

/// FreeInst - an instruction to deallocate memory
///
class FreeInst : public UnaryInstruction {
  void AssertOK();
public:
  explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0);
  FreeInst(Value *Ptr, BasicBlock *InsertAfter);

  virtual FreeInst *clone() const;
  
  // Accessor methods for consistency with other memory operations
  Value *getPointerOperand() { return getOperand(0); }
  const Value *getPointerOperand() const { return getOperand(0); }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FreeInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Free);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                LoadInst Class
//===----------------------------------------------------------------------===//

/// LoadInst - an instruction for reading from memory.  This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction {

  LoadInst(const LoadInst &LI)
    : UnaryInstruction(LI.getType(), Load, LI.getOperand(0)) {
    setVolatile(LI.isVolatile());
    setAlignment(LI.getAlignment());

#ifndef NDEBUG
    AssertOK();
#endif
  }
  void AssertOK();
public:
  LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBefore);
  LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAtEnd);
  LoadInst(Value *Ptr, const std::string &Name, bool isVolatile = false, 
           Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, unsigned Align,
           Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
           BasicBlock *InsertAtEnd);
  LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, unsigned Align,
           BasicBlock *InsertAtEnd);

  LoadInst(Value *Ptr, const char *Name, Instruction *InsertBefore);
  LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAtEnd);
  explicit LoadInst(Value *Ptr, const char *Name = 0, bool isVolatile = false, 
                    Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const char *Name, bool isVolatile,
           BasicBlock *InsertAtEnd);
  
  /// isVolatile - Return true if this is a load from a volatile memory
  /// location.
  ///
  bool isVolatile() const { return SubclassData & 1; }

  /// setVolatile - Specify whether this is a volatile load or not.
  ///
  void setVolatile(bool V) { 
    SubclassData = (SubclassData & ~1) | (V ? 1 : 0); 
  }

  virtual LoadInst *clone() const;

  /// getAlignment - Return the alignment of the access that is being performed
  ///
  unsigned getAlignment() const {
    return (1 << (SubclassData>>1)) >> 1;
  }
  
  void setAlignment(unsigned Align);

  Value *getPointerOperand() { return getOperand(0); }
  const Value *getPointerOperand() const { return getOperand(0); }
  static unsigned getPointerOperandIndex() { return 0U; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const LoadInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Load;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                StoreInst Class
//===----------------------------------------------------------------------===//

/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction {
  Use Ops[2];
  
  StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store, Ops, 2) {
    Ops[0].init(SI.Ops[0], this);
    Ops[1].init(SI.Ops[1], this);
    setVolatile(SI.isVolatile());
    setAlignment(SI.getAlignment());
    
#ifndef NDEBUG
    AssertOK();
#endif
  }
  void AssertOK();
public:
  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
            Instruction *InsertBefore = 0);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
            unsigned Align, Instruction *InsertBefore = 0);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
            unsigned Align, BasicBlock *InsertAtEnd);


  /// isVolatile - Return true if this is a load from a volatile memory
  /// location.
  ///
  bool isVolatile() const { return SubclassData & 1; }

  /// setVolatile - Specify whether this is a volatile load or not.
  ///
  void setVolatile(bool V) { 
    SubclassData = (SubclassData & ~1) | (V ? 1 : 0); 
  }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 2 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 2 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 2; }

  /// getAlignment - Return the alignment of the access that is being performed
  ///
  unsigned getAlignment() const {
    return (1 << (SubclassData>>1)) >> 1;
  }
  
  void setAlignment(unsigned Align);
  
  virtual StoreInst *clone() const;

  Value *getPointerOperand() { return getOperand(1); }
  const Value *getPointerOperand() const { return getOperand(1); }
  static unsigned getPointerOperandIndex() { return 1U; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const StoreInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Store;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                             GetElementPtrInst Class
//===----------------------------------------------------------------------===//

// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
  assert(Ty && "Invalid GetElementPtrInst indices for type!");
  return Ty;
}

/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
  GetElementPtrInst(const GetElementPtrInst &GEPI)
    : Instruction(reinterpret_cast<const Type*>(GEPI.getType()), GetElementPtr,
                  0, GEPI.getNumOperands()) {
    Use *OL = OperandList = new Use[NumOperands];
    Use *GEPIOL = GEPI.OperandList;
    for (unsigned i = 0, E = NumOperands; i != E; ++i)
      OL[i].init(GEPIOL[i], this);
  }
  void init(Value *Ptr, Value* const *Idx, unsigned NumIdx);
  void init(Value *Ptr, Value *Idx);

  template<typename InputIterator>
  void init(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd,
            const std::string &Name,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    typename std::iterator_traits<InputIterator>::difference_type NumIdx = 
      std::distance(IdxBegin, IdxEnd);
    
    if (NumIdx > 0) {
      // This requires that the itoerator points to contiguous memory.
      init(Ptr, &*IdxBegin, NumIdx);
    }
    else {
      init(Ptr, 0, NumIdx);
    }

    setName(Name);
  }

  /// getIndexedType - Returns the type of the element that would be loaded with
  /// a load instruction with the specified parameters.
  ///
  /// A null type is returned if the indices are invalid for the specified
  /// pointer type.
  ///
  static const Type *getIndexedType(const Type *Ptr,
                                    Value* const *Idx, unsigned NumIdx,
                                    bool AllowStructLeaf = false);

  template<typename InputIterator>
  static const Type *getIndexedType(const Type *Ptr,
                                    InputIterator IdxBegin, 
                                    InputIterator IdxEnd,
                                    bool AllowStructLeaf,
                                    // This argument ensures that we
                                    // have an iterator we can do
                                    // arithmetic on in constant time
                                    std::random_access_iterator_tag) {
    typename std::iterator_traits<InputIterator>::difference_type NumIdx = 
      std::distance(IdxBegin, IdxEnd);

    if (NumIdx > 0) {
      // This requires that the iterator points to contiguous memory.
      return(getIndexedType(Ptr, (Value *const *)&*IdxBegin, NumIdx,
                            AllowStructLeaf));
    }
    else {
      return(getIndexedType(Ptr, (Value *const*)0, NumIdx, AllowStructLeaf));
    }
  }

public:
  /// Constructors - Create a getelementptr instruction with a base pointer an
  /// list of indices.  The first ctor can optionally insert before an existing
  /// instruction, the second appends the new instruction to the specified
  /// BasicBlock.
  template<typename InputIterator>
  GetElementPtrInst(Value *Ptr, InputIterator IdxBegin, 
                    InputIterator IdxEnd,
                    const std::string &Name = "",
                    Instruction *InsertBefore =0)
      : Instruction(PointerType::get(
                      checkType(getIndexedType(Ptr->getType(),
                                               IdxBegin, IdxEnd, true)),
                      cast<PointerType>(Ptr->getType())->getAddressSpace()),
                    GetElementPtr, 0, 0, InsertBefore) {
    init(Ptr, IdxBegin, IdxEnd, Name,
         typename std::iterator_traits<InputIterator>::iterator_category());
  }
  template<typename InputIterator>
  GetElementPtrInst(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd,
                    const std::string &Name, BasicBlock *InsertAtEnd)
      : Instruction(PointerType::get(
                      checkType(getIndexedType(Ptr->getType(),
                                               IdxBegin, IdxEnd, true)),
                      cast<PointerType>(Ptr->getType())->getAddressSpace()),
                    GetElementPtr, 0, 0, InsertAtEnd) {
    init(Ptr, IdxBegin, IdxEnd, Name,
         typename std::iterator_traits<InputIterator>::iterator_category());
  }

  /// Constructors - These two constructors are convenience methods because one
  /// and two index getelementptr instructions are so common.
  GetElementPtrInst(Value *Ptr, Value *Idx,
                    const std::string &Name = "", Instruction *InsertBefore =0);
  GetElementPtrInst(Value *Ptr, Value *Idx,
                    const std::string &Name, BasicBlock *InsertAtEnd);
  ~GetElementPtrInst();

  virtual GetElementPtrInst *clone() const;

  // getType - Overload to return most specific pointer type...
  inline const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  /// getIndexedType - Returns the type of the element that would be loaded with
  /// a load instruction with the specified parameters.
  ///
  /// A null type is returned if the indices are invalid for the specified
  /// pointer type.
  ///
  template<typename InputIterator>
  static const Type *getIndexedType(const Type *Ptr,
                                    InputIterator IdxBegin,
                                    InputIterator IdxEnd,
                                    bool AllowStructLeaf = false) {
    return(getIndexedType(Ptr, IdxBegin, IdxEnd, AllowStructLeaf, 
                          typename std::iterator_traits<InputIterator>::
                          iterator_category()));
  }  
  static const Type *getIndexedType(const Type *Ptr, Value *Idx);

  inline op_iterator       idx_begin()       { return op_begin()+1; }
  inline const_op_iterator idx_begin() const { return op_begin()+1; }
  inline op_iterator       idx_end()         { return op_end(); }
  inline const_op_iterator idx_end()   const { return op_end(); }

  Value *getPointerOperand() {
    return getOperand(0);
  }
  const Value *getPointerOperand() const {
    return getOperand(0);
  }
  static unsigned getPointerOperandIndex() {
    return 0U;                      // get index for modifying correct operand
  }

  inline unsigned getNumIndices() const {  // Note: always non-negative
    return getNumOperands() - 1;
  }

  inline bool hasIndices() const {
    return getNumOperands() > 1;
  }
  
  /// hasAllZeroIndices - Return true if all of the indices of this GEP are
  /// zeros.  If so, the result pointer and the first operand have the same
  /// value, just potentially different types.
  bool hasAllZeroIndices() const;
  
  /// hasAllConstantIndices - Return true if all of the indices of this GEP are
  /// constant integers.  If so, the result pointer and the first operand have
  /// a constant offset between them.
  bool hasAllConstantIndices() const;
  

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const GetElementPtrInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::GetElementPtr);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               ICmpInst Class
//===----------------------------------------------------------------------===//

/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on integers, pointers, or packed 
/// vectors of integrals. The two operands must be the same type.
/// @brief Represent an integer comparison operator.
class ICmpInst: public CmpInst {
public:
  /// This enumeration lists the possible predicates for the ICmpInst. The
  /// values in the range 0-31 are reserved for FCmpInst while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  enum Predicate {
    ICMP_EQ  = 32,    ///< equal
    ICMP_NE  = 33,    ///< not equal
    ICMP_UGT = 34,    ///< unsigned greater than
    ICMP_UGE = 35,    ///< unsigned greater or equal
    ICMP_ULT = 36,    ///< unsigned less than
    ICMP_ULE = 37,    ///< unsigned less or equal
    ICMP_SGT = 38,    ///< signed greater than
    ICMP_SGE = 39,    ///< signed greater or equal
    ICMP_SLT = 40,    ///< signed less than
    ICMP_SLE = 41,    ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

  /// @brief Constructor with insert-before-instruction semantics.
  ICmpInst(
    Predicate pred,  ///< The predicate to use for the comparison
    Value *LHS,      ///< The left-hand-side of the expression
    Value *RHS,      ///< The right-hand-side of the expression
    const std::string &Name = "",  ///< Name of the instruction
    Instruction *InsertBefore = 0  ///< Where to insert
  ) : CmpInst(Instruction::ICmp, pred, LHS, RHS, Name, InsertBefore) {
  }

  /// @brief Constructor with insert-at-block-end semantics.
  ICmpInst(
    Predicate pred, ///< The predicate to use for the comparison
    Value *LHS,     ///< The left-hand-side of the expression
    Value *RHS,     ///< The right-hand-side of the expression
    const std::string &Name,  ///< Name of the instruction
    BasicBlock *InsertAtEnd   ///< Block to insert into.
  ) : CmpInst(Instruction::ICmp, pred, LHS, RHS, Name, InsertAtEnd) {
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const { return Predicate(SubclassData); }

  /// @brief Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { SubclassData = P; }
  
  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate. 
  /// @brief Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred. 
  /// @brief Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT, etc.
  /// @returns the predicate that would be the result of exchanging the two 
  /// operands of the ICmpInst instruction without changing the result 
  /// produced.  
  /// @brief Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction 
  /// available.
  /// @brief Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
  /// @returns the predicate that would be the result if the operand were
  /// regarded as signed.
  /// @brief Return the signed version of the predicate
  Predicate getSignedPredicate() const {
    return getSignedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction.
  /// @brief Return the signed version of the predicate.
  static Predicate getSignedPredicate(Predicate pred);

  /// isEquality - Return true if this predicate is either EQ or NE.  This also
  /// tests for commutativity.
  static bool isEquality(Predicate P) {
    return P == ICMP_EQ || P == ICMP_NE;
  }
  
  /// isEquality - Return true if this predicate is either EQ or NE.  This also
  /// tests for commutativity.
  bool isEquality() const {
    return isEquality(getPredicate());
  }

  /// @returns true if the predicate of this ICmpInst is commutative
  /// @brief Determine if this relation is commutative.
  bool isCommutative() const { return isEquality(); }

  /// isRelational - Return true if the predicate is relational (not EQ or NE). 
  ///
  bool isRelational() const {
    return !isEquality();
  }

  /// isRelational - Return true if the predicate is relational (not EQ or NE). 
  ///
  static bool isRelational(Predicate P) {
    return !isEquality(P);
  }
  
  /// @returns true if the predicate of this ICmpInst is signed, false otherwise
  /// @brief Determine if this instruction's predicate is signed.
  bool isSignedPredicate() const { return isSignedPredicate(getPredicate()); }

  /// @returns true if the predicate provided is signed, false otherwise
  /// @brief Determine if the predicate is signed.
  static bool isSignedPredicate(Predicate pred);

  /// Initialize a set of values that all satisfy the predicate with C. 
  /// @brief Make a ConstantRange for a relation with a constant value.
  static ConstantRange makeConstantRange(Predicate pred, const APInt &C);

  /// Exchange the two operands to this instruction in such a way that it does
  /// not modify the semantics of the instruction. The predicate value may be
  /// changed to retain the same result if the predicate is order dependent
  /// (e.g. ult). 
  /// @brief Swap operands and adjust predicate.
  void swapOperands() {
    SubclassData = getSwappedPredicate();
    std::swap(Ops[0], Ops[1]);
  }

  virtual ICmpInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ICmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               FCmpInst Class
//===----------------------------------------------------------------------===//

/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on floating point values or packed     
/// vectors of floating point values. The operands must be identical types.
/// @brief Represents a floating point comparison operator.
class FCmpInst: public CmpInst {
public:
  /// This enumeration lists the possible predicates for the FCmpInst. Values
  /// in the range 0-31 are reserved for FCmpInst.
  enum Predicate {
    // Opcode        U L G E    Intuitive operation
    FCMP_FALSE = 0, ///<  0 0 0 0    Always false (always folded)
    FCMP_OEQ   = 1, ///<  0 0 0 1    True if ordered and equal
    FCMP_OGT   = 2, ///<  0 0 1 0    True if ordered and greater than
    FCMP_OGE   = 3, ///<  0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   = 4, ///<  0 1 0 0    True if ordered and less than
    FCMP_OLE   = 5, ///<  0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   = 6, ///<  0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   = 7, ///<  0 1 1 1    True if ordered (no nans)
    FCMP_UNO   = 8, ///<  1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   = 9, ///<  1 0 0 1    True if unordered or equal
    FCMP_UGT   =10, ///<  1 0 1 0    True if unordered or greater than
    FCMP_UGE   =11, ///<  1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   =12, ///<  1 1 0 0    True if unordered or less than
    FCMP_ULE   =13, ///<  1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   =14, ///<  1 1 1 0    True if unordered or not equal
    FCMP_TRUE  =15, ///<  1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1
  };

  /// @brief Constructor with insert-before-instruction semantics.
  FCmpInst(
    Predicate pred,  ///< The predicate to use for the comparison
    Value *LHS,      ///< The left-hand-side of the expression
    Value *RHS,      ///< The right-hand-side of the expression
    const std::string &Name = "",  ///< Name of the instruction
    Instruction *InsertBefore = 0  ///< Where to insert
  ) : CmpInst(Instruction::FCmp, pred, LHS, RHS, Name, InsertBefore) {
  }

  /// @brief Constructor with insert-at-block-end semantics.
  FCmpInst(
    Predicate pred, ///< The predicate to use for the comparison
    Value *LHS,     ///< The left-hand-side of the expression
    Value *RHS,     ///< The right-hand-side of the expression
    const std::string &Name,  ///< Name of the instruction
    BasicBlock *InsertAtEnd   ///< Block to insert into.
  ) : CmpInst(Instruction::FCmp, pred, LHS, RHS, Name, InsertAtEnd) {
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const { return Predicate(SubclassData); }

  /// @brief Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { SubclassData = P; }

  /// For example, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instructions current predicate. 
  /// @brief Return the inverse of the predicate
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for \p pred.
  /// @brief Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two 
  /// operands of the ICmpInst instruction without changing the result 
  /// produced.  
  /// @brief Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction 
  /// available.
  /// @brief Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate Opcode);

  /// This also tests for commutativity. If isEquality() returns true then
  /// the predicate is also commutative. Only the equality predicates are
  /// commutative.
  /// @returns true if the predicate of this instruction is EQ or NE.
  /// @brief Determine if this is an equality predicate.
  bool isEquality() const {
    return SubclassData == FCMP_OEQ || SubclassData == FCMP_ONE ||
           SubclassData == FCMP_UEQ || SubclassData == FCMP_UNE;
  }
  bool isCommutative() const { return isEquality(); }

  /// @returns true if the predicate is relational (not EQ or NE). 
  /// @brief Determine if this a relational predicate.
  bool isRelational() const { return !isEquality(); }

  /// Exchange the two operands to this instruction in such a way that it does
  /// not modify the semantics of the instruction. The predicate value may be
  /// changed to retain the same result if the predicate is order dependent
  /// (e.g. ult). 
  /// @brief Swap operands and adjust predicate.
  void swapOperands() {
    SubclassData = getSwappedPredicate();
    std::swap(Ops[0], Ops[1]);
  }

  virtual FCmpInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FCmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::FCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 CallInst Class
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention.  This class uses low bit of the SubClassData
/// field to indicate whether or not this is a tail call.  The rest of the bits
/// hold the calling convention of the call.
///

class CallInst : public Instruction {
  const ParamAttrsList *ParamAttrs; ///< parameter attributes for call
  CallInst(const CallInst &CI);
  void init(Value *Func, Value* const *Params, unsigned NumParams);
  void init(Value *Func, Value *Actual1, Value *Actual2);
  void init(Value *Func, Value *Actual);
  void init(Value *Func);

  template<typename InputIterator>
  void init(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
            const std::string &Name,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
    
    // This requires that the iterator points to contiguous memory.
    init(Func, NumArgs ? &*ArgBegin : 0, NumArgs);
    setName(Name);
  }

public:
  /// Construct a CallInst given a range of arguments.  InputIterator
  /// must be a random-access iterator pointing to contiguous storage
  /// (e.g. a std::vector<>::iterator).  Checks are made for
  /// random-accessness but not for contiguous storage as that would
  /// incur runtime overhead.
  /// @brief Construct a CallInst from a range of arguments
  template<typename InputIterator>
  CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
           const std::string &Name = "", Instruction *InsertBefore = 0)
      : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
                                       ->getElementType())->getReturnType(),
                    Instruction::Call, 0, 0, InsertBefore) {
    init(Func, ArgBegin, ArgEnd, Name, 
         typename std::iterator_traits<InputIterator>::iterator_category());
  }

  /// Construct a CallInst given a range of arguments.  InputIterator
  /// must be a random-access iterator pointing to contiguous storage
  /// (e.g. a std::vector<>::iterator).  Checks are made for
  /// random-accessness but not for contiguous storage as that would
  /// incur runtime overhead.
  /// @brief Construct a CallInst from a range of arguments
  template<typename InputIterator>
  CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
           const std::string &Name, BasicBlock *InsertAtEnd)
      : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
                                       ->getElementType())->getReturnType(),
                    Instruction::Call, 0, 0, InsertAtEnd) {
    init(Func, ArgBegin, ArgEnd, Name,
         typename std::iterator_traits<InputIterator>::iterator_category());
  }

  CallInst(Value *F, Value *Actual, const std::string& Name = "",
           Instruction *InsertBefore = 0);
  CallInst(Value *F, Value *Actual, const std::string& Name,
           BasicBlock *InsertAtEnd);
  explicit CallInst(Value *F, const std::string &Name = "",
                    Instruction *InsertBefore = 0);
  CallInst(Value *F, const std::string &Name, BasicBlock *InsertAtEnd);
  ~CallInst();

  virtual CallInst *clone() const;
  
  bool isTailCall() const           { return SubclassData & 1; }
  void setTailCall(bool isTailCall = true) {
    SubclassData = (SubclassData & ~1) | unsigned(isTailCall);
  }

  /// getCallingConv/setCallingConv - Get or set the calling convention of this
  /// function call.
  unsigned getCallingConv() const { return SubclassData >> 1; }
  void setCallingConv(unsigned CC) {
    SubclassData = (SubclassData & 1) | (CC << 1);
  }

  /// Obtains a pointer to the ParamAttrsList object which holds the
  /// parameter attributes information, if any.
  /// @returns 0 if no attributes have been set.
  /// @brief Get the parameter attributes.
  const ParamAttrsList *getParamAttrs() const { return ParamAttrs; }

  /// Sets the parameter attributes for this CallInst. To construct a 
  /// ParamAttrsList, see ParameterAttributes.h
  /// @brief Set the parameter attributes.
  void setParamAttrs(const ParamAttrsList *attrs);

  /// @brief Determine whether the call or the callee has the given attribute.
  bool paramHasAttr(uint16_t i, ParameterAttributes attr) const;

  /// @brief Determine if the call does not access memory.
  bool doesNotAccessMemory() const {
    return paramHasAttr(0, ParamAttr::ReadNone);
  }

  /// @brief Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly);
  }

  /// @brief Determine if the call cannot return.
  bool doesNotReturn() const {
    return paramHasAttr(0, ParamAttr::NoReturn);
  }

  /// @brief Determine if the call cannot unwind.
  bool doesNotThrow() const {
    return paramHasAttr(0, ParamAttr::NoUnwind);
  }
  void setDoesNotThrow(bool doesNotThrow = true);

  /// @brief Determine if the call returns a structure.
  bool isStructReturn() const {
    // Be friendly and also check the callee.
    return paramHasAttr(1, ParamAttr::StructRet);
  }

  /// getCalledFunction - Return the function being called by this instruction
  /// if it is a direct call.  If it is a call through a function pointer,
  /// return null.
  Function *getCalledFunction() const {
    return dyn_cast<Function>(getOperand(0));
  }

  /// getCalledValue - Get a pointer to the function that is invoked by this 
  /// instruction
  inline const Value *getCalledValue() const { return getOperand(0); }
  inline       Value *getCalledValue()       { return getOperand(0); }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CallInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Call;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               SelectInst Class
//===----------------------------------------------------------------------===//

/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
  Use Ops[3];

  void init(Value *C, Value *S1, Value *S2) {
    Ops[0].init(C, this);
    Ops[1].init(S1, this);
    Ops[2].init(S2, this);
  }

  SelectInst(const SelectInst &SI)
    : Instruction(SI.getType(), SI.getOpcode(), Ops, 3) {
    init(SI.Ops[0], SI.Ops[1], SI.Ops[2]);
  }
public:
  SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name = "",
             Instruction *InsertBefore = 0)
    : Instruction(S1->getType(), Instruction::Select, Ops, 3, InsertBefore) {
    init(C, S1, S2);
    setName(Name);
  }
  SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name,
             BasicBlock *InsertAtEnd)
    : Instruction(S1->getType(), Instruction::Select, Ops, 3, InsertAtEnd) {
    init(C, S1, S2);
    setName(Name);
  }

  Value *getCondition() const { return Ops[0]; }
  Value *getTrueValue() const { return Ops[1]; }
  Value *getFalseValue() const { return Ops[2]; }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 3 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 3 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 3; }

  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  virtual SelectInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SelectInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Select;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                VAArgInst Class
//===----------------------------------------------------------------------===//

/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list and increments that list
///
class VAArgInst : public UnaryInstruction {
  VAArgInst(const VAArgInst &VAA)
    : UnaryInstruction(VAA.getType(), VAArg, VAA.getOperand(0)) {}
public:
  VAArgInst(Value *List, const Type *Ty, const std::string &Name = "",
             Instruction *InsertBefore = 0)
    : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
    setName(Name);
  }
  VAArgInst(Value *List, const Type *Ty, const std::string &Name,
            BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
    setName(Name);
  }

  virtual VAArgInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VAArgInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == VAArg;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                ExtractElementInst Class
//===----------------------------------------------------------------------===//

/// ExtractElementInst - This instruction extracts a single (scalar)
/// element from a VectorType value
///
class ExtractElementInst : public Instruction {
  Use Ops[2];
  ExtractElementInst(const ExtractElementInst &EE) :
    Instruction(EE.getType(), ExtractElement, Ops, 2) {
    Ops[0].init(EE.Ops[0], this);
    Ops[1].init(EE.Ops[1], this);
  }

public:
  ExtractElementInst(Value *Vec, Value *Idx, const std::string &Name = "",
                     Instruction *InsertBefore = 0);
  ExtractElementInst(Value *Vec, unsigned Idx, const std::string &Name = "",
                     Instruction *InsertBefore = 0);
  ExtractElementInst(Value *Vec, Value *Idx, const std::string &Name,
                     BasicBlock *InsertAtEnd);
  ExtractElementInst(Value *Vec, unsigned Idx, const std::string &Name,
                     BasicBlock *InsertAtEnd);

  /// isValidOperands - Return true if an extractelement instruction can be
  /// formed with the specified operands.
  static bool isValidOperands(const Value *Vec, const Value *Idx);

  virtual ExtractElementInst *clone() const;

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 2 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 2 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 2; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ExtractElementInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ExtractElement;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                InsertElementInst Class
//===----------------------------------------------------------------------===//

/// InsertElementInst - This instruction inserts a single (scalar)
/// element into a VectorType value
///
class InsertElementInst : public Instruction {
  Use Ops[3];
  InsertElementInst(const InsertElementInst &IE);
public:
  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
                    const std::string &Name = "",Instruction *InsertBefore = 0);
  InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx,
                    const std::string &Name = "",Instruction *InsertBefore = 0);
  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
                    const std::string &Name, BasicBlock *InsertAtEnd);
  InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx,
                    const std::string &Name, BasicBlock *InsertAtEnd);

  /// isValidOperands - Return true if an insertelement instruction can be
  /// formed with the specified operands.
  static bool isValidOperands(const Value *Vec, const Value *NewElt,
                              const Value *Idx);

  virtual InsertElementInst *clone() const;

  /// getType - Overload to return most specific vector type.
  ///
  inline const VectorType *getType() const {
    return reinterpret_cast<const VectorType*>(Instruction::getType());
  }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 3 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 3 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 3; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InsertElementInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::InsertElement;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                           ShuffleVectorInst Class
//===----------------------------------------------------------------------===//

/// ShuffleVectorInst - This instruction constructs a fixed permutation of two
/// input vectors.
///
class ShuffleVectorInst : public Instruction {
  Use Ops[3];
  ShuffleVectorInst(const ShuffleVectorInst &IE);
public:
  ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
                    const std::string &Name = "", Instruction *InsertBefor = 0);
  ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
                    const std::string &Name, BasicBlock *InsertAtEnd);

  /// isValidOperands - Return true if a shufflevector instruction can be
  /// formed with the specified operands.
  static bool isValidOperands(const Value *V1, const Value *V2,
                              const Value *Mask);

  virtual ShuffleVectorInst *clone() const;

  /// getType - Overload to return most specific vector type.
  ///
  inline const VectorType *getType() const {
    return reinterpret_cast<const VectorType*>(Instruction::getType());
  }

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < 3 && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < 3 && "setOperand() out of range!");
    Ops[i] = Val;
  }
  unsigned getNumOperands() const { return 3; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ShuffleVectorInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ShuffleVector;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                               PHINode Class
//===----------------------------------------------------------------------===//

// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
  /// ReservedSpace - The number of operands actually allocated.  NumOperands is
  /// the number actually in use.
  unsigned ReservedSpace;
  PHINode(const PHINode &PN);
public:
  explicit PHINode(const Type *Ty, const std::string &Name = "",
                   Instruction *InsertBefore = 0)
    : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore),
      ReservedSpace(0) {
    setName(Name);
  }

  PHINode(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd)
    : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd),
      ReservedSpace(0) {
    setName(Name);
  }

  ~PHINode();

  /// reserveOperandSpace - This method can be used to avoid repeated
  /// reallocation of PHI operand lists by reserving space for the correct
  /// number of operands before adding them.  Unlike normal vector reserves,
  /// this method can also be used to trim the operand space.
  void reserveOperandSpace(unsigned NumValues) {
    resizeOperands(NumValues*2);
  }

  virtual PHINode *clone() const;

  /// getNumIncomingValues - Return the number of incoming edges
  ///
  unsigned getNumIncomingValues() const { return getNumOperands()/2; }

  /// getIncomingValue - Return incoming value number x
  ///
  Value *getIncomingValue(unsigned i) const {
    assert(i*2 < getNumOperands() && "Invalid value number!");
    return getOperand(i*2);
  }
  void setIncomingValue(unsigned i, Value *V) {
    assert(i*2 < getNumOperands() && "Invalid value number!");
    setOperand(i*2, V);
  }
  unsigned getOperandNumForIncomingValue(unsigned i) {
    return i*2;
  }

  /// getIncomingBlock - Return incoming basic block number x
  ///
  BasicBlock *getIncomingBlock(unsigned i) const {
    return reinterpret_cast<BasicBlock*>(getOperand(i*2+1));
  }
  void setIncomingBlock(unsigned i, BasicBlock *BB) {
    setOperand(i*2+1, reinterpret_cast<Value*>(BB));
  }
  unsigned getOperandNumForIncomingBlock(unsigned i) {
    return i*2+1;
  }

  /// addIncoming - Add an incoming value to the end of the PHI list
  ///
  void addIncoming(Value *V, BasicBlock *BB) {
    assert(getType() == V->getType() &&
           "All operands to PHI node must be the same type as the PHI node!");
    unsigned OpNo = NumOperands;
    if (OpNo+2 > ReservedSpace)
      resizeOperands(0);  // Get more space!
    // Initialize some new operands.
    NumOperands = OpNo+2;
    OperandList[OpNo].init(V, this);
    OperandList[OpNo+1].init(reinterpret_cast<Value*>(BB), this);
  }

  /// removeIncomingValue - Remove an incoming value.  This is useful if a
  /// predecessor basic block is deleted.  The value removed is returned.
  ///
  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
  /// is true), the PHI node is destroyed and any uses of it are replaced with
  /// dummy values.  The only time there should be zero incoming values to a PHI
  /// node is when the block is dead, so this strategy is sound.
  ///
  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);

  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty =true){
    int Idx = getBasicBlockIndex(BB);
    assert(Idx >= 0 && "Invalid basic block argument to remove!");
    return removeIncomingValue(Idx, DeletePHIIfEmpty);
  }

  /// getBasicBlockIndex - Return the first index of the specified basic
  /// block in the value list for this PHI.  Returns -1 if no instance.
  ///
  int getBasicBlockIndex(const BasicBlock *BB) const {
    Use *OL = OperandList;
    for (unsigned i = 0, e = getNumOperands(); i != e; i += 2)
      if (OL[i+1] == reinterpret_cast<const Value*>(BB)) return i/2;
    return -1;
  }

  Value *getIncomingValueForBlock(const BasicBlock *BB) const {
    return getIncomingValue(getBasicBlockIndex(BB));
  }

  /// hasConstantValue - If the specified PHI node always merges together the
  /// same value, return the value, otherwise return null.
  ///
  Value *hasConstantValue(bool AllowNonDominatingInstruction = false) const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PHINode *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::PHI;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
 private:
  void resizeOperands(unsigned NumOperands);
};

//===----------------------------------------------------------------------===//
//                               ReturnInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function.  Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
  Use RetVal;  // Return Value: null if 'void'.
  ReturnInst(const ReturnInst &RI);
  void init(Value *RetVal);

public:
  // ReturnInst constructors:
  // ReturnInst()                  - 'ret void' instruction
  // ReturnInst(    null)          - 'ret void' instruction
  // ReturnInst(Value* X)          - 'ret X'    instruction
  // ReturnInst(    null, Inst *)  - 'ret void' instruction, insert before I
  // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
  // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of BB
  // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of BB
  //
  // NOTE: If the Value* passed is of type void then the constructor behaves as
  // if it was passed NULL.
  explicit ReturnInst(Value *retVal = 0, Instruction *InsertBefore = 0);
  ReturnInst(Value *retVal, BasicBlock *InsertAtEnd);
  explicit ReturnInst(BasicBlock *InsertAtEnd);

  virtual ReturnInst *clone() const;

  // Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < getNumOperands() && "getOperand() out of range!");
    return RetVal;
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < getNumOperands() && "setOperand() out of range!");
    RetVal = Val;
  }

  Value *getReturnValue() const { return RetVal; }

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ReturnInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Ret);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
 private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                               BranchInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
  /// Ops list - Branches are strange.  The operands are ordered:
  ///  TrueDest, FalseDest, Cond.  This makes some accessors faster because
  /// they don't have to check for cond/uncond branchness.
  Use Ops[3];
  BranchInst(const BranchInst &BI);
  void AssertOK();
public:
  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
  // BranchInst(BB *B)                           - 'br B'
  // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
  // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
  // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
  // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
  explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0);
  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
             Instruction *InsertBefore = 0);
  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
             BasicBlock *InsertAtEnd);

  /// Transparently provide more efficient getOperand methods.
  Value *getOperand(unsigned i) const {
    assert(i < getNumOperands() && "getOperand() out of range!");
    return Ops[i];
  }
  void setOperand(unsigned i, Value *Val) {
    assert(i < getNumOperands() && "setOperand() out of range!");
    Ops[i] = Val;
  }

  virtual BranchInst *clone() const;

  inline bool isUnconditional() const { return getNumOperands() == 1; }
  inline bool isConditional()   const { return getNumOperands() == 3; }

  inline Value *getCondition() const {
    assert(isConditional() && "Cannot get condition of an uncond branch!");
    return getOperand(2);
  }

  void setCondition(Value *V) {
    assert(isConditional() && "Cannot set condition of unconditional branch!");
    setOperand(2, V);
  }

  // setUnconditionalDest - Change the current branch to an unconditional branch
  // targeting the specified block.
  // FIXME: Eliminate this ugly method.
  void setUnconditionalDest(BasicBlock *Dest) {
    if (isConditional()) {  // Convert this to an uncond branch.
      NumOperands = 1;
      Ops[1].set(0);
      Ops[2].set(0);
    }
    setOperand(0, reinterpret_cast<Value*>(Dest));
  }

  unsigned getNumSuccessors() const { return 1+isConditional(); }

  BasicBlock *getSuccessor(unsigned i) const {
    assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
    return cast<BasicBlock>(getOperand(i));
  }

  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
    setOperand(idx, reinterpret_cast<Value*>(NewSucc));
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BranchInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Br);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                               SwitchInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst {
  unsigned ReservedSpace;
  // Operand[0]    = Value to switch on
  // Operand[1]    = Default basic block destination
  // Operand[2n  ] = Value to match
  // Operand[2n+1] = BasicBlock to go to on match
  SwitchInst(const SwitchInst &RI);
  void init(Value *Value, BasicBlock *Default, unsigned NumCases);
  void resizeOperands(unsigned No);
public:
  /// SwitchInst ctor - Create a new switch instruction, specifying a value to
  /// switch on and a default destination.  The number of additional cases can
  /// be specified here to make memory allocation more efficient.  This
  /// constructor can also autoinsert before another instruction.
  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
             Instruction *InsertBefore = 0);
  
  /// SwitchInst ctor - Create a new switch instruction, specifying a value to
  /// switch on and a default destination.  The number of additional cases can
  /// be specified here to make memory allocation more efficient.  This
  /// constructor also autoinserts at the end of the specified BasicBlock.
  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
             BasicBlock *InsertAtEnd);
  ~SwitchInst();


  // Accessor Methods for Switch stmt
  inline Value *getCondition() const { return getOperand(0); }
  void setCondition(Value *V) { setOperand(0, V); }

  inline BasicBlock *getDefaultDest() const {
    return cast<BasicBlock>(getOperand(1));
  }

  /// getNumCases - return the number of 'cases' in this switch instruction.
  /// Note that case #0 is always the default case.
  unsigned getNumCases() const {
    return getNumOperands()/2;
  }

  /// getCaseValue - Return the specified case value.  Note that case #0, the
  /// default destination, does not have a case value.
  ConstantInt *getCaseValue(unsigned i) {
    assert(i && i < getNumCases() && "Illegal case value to get!");
    return getSuccessorValue(i);
  }

  /// getCaseValue - Return the specified case value.  Note that case #0, the
  /// default destination, does not have a case value.
  const ConstantInt *getCaseValue(unsigned i) const {
    assert(i && i < getNumCases() && "Illegal case value to get!");
    return getSuccessorValue(i);
  }

  /// findCaseValue - Search all of the case values for the specified constant.
  /// If it is explicitly handled, return the case number of it, otherwise
  /// return 0 to indicate that it is handled by the default handler.
  unsigned findCaseValue(const ConstantInt *C) const {
    for (unsigned i = 1, e = getNumCases(); i != e; ++i)
      if (getCaseValue(i) == C)
        return i;
    return 0;
  }

  /// findCaseDest - Finds the unique case value for a given successor. Returns
  /// null if the successor is not found, not unique, or is the default case.
  ConstantInt *findCaseDest(BasicBlock *BB) {
    if (BB == getDefaultDest()) return NULL;

    ConstantInt *CI = NULL;
    for (unsigned i = 1, e = getNumCases(); i != e; ++i) {
      if (getSuccessor(i) == BB) {
        if (CI) return NULL;   // Multiple cases lead to BB.
        else CI = getCaseValue(i);
      }
    }
    return CI;
  }

  /// addCase - Add an entry to the switch instruction...
  ///
  void addCase(ConstantInt *OnVal, BasicBlock *Dest);

  /// removeCase - This method removes the specified successor from the switch
  /// instruction.  Note that this cannot be used to remove the default
  /// destination (successor #0).
  ///
  void removeCase(unsigned idx);

  virtual SwitchInst *clone() const;

  unsigned getNumSuccessors() const { return getNumOperands()/2; }
  BasicBlock *getSuccessor(unsigned idx) const {
    assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
    return cast<BasicBlock>(getOperand(idx*2+1));
  }
  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
    setOperand(idx*2+1, reinterpret_cast<Value*>(NewSucc));
  }

  // getSuccessorValue - Return the value associated with the specified
  // successor.
  inline ConstantInt *getSuccessorValue(unsigned idx) const {
    assert(idx < getNumSuccessors() && "Successor # out of range!");
    return reinterpret_cast<ConstantInt*>(getOperand(idx*2));
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SwitchInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Switch;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                               InvokeInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------

/// InvokeInst - Invoke instruction.  The SubclassData field is used to hold the
/// calling convention of the call.
///
class InvokeInst : public TerminatorInst {
  const ParamAttrsList *ParamAttrs;
  InvokeInst(const InvokeInst &BI);
  void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
            Value* const *Args, unsigned NumArgs);

  template<typename InputIterator>
  void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
            InputIterator ArgBegin, InputIterator ArgEnd,
            const std::string &Name,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
    
    // This requires that the iterator points to contiguous memory.
    init(Func, IfNormal, IfException, NumArgs ? &*ArgBegin : 0, NumArgs);
    setName(Name);
  }

public:
  /// Construct an InvokeInst given a range of arguments.
  /// InputIterator must be a random-access iterator pointing to
  /// contiguous storage (e.g. a std::vector<>::iterator).  Checks are
  /// made for random-accessness but not for contiguous storage as
  /// that would incur runtime overhead.
  ///
  /// @brief Construct an InvokeInst from a range of arguments
  template<typename InputIterator>
  InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
             InputIterator ArgBegin, InputIterator ArgEnd,
             const std::string &Name = "", Instruction *InsertBefore = 0)
      : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
                                          ->getElementType())->getReturnType(),
                       Instruction::Invoke, 0, 0, InsertBefore) {
    init(Func, IfNormal, IfException, ArgBegin, ArgEnd, Name,
         typename std::iterator_traits<InputIterator>::iterator_category());
  }

  /// Construct an InvokeInst given a range of arguments.
  /// InputIterator must be a random-access iterator pointing to
  /// contiguous storage (e.g. a std::vector<>::iterator).  Checks are
  /// made for random-accessness but not for contiguous storage as
  /// that would incur runtime overhead.
  ///
  /// @brief Construct an InvokeInst from a range of arguments
  template<typename InputIterator>
  InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
             InputIterator ArgBegin, InputIterator ArgEnd,
             const std::string &Name, BasicBlock *InsertAtEnd)
      : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
                                          ->getElementType())->getReturnType(),
                       Instruction::Invoke, 0, 0, InsertAtEnd) {
    init(Func, IfNormal, IfException, ArgBegin, ArgEnd, Name,
         typename std::iterator_traits<InputIterator>::iterator_category());
  }

  ~InvokeInst();

  virtual InvokeInst *clone() const;

  /// getCallingConv/setCallingConv - Get or set the calling convention of this
  /// function call.
  unsigned getCallingConv() const { return SubclassData; }
  void setCallingConv(unsigned CC) {
    SubclassData = CC;
  }

  /// Obtains a pointer to the ParamAttrsList object which holds the
  /// parameter attributes information, if any.
  /// @returns 0 if no attributes have been set.
  /// @brief Get the parameter attributes.
  const ParamAttrsList *getParamAttrs() const { return ParamAttrs; }

  /// Sets the parameter attributes for this InvokeInst. To construct a 
  /// ParamAttrsList, see ParameterAttributes.h
  /// @brief Set the parameter attributes.
  void setParamAttrs(const ParamAttrsList *attrs);

  /// @brief Determine whether the call or the callee has the given attribute.
  bool paramHasAttr(uint16_t i, ParameterAttributes attr) const;

  /// @brief Determine if the call does not access memory.
  bool doesNotAccessMemory() const {
    return paramHasAttr(0, ParamAttr::ReadNone);
  }

  /// @brief Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly);
  }

  /// @brief Determine if the call cannot return.
  bool doesNotReturn() const {
    return paramHasAttr(0, ParamAttr::NoReturn);
  }

  /// @brief Determine if the call cannot unwind.
  bool doesNotThrow() const {
    return paramHasAttr(0, ParamAttr::NoUnwind);
  }
  void setDoesNotThrow(bool doesNotThrow = true);

  /// @brief Determine if the call returns a structure.
  bool isStructReturn() const {
    // Be friendly and also check the callee.
    return paramHasAttr(1, ParamAttr::StructRet);
  }

  /// getCalledFunction - Return the function called, or null if this is an
  /// indirect function invocation.
  ///
  Function *getCalledFunction() const {
    return dyn_cast<Function>(getOperand(0));
  }

  // getCalledValue - Get a pointer to a function that is invoked by this inst.
  inline Value *getCalledValue() const { return getOperand(0); }

  // get*Dest - Return the destination basic blocks...
  BasicBlock *getNormalDest() const {
    return cast<BasicBlock>(getOperand(1));
  }
  BasicBlock *getUnwindDest() const {
    return cast<BasicBlock>(getOperand(2));
  }
  void setNormalDest(BasicBlock *B) {
    setOperand(1, reinterpret_cast<Value*>(B));
  }

  void setUnwindDest(BasicBlock *B) {
    setOperand(2, reinterpret_cast<Value*>(B));
  }

  inline BasicBlock *getSuccessor(unsigned i) const {
    assert(i < 2 && "Successor # out of range for invoke!");
    return i == 0 ? getNormalDest() : getUnwindDest();
  }

  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < 2 && "Successor # out of range for invoke!");
    setOperand(idx+1, reinterpret_cast<Value*>(NewSucc));
  }

  unsigned getNumSuccessors() const { return 2; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InvokeInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Invoke);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};


//===----------------------------------------------------------------------===//
//                              UnwindInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// UnwindInst - Immediately exit the current function, unwinding the stack
/// until an invoke instruction is found.
///
class UnwindInst : public TerminatorInst {
public:
  explicit UnwindInst(Instruction *InsertBefore = 0);
  explicit UnwindInst(BasicBlock *InsertAtEnd);

  virtual UnwindInst *clone() const;

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnwindInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Unwind;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                           UnreachableInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// UnreachableInst - This function has undefined behavior.  In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public TerminatorInst {
public:
  explicit UnreachableInst(Instruction *InsertBefore = 0);
  explicit UnreachableInst(BasicBlock *InsertAtEnd);

  virtual UnreachableInst *clone() const;

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnreachableInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Unreachable;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                                 TruncInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a truncation of integer types.
class TruncInst : public CastInst {
  /// Private copy constructor
  TruncInst(const TruncInst &CI)
    : CastInst(CI.getType(), Trunc, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  TruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The (smaller) type to truncate to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  TruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The (smaller) type to truncate to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical TruncInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const TruncInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Trunc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 ZExtInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents zero extension of integer types.
class ZExtInst : public CastInst {
  /// @brief Private copy constructor
  ZExtInst(const ZExtInst &CI)
    : CastInst(CI.getType(), ZExt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  ZExtInst(
    Value *S,                     ///< The value to be zero extended
    const Type *Ty,               ///< The type to zero extend to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end semantics.
  ZExtInst(
    Value *S,                     ///< The value to be zero extended
    const Type *Ty,               ///< The type to zero extend to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical ZExtInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ZExtInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == ZExt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 SExtInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a sign extension of integer types.
class SExtInst : public CastInst {
  /// @brief Private copy constructor
  SExtInst(const SExtInst &CI)
    : CastInst(CI.getType(), SExt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  SExtInst(
    Value *S,                     ///< The value to be sign extended
    const Type *Ty,               ///< The type to sign extend to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  SExtInst(
    Value *S,                     ///< The value to be sign extended
    const Type *Ty,               ///< The type to sign extend to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical SExtInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SExtInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == SExt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPTruncInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a truncation of floating point types.
class FPTruncInst : public CastInst {
  FPTruncInst(const FPTruncInst &CI)
    : CastInst(CI.getType(), FPTrunc, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPTruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The type to truncate to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-before-instruction semantics
  FPTruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The type to truncate to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical FPTruncInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPTruncInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPTrunc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPExtInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents an extension of floating point types.
class FPExtInst : public CastInst {
  FPExtInst(const FPExtInst &CI)
    : CastInst(CI.getType(), FPExt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPExtInst(
    Value *S,                     ///< The value to be extended
    const Type *Ty,               ///< The type to extend to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  FPExtInst(
    Value *S,                     ///< The value to be extended
    const Type *Ty,               ///< The type to extend to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical FPExtInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPExtInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPExt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 UIToFPInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast unsigned integer to floating point.
class UIToFPInst : public CastInst {
  UIToFPInst(const UIToFPInst &CI)
    : CastInst(CI.getType(), UIToFP, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  UIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  UIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical UIToFPInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UIToFPInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == UIToFP;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 SIToFPInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from signed integer to floating point.
class SIToFPInst : public CastInst {
  SIToFPInst(const SIToFPInst &CI)
    : CastInst(CI.getType(), SIToFP, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  SIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  SIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical SIToFPInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SIToFPInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == SIToFP;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPToUIInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from floating point to unsigned integer
class FPToUIInst  : public CastInst {
  FPToUIInst(const FPToUIInst &CI)
    : CastInst(CI.getType(), FPToUI, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPToUIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  FPToUIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
  );

  /// @brief Clone an identical FPToUIInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPToUIInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPToUI;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPToSIInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from floating point to signed integer.
class FPToSIInst  : public CastInst {
  FPToSIInst(const FPToSIInst &CI)
    : CastInst(CI.getType(), FPToSI, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPToSIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  FPToSIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical FPToSIInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPToSIInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPToSI;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 IntToPtrInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from an integer to a pointer.
class IntToPtrInst : public CastInst {
  IntToPtrInst(const IntToPtrInst &CI)
    : CastInst(CI.getType(), IntToPtr, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  IntToPtrInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  IntToPtrInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical IntToPtrInst
  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const IntToPtrInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == IntToPtr;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 PtrToIntInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from a pointer to an integer
class PtrToIntInst : public CastInst {
  PtrToIntInst(const PtrToIntInst &CI)
    : CastInst(CI.getType(), PtrToInt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  PtrToIntInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  PtrToIntInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical PtrToIntInst
  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PtrToIntInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == PtrToInt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                             BitCastInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a no-op cast from one type to another.
class BitCastInst : public CastInst {
  BitCastInst(const BitCastInst &CI)
    : CastInst(CI.getType(), BitCast, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  BitCastInst(
    Value *S,                     ///< The value to be casted
    const Type *Ty,               ///< The type to casted to
    const std::string &Name = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  BitCastInst(
    Value *S,                     ///< The value to be casted
    const Type *Ty,               ///< The type to casted to
    const std::string &Name,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical BitCastInst
  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BitCastInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == BitCast;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

} // End llvm namespace

#endif