llvm.org GIT mirror llvm / fe085f3 include / llvm / DerivedTypes.h
fe085f3

Tree @fe085f3 (Download .tar.gz)

DerivedTypes.h @fe085f3raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types".  These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H

#include "llvm/Type.h"

namespace llvm {

class Value;
template<class ValType, class TypeClass> class TypeMap;
class FunctionValType;
class ArrayValType;
class StructValType;
class PointerValType;
class VectorValType;
class IntegerValType;
class APInt;

class DerivedType : public Type {
  friend class Type;

protected:
  explicit DerivedType(TypeID id) : Type(id) {}

  /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
  /// that the current type has transitioned from being abstract to being
  /// concrete.
  ///
  void notifyUsesThatTypeBecameConcrete();

  /// dropAllTypeUses - When this (abstract) type is resolved to be equal to
  /// another (more concrete) type, we must eliminate all references to other
  /// types, to avoid some circular reference problems.
  ///
  void dropAllTypeUses();

public:

  //===--------------------------------------------------------------------===//
  // Abstract Type handling methods - These types have special lifetimes, which
  // are managed by (add|remove)AbstractTypeUser. See comments in
  // AbstractTypeUser.h for more information.

  /// refineAbstractTypeTo - This function is used to when it is discovered that
  /// the 'this' abstract type is actually equivalent to the NewType specified.
  /// This causes all users of 'this' to switch to reference the more concrete
  /// type NewType and for 'this' to be deleted.
  ///
  void refineAbstractTypeTo(const Type *NewType);

  void dump() const { Type::dump(); }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const DerivedType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->isDerivedType();
  }
};

/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty. 
/// @brief Integer representation type
class IntegerType : public DerivedType {
protected:
  explicit IntegerType(unsigned NumBits) : DerivedType(IntegerTyID) {
    setSubclassData(NumBits);
  }
  friend class TypeMap<IntegerValType, IntegerType>;
public:
  /// This enum is just used to hold constants we need for IntegerType.
  enum {
    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
    MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
      ///< Note that bit width is stored in the Type classes SubclassData field
      ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
  };

  /// This static method is the primary way of constructing an IntegerType. 
  /// If an IntegerType with the same NumBits value was previously instantiated,
  /// that instance will be returned. Otherwise a new one will be created. Only
  /// one instance with a given NumBits value is ever created.
  /// @brief Get or create an IntegerType instance.
  static const IntegerType* get(unsigned NumBits);

  /// @brief Get the number of bits in this IntegerType
  unsigned getBitWidth() const { return getSubclassData(); }

  /// getBitMask - Return a bitmask with ones set for all of the bits
  /// that can be set by an unsigned version of this type.  This is 0xFF for
  /// sbyte/ubyte, 0xFFFF for shorts, etc.
  uint64_t getBitMask() const {
    return ~uint64_t(0UL) >> (64-getBitWidth());
  }

  /// getSignBit - Return a uint64_t with just the most significant bit set (the
  /// sign bit, if the value is treated as a signed number).
  uint64_t getSignBit() const {
    return 1ULL << (getBitWidth()-1);
  }
  
  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
  /// @returns a bit mask with ones set for all the bits of this type.
  /// @brief Get a bit mask for this type.
  APInt getMask() const;

  /// This method determines if the width of this IntegerType is a power-of-2
  /// in terms of 8 bit bytes. 
  /// @returns true if this is a power-of-2 byte width.
  /// @brief Is this a power-of-2 byte-width IntegerType ?
  bool isPowerOf2ByteWidth() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const IntegerType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == IntegerTyID;
  }
};


/// FunctionType - Class to represent function types
///
class FunctionType : public DerivedType {
  friend class TypeMap<FunctionValType, FunctionType>;
  bool isVarArgs;

  FunctionType(const FunctionType &);                   // Do not implement
  const FunctionType &operator=(const FunctionType &);  // Do not implement
  FunctionType(const Type *Result, const std::vector<const Type*> &Params,
               bool IsVarArgs);

public:
  /// FunctionType::get - This static method is the primary way of constructing
  /// a FunctionType. 
  ///
  static FunctionType *get(
    const Type *Result, ///< The result type
    const std::vector<const Type*> &Params, ///< The types of the parameters
    bool isVarArg  ///< Whether this is a variable argument length function
  );

  inline bool isVarArg() const { return isVarArgs; }
  inline const Type *getReturnType() const { return ContainedTys[0]; }

  typedef Type::subtype_iterator param_iterator;
  param_iterator param_begin() const { return ContainedTys + 1; }
  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }

  // Parameter type accessors...
  const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }

  /// getNumParams - Return the number of fixed parameters this function type
  /// requires.  This does not consider varargs.
  ///
  unsigned getNumParams() const { return NumContainedTys - 1; }

  // Implement the AbstractTypeUser interface.
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  virtual void typeBecameConcrete(const DerivedType *AbsTy);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FunctionType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == FunctionTyID;
  }
};


/// CompositeType - Common super class of ArrayType, StructType, PointerType
/// and VectorType
class CompositeType : public DerivedType {
protected:
  inline explicit CompositeType(TypeID id) : DerivedType(id) { }
public:

  /// getTypeAtIndex - Given an index value into the type, return the type of
  /// the element.
  ///
  virtual const Type *getTypeAtIndex(const Value *V) const = 0;
  virtual bool indexValid(const Value *V) const = 0;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CompositeType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID ||
           T->getTypeID() == StructTyID ||
           T->getTypeID() == PointerTyID ||
           T->getTypeID() == VectorTyID;
  }
};


/// StructType - Class to represent struct types
///
class StructType : public CompositeType {
  friend class TypeMap<StructValType, StructType>;
  StructType(const StructType &);                   // Do not implement
  const StructType &operator=(const StructType &);  // Do not implement
  StructType(const std::vector<const Type*> &Types, bool isPacked);
public:
  /// StructType::get - This static method is the primary way to create a
  /// StructType.
  ///
  static StructType *get(const std::vector<const Type*> &Params, 
                         bool isPacked=false);

  // Iterator access to the elements
  typedef Type::subtype_iterator element_iterator;
  element_iterator element_begin() const { return ContainedTys; }
  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}

  // Random access to the elements
  unsigned getNumElements() const { return NumContainedTys; }
  const Type *getElementType(unsigned N) const {
    assert(N < NumContainedTys && "Element number out of range!");
    return ContainedTys[N];
  }

  /// getTypeAtIndex - Given an index value into the type, return the type of
  /// the element.  For a structure type, this must be a constant value...
  ///
  virtual const Type *getTypeAtIndex(const Value *V) const ;
  virtual bool indexValid(const Value *V) const;

  // Implement the AbstractTypeUser interface.
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  virtual void typeBecameConcrete(const DerivedType *AbsTy);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const StructType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == StructTyID;
  }

  bool isPacked() const { return (0 != getSubclassData()) ? true : false; }
};


/// SequentialType - This is the superclass of the array, pointer and vector
/// type classes.  All of these represent "arrays" in memory.  The array type
/// represents a specifically sized array, pointer types are unsized/unknown
/// size arrays, vector types represent specifically sized arrays that
/// allow for use of SIMD instructions.  SequentialType holds the common
/// features of all, which stem from the fact that all three lay their
/// components out in memory identically.
///
class SequentialType : public CompositeType {
  PATypeHandle ContainedType; ///< Storage for the single contained type
  SequentialType(const SequentialType &);                  // Do not implement!
  const SequentialType &operator=(const SequentialType &); // Do not implement!

  // avoiding warning: 'this' : used in base member initializer list
  SequentialType* this_() { return this; }
protected:
  SequentialType(TypeID TID, const Type *ElType) 
    : CompositeType(TID), ContainedType(ElType, this_()) {
    ContainedTys = &ContainedType; 
    NumContainedTys = 1;
  }

public:
  inline const Type *getElementType() const { return ContainedTys[0]; }

  virtual bool indexValid(const Value *V) const;

  /// getTypeAtIndex - Given an index value into the type, return the type of
  /// the element.  For sequential types, there is only one subtype...
  ///
  virtual const Type *getTypeAtIndex(const Value *V) const {
    return ContainedTys[0];
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SequentialType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID ||
           T->getTypeID() == PointerTyID ||
           T->getTypeID() == VectorTyID;
  }
};


/// ArrayType - Class to represent array types
///
class ArrayType : public SequentialType {
  friend class TypeMap<ArrayValType, ArrayType>;
  uint64_t NumElements;

  ArrayType(const ArrayType &);                   // Do not implement
  const ArrayType &operator=(const ArrayType &);  // Do not implement
  ArrayType(const Type *ElType, uint64_t NumEl);
public:
  /// ArrayType::get - This static method is the primary way to construct an
  /// ArrayType
  ///
  static ArrayType *get(const Type *ElementType, uint64_t NumElements);

  inline uint64_t getNumElements() const { return NumElements; }

  // Implement the AbstractTypeUser interface.
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  virtual void typeBecameConcrete(const DerivedType *AbsTy);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ArrayType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID;
  }
};

/// VectorType - Class to represent vector types
///
class VectorType : public SequentialType {
  friend class TypeMap<VectorValType, VectorType>;
  unsigned NumElements;

  VectorType(const VectorType &);                   // Do not implement
  const VectorType &operator=(const VectorType &);  // Do not implement
  VectorType(const Type *ElType, unsigned NumEl);
public:
  /// VectorType::get - This static method is the primary way to construct an
  /// VectorType
  ///
  static VectorType *get(const Type *ElementType, unsigned NumElements);

  /// @brief Return the number of elements in the Vector type.
  inline unsigned getNumElements() const { return NumElements; }

  /// @brief Return the number of bits in the Vector type.
  inline unsigned getBitWidth() const { 
    return NumElements *getElementType()->getPrimitiveSizeInBits();
  }

  // Implement the AbstractTypeUser interface.
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  virtual void typeBecameConcrete(const DerivedType *AbsTy);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VectorType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == VectorTyID;
  }
};


/// PointerType - Class to represent pointers
///
class PointerType : public SequentialType {
  friend class TypeMap<PointerValType, PointerType>;
  unsigned AddressSpace;
  
  PointerType(const PointerType &);                   // Do not implement
  const PointerType &operator=(const PointerType &);  // Do not implement
  explicit PointerType(const Type *ElType, unsigned AddrSpace);
public:
  /// PointerType::get - This constructs a pointer to an object of the specified 
  /// type in a numbered address space.
  static PointerType *get(const Type *ElementType, unsigned AddressSpace);
  
  /// PointerType::getUnqual - This constructs a pointer to an object of the  
  /// specified type in the generic address space (address space zero).
  static PointerType *getUnqual(const Type *ElementType) { 
    return PointerType::get(ElementType, 0);
  }
  
  /// @brief Return the address space of the Pointer type.
  inline unsigned getAddressSpace() const { return AddressSpace; }

  // Implement the AbstractTypeUser interface.
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  virtual void typeBecameConcrete(const DerivedType *AbsTy);

  // Implement support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PointerType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == PointerTyID;
  }
};


/// OpaqueType - Class to represent abstract types
///
class OpaqueType : public DerivedType {
  OpaqueType(const OpaqueType &);                   // DO NOT IMPLEMENT
  const OpaqueType &operator=(const OpaqueType &);  // DO NOT IMPLEMENT
  OpaqueType();
public:
  /// OpaqueType::get - Static factory method for the OpaqueType class...
  ///
  static OpaqueType *get() {
    return new OpaqueType();           // All opaque types are distinct
  }

  // Implement support for type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const OpaqueType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getTypeID() == OpaqueTyID;
  }
};

} // End llvm namespace

#endif