llvm.org GIT mirror llvm / f7da4e9 lib / CodeGen / LiveVariables.cpp
f7da4e9

Tree @f7da4e9 (Download .tar.gz)

LiveVariables.cpp @f7da4e9raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveVariable analysis pass.  For each machine
// instruction in the function, this pass calculates the set of registers that
// are immediately dead after the instruction (i.e., the instruction calculates
// the value, but it is never used) and the set of registers that are used by
// the instruction, but are never used after the instruction (i.e., they are
// killed).
//
// This class computes live variables using are sparse implementation based on
// the machine code SSA form.  This class computes live variable information for
// each virtual and _register allocatable_ physical register in a function.  It
// uses the dominance properties of SSA form to efficiently compute live
// variables for virtual registers, and assumes that physical registers are only
// live within a single basic block (allowing it to do a single local analysis
// to resolve physical register lifetimes in each basic block).  If a physical
// register is not register allocatable, it is not tracked.  This is useful for
// things like the stack pointer and condition codes.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/alloca.h"
#include <algorithm>
#include <iostream>
using namespace llvm;

static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");

void LiveVariables::VarInfo::dump() const {
  std::cerr << "Register Defined by: ";
  if (DefInst) 
    std::cerr << *DefInst;
  else
    std::cerr << "<null>\n";
  std::cerr << "  Alive in blocks: ";
  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
    if (AliveBlocks[i]) std::cerr << i << ", ";
  std::cerr << "\n  Killed by:";
  if (Kills.empty())
    std::cerr << " No instructions.\n";
  else {
    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
      std::cerr << "\n    #" << i << ": " << *Kills[i];
    std::cerr << "\n";
  }
}

LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
         "getVarInfo: not a virtual register!");
  RegIdx -= MRegisterInfo::FirstVirtualRegister;
  if (RegIdx >= VirtRegInfo.size()) {
    if (RegIdx >= 2*VirtRegInfo.size())
      VirtRegInfo.resize(RegIdx*2);
    else
      VirtRegInfo.resize(2*VirtRegInfo.size());
  }
  return VirtRegInfo[RegIdx];
}

bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
  std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 
  RegistersKilled.find(MI);
  if (I == RegistersKilled.end()) return false;
  
  // Do a binary search, as these lists can grow pretty big, particularly for
  // call instructions on targets with lots of call-clobbered registers.
  return std::binary_search(I->second.begin(), I->second.end(), Reg);
}

bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
  std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 
  RegistersDead.find(MI);
  if (I == RegistersDead.end()) return false;
  
  // Do a binary search, as these lists can grow pretty big, particularly for
  // call instructions on targets with lots of call-clobbered registers.
  return std::binary_search(I->second.begin(), I->second.end(), Reg);
}

void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
                                            MachineBasicBlock *MBB) {
  unsigned BBNum = MBB->getNumber();

  // Check to see if this basic block is one of the killing blocks.  If so,
  // remove it...
  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
    if (VRInfo.Kills[i]->getParent() == MBB) {
      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
      break;
    }

  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion

  if (VRInfo.AliveBlocks.size() <= BBNum)
    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...

  if (VRInfo.AliveBlocks[BBNum])
    return;  // We already know the block is live

  // Mark the variable known alive in this bb
  VRInfo.AliveBlocks[BBNum] = true;

  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
         E = MBB->pred_end(); PI != E; ++PI)
    MarkVirtRegAliveInBlock(VRInfo, *PI);
}

void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
                                     MachineInstr *MI) {
  assert(VRInfo.DefInst && "Register use before def!");

  // Check to see if this basic block is already a kill block...
  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
    // Yes, this register is killed in this basic block already.  Increase the
    // live range by updating the kill instruction.
    VRInfo.Kills.back() = MI;
    return;
  }

#ifndef NDEBUG
  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
#endif

  assert(MBB != VRInfo.DefInst->getParent() &&
         "Should have kill for defblock!");

  // Add a new kill entry for this basic block.
  VRInfo.Kills.push_back(MI);

  // Update all dominating blocks to mark them known live.
  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
         E = MBB->pred_end(); PI != E; ++PI)
    MarkVirtRegAliveInBlock(VRInfo, *PI);
}

void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
  PhysRegInfo[Reg] = MI;
  PhysRegUsed[Reg] = true;

  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
       unsigned Alias = *AliasSet; ++AliasSet) {
    PhysRegInfo[Alias] = MI;
    PhysRegUsed[Alias] = true;
  }
}

void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
  // Does this kill a previous version of this register?
  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
    if (PhysRegUsed[Reg])
      RegistersKilled[LastUse].push_back(Reg);
    else
      RegistersDead[LastUse].push_back(Reg);
  }
  PhysRegInfo[Reg] = MI;
  PhysRegUsed[Reg] = false;

  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
       unsigned Alias = *AliasSet; ++AliasSet) {
    if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
      if (PhysRegUsed[Alias])
        RegistersKilled[LastUse].push_back(Alias);
      else
        RegistersDead[LastUse].push_back(Alias);
    }
    PhysRegInfo[Alias] = MI;
    PhysRegUsed[Alias] = false;
  }
}

bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
  RegInfo = MF.getTarget().getRegisterInfo();
  assert(RegInfo && "Target doesn't have register information?");

  AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);

  // PhysRegInfo - Keep track of which instruction was the last use of a
  // physical register.  This is a purely local property, because all physical
  // register references as presumed dead across basic blocks.
  //
  PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
                                       RegInfo->getNumRegs());
  PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
  std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);

  /// Get some space for a respectable number of registers...
  VirtRegInfo.resize(64);

  // Mark live-in registers as live-in.
  for (MachineFunction::livein_iterator I = MF.livein_begin(),
         E = MF.livein_end(); I != E; ++I) {
    assert(MRegisterInfo::isPhysicalRegister(I->first) &&
           "Cannot have a live-in virtual register!");
    HandlePhysRegDef(I->first, 0);
  }

  analyzePHINodes(MF);

  // Calculate live variable information in depth first order on the CFG of the
  // function.  This guarantees that we will see the definition of a virtual
  // register before its uses due to dominance properties of SSA (except for PHI
  // nodes, which are treated as a special case).
  //
  MachineBasicBlock *Entry = MF.begin();
  std::set<MachineBasicBlock*> Visited;
  for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
         E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
    MachineBasicBlock *MBB = *DFI;
    unsigned BBNum = MBB->getNumber();

    // Loop over all of the instructions, processing them.
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
         I != E; ++I) {
      MachineInstr *MI = I;
      const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());

      // Process all of the operands of the instruction...
      unsigned NumOperandsToProcess = MI->getNumOperands();

      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
      // of the uses.  They will be handled in other basic blocks.
      if (MI->getOpcode() == TargetInstrInfo::PHI)
        NumOperandsToProcess = 1;

      // Loop over implicit uses, using them.
      if (MID.ImplicitUses) {
        for (const unsigned *ImplicitUses = MID.ImplicitUses;
             *ImplicitUses; ++ImplicitUses)
          HandlePhysRegUse(*ImplicitUses, MI);
      }

      // Process all explicit uses...
      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
                     AllocatablePhysicalRegisters[MO.getReg()]) {
            HandlePhysRegUse(MO.getReg(), MI);
          }
        }
      }

      // Loop over implicit defs, defining them.
      if (MID.ImplicitDefs) {
        for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
             *ImplicitDefs; ++ImplicitDefs)
          HandlePhysRegDef(*ImplicitDefs, MI);
      }

      // Process all explicit defs...
      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
            VarInfo &VRInfo = getVarInfo(MO.getReg());

            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
            VRInfo.DefInst = MI;
            // Defaults to dead
            VRInfo.Kills.push_back(MI);
          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
                     AllocatablePhysicalRegisters[MO.getReg()]) {
            HandlePhysRegDef(MO.getReg(), MI);
          }
        }
      }
    }

    // Handle any virtual assignments from PHI nodes which might be at the
    // bottom of this basic block.  We check all of our successor blocks to see
    // if they have PHI nodes, and if so, we simulate an assignment at the end
    // of the current block.
    if (!PHIVarInfo[MBB].empty()) {
      std::vector<unsigned>& VarInfoVec = PHIVarInfo[MBB];

      for (std::vector<unsigned>::iterator I = VarInfoVec.begin(),
             E = VarInfoVec.end(); I != E; ++I) {
        VarInfo& VRInfo = getVarInfo(*I);
        assert(VRInfo.DefInst && "Register use before def (or no def)!");

        // Only mark it alive only in the block we are representing.
        MarkVirtRegAliveInBlock(VRInfo, MBB);
      }
    }

    // Finally, if the last block in the function is a return, make sure to mark
    // it as using all of the live-out values in the function.
    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
      MachineInstr *Ret = &MBB->back();
      for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
             E = MF.liveout_end(); I != E; ++I) {
        assert(MRegisterInfo::isPhysicalRegister(*I) &&
               "Cannot have a live-in virtual register!");
        HandlePhysRegUse(*I, Ret);
      }
    }

    // Loop over PhysRegInfo, killing any registers that are available at the
    // end of the basic block.  This also resets the PhysRegInfo map.
    for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
      if (PhysRegInfo[i])
        HandlePhysRegDef(i, 0);
  }

  // Convert the information we have gathered into VirtRegInfo and transform it
  // into a form usable by RegistersKilled.
  //
  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
        RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
                                    i + MRegisterInfo::FirstVirtualRegister);

      else
        RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
                                    i + MRegisterInfo::FirstVirtualRegister);
    }

  // Walk through the RegistersKilled/Dead sets, and sort the registers killed
  // or dead.  This allows us to use efficient binary search for membership
  // testing.
  for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
       I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I)
    std::sort(I->second.begin(), I->second.end());
  for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
       I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I)
    std::sort(I->second.begin(), I->second.end());
  
  // Check to make sure there are no unreachable blocks in the MC CFG for the
  // function.  If so, it is due to a bug in the instruction selector or some
  // other part of the code generator if this happens.
#ifndef NDEBUG
  for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif

  PHIVarInfo.clear();
  return false;
}

/// instructionChanged - When the address of an instruction changes, this
/// method should be called so that live variables can update its internal
/// data structures.  This removes the records for OldMI, transfering them to
/// the records for NewMI.
void LiveVariables::instructionChanged(MachineInstr *OldMI,
                                       MachineInstr *NewMI) {
  // If the instruction defines any virtual registers, update the VarInfo for
  // the instruction.
  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = OldMI->getOperand(i);
    if (MO.isRegister() && MO.getReg() &&
        MRegisterInfo::isVirtualRegister(MO.getReg())) {
      unsigned Reg = MO.getReg();
      VarInfo &VI = getVarInfo(Reg);
      if (MO.isDef()) {
        // Update the defining instruction.
        if (VI.DefInst == OldMI)
          VI.DefInst = NewMI;
      }
      if (MO.isUse()) {
        // If this is a kill of the value, update the VI kills list.
        if (VI.removeKill(OldMI))
          VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
      }
    }
  }

  // Move the killed information over...
  killed_iterator I, E;
  tie(I, E) = killed_range(OldMI);
  if (I != E) {
    std::vector<unsigned> &V = RegistersKilled[NewMI];
    bool WasEmpty = V.empty();
    V.insert(V.end(), I, E);
    if (!WasEmpty)
      std::sort(V.begin(), V.end());   // Keep the reg list sorted.
    RegistersKilled.erase(OldMI);
  }

  // Move the dead information over...
  tie(I, E) = dead_range(OldMI);
  if (I != E) {
    std::vector<unsigned> &V = RegistersDead[NewMI];
    bool WasEmpty = V.empty();
    V.insert(V.end(), I, E);
    if (!WasEmpty)
      std::sort(V.begin(), V.end());   // Keep the reg list sorted.
    RegistersDead.erase(OldMI);
  }
}

/// removeVirtualRegistersKilled - Remove all killed info for the specified
/// instruction.
void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
  std::map<MachineInstr*, std::vector<unsigned> >::iterator I = 
    RegistersKilled.find(MI);
  if (I == RegistersKilled.end()) return;

  std::vector<unsigned> &Regs = I->second;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    if (MRegisterInfo::isVirtualRegister(Regs[i])) {
      bool removed = getVarInfo(Regs[i]).removeKill(MI);
      assert(removed && "kill not in register's VarInfo?");
    }
  }
  RegistersKilled.erase(I);
}

/// removeVirtualRegistersDead - Remove all of the dead registers for the
/// specified instruction from the live variable information.
void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
  std::map<MachineInstr*, std::vector<unsigned> >::iterator I = 
    RegistersDead.find(MI);
  if (I == RegistersDead.end()) return;
  
  std::vector<unsigned> &Regs = I->second;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    if (MRegisterInfo::isVirtualRegister(Regs[i])) {
      bool removed = getVarInfo(Regs[i]).removeKill(MI);
      assert(removed && "kill not in register's VarInfo?");
    }
  }
  RegistersDead.erase(I);
}

/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the variable information of a virtual
/// register which is used in a PHI node. We map that to the BB the vreg is
/// coming from.
///
void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
       I != E; ++I)
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()].
          push_back(BBI->getOperand(i).getReg());
}