llvm.org GIT mirror llvm / f6a4d3c include / llvm / Target / TargetRegisterInfo.h
f6a4d3c

Tree @f6a4d3c (Download .tar.gz)

TargetRegisterInfo.h @f6a4d3craw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes an abstract interface used to get information about a
// target machines register file.  This information is used for a variety of
// purposed, especially register allocation.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
#define LLVM_TARGET_TARGETREGISTERINFO_H

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/ADT/DenseSet.h"
#include <cassert>
#include <functional>

namespace llvm {

class BitVector;
class MachineFunction;
class MachineMove;
class RegScavenger;
template<class T> class SmallVectorImpl;
class raw_ostream;

/// TargetRegisterDesc - This record contains all of the information known about
/// a particular register.  The Overlaps field contains a pointer to a zero
/// terminated array of registers that this register aliases, starting with
/// itself. This is needed for architectures like X86 which have AL alias AX
/// alias EAX. The SubRegs field is a zero terminated array of registers that
/// are sub-registers of the specific register, e.g. AL, AH are sub-registers of
/// AX. The SuperRegs field is a zero terminated array of registers that are
/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
/// of AX.
///
struct TargetRegisterDesc {
  const char     *Name;         // Printable name for the reg (for debugging)
  const unsigned *Overlaps;     // Overlapping registers, described above
  const unsigned *SubRegs;      // Sub-register set, described above
  const unsigned *SuperRegs;    // Super-register set, described above
};

class TargetRegisterClass {
public:
  typedef const unsigned* iterator;
  typedef const unsigned* const_iterator;

  typedef const EVT* vt_iterator;
  typedef const TargetRegisterClass* const * sc_iterator;
private:
  unsigned ID;
  const char *Name;
  const vt_iterator VTs;
  const sc_iterator SubClasses;
  const sc_iterator SuperClasses;
  const sc_iterator SubRegClasses;
  const sc_iterator SuperRegClasses;
  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
  const int CopyCost;
  const iterator RegsBegin, RegsEnd;
  DenseSet<unsigned> RegSet;
public:
  TargetRegisterClass(unsigned id,
                      const char *name,
                      const EVT *vts,
                      const TargetRegisterClass * const *subcs,
                      const TargetRegisterClass * const *supcs,
                      const TargetRegisterClass * const *subregcs,
                      const TargetRegisterClass * const *superregcs,
                      unsigned RS, unsigned Al, int CC,
                      iterator RB, iterator RE)
    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
    SubRegClasses(subregcs), SuperRegClasses(superregcs),
    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
        RegSet.insert(*I);
    }
  virtual ~TargetRegisterClass() {}     // Allow subclasses

  /// getID() - Return the register class ID number.
  ///
  unsigned getID() const { return ID; }

  /// getName() - Return the register class name for debugging.
  ///
  const char *getName() const { return Name; }

  /// begin/end - Return all of the registers in this class.
  ///
  iterator       begin() const { return RegsBegin; }
  iterator         end() const { return RegsEnd; }

  /// getNumRegs - Return the number of registers in this class.
  ///
  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }

  /// getRegister - Return the specified register in the class.
  ///
  unsigned getRegister(unsigned i) const {
    assert(i < getNumRegs() && "Register number out of range!");
    return RegsBegin[i];
  }

  /// contains - Return true if the specified register is included in this
  /// register class.  This does not include virtual registers.
  bool contains(unsigned Reg) const {
    return RegSet.count(Reg);
  }

  /// contains - Return true if both registers are in this class.
  bool contains(unsigned Reg1, unsigned Reg2) const {
    return contains(Reg1) && contains(Reg2);
  }

  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
  ///
  bool hasType(EVT vt) const {
    for(int i = 0; VTs[i] != MVT::Other; ++i)
      if (VTs[i] == vt)
        return true;
    return false;
  }

  /// vt_begin / vt_end - Loop over all of the value types that can be
  /// represented by values in this register class.
  vt_iterator vt_begin() const {
    return VTs;
  }

  vt_iterator vt_end() const {
    vt_iterator I = VTs;
    while (*I != MVT::Other) ++I;
    return I;
  }

  /// subregclasses_begin / subregclasses_end - Loop over all of
  /// the subreg register classes of this register class.
  sc_iterator subregclasses_begin() const {
    return SubRegClasses;
  }

  sc_iterator subregclasses_end() const {
    sc_iterator I = SubRegClasses;
    while (*I != NULL) ++I;
    return I;
  }

  /// getSubRegisterRegClass - Return the register class of subregisters with
  /// index SubIdx, or NULL if no such class exists.
  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
    assert(SubIdx>0 && "Invalid subregister index");
    return SubRegClasses[SubIdx-1];
  }

  /// superregclasses_begin / superregclasses_end - Loop over all of
  /// the superreg register classes of this register class.
  sc_iterator superregclasses_begin() const {
    return SuperRegClasses;
  }

  sc_iterator superregclasses_end() const {
    sc_iterator I = SuperRegClasses;
    while (*I != NULL) ++I;
    return I;
  }

  /// hasSubClass - return true if the specified TargetRegisterClass
  /// is a proper subset of this TargetRegisterClass.
  bool hasSubClass(const TargetRegisterClass *cs) const {
    for (int i = 0; SubClasses[i] != NULL; ++i)
      if (SubClasses[i] == cs)
        return true;
    return false;
  }

  /// subclasses_begin / subclasses_end - Loop over all of the classes
  /// that are proper subsets of this register class.
  sc_iterator subclasses_begin() const {
    return SubClasses;
  }

  sc_iterator subclasses_end() const {
    sc_iterator I = SubClasses;
    while (*I != NULL) ++I;
    return I;
  }

  /// hasSuperClass - return true if the specified TargetRegisterClass is a
  /// proper superset of this TargetRegisterClass.
  bool hasSuperClass(const TargetRegisterClass *cs) const {
    for (int i = 0; SuperClasses[i] != NULL; ++i)
      if (SuperClasses[i] == cs)
        return true;
    return false;
  }

  /// superclasses_begin / superclasses_end - Loop over all of the classes
  /// that are proper supersets of this register class.
  sc_iterator superclasses_begin() const {
    return SuperClasses;
  }

  sc_iterator superclasses_end() const {
    sc_iterator I = SuperClasses;
    while (*I != NULL) ++I;
    return I;
  }

  /// isASubClass - return true if this TargetRegisterClass is a subset
  /// class of at least one other TargetRegisterClass.
  bool isASubClass() const {
    return SuperClasses[0] != 0;
  }

  /// allocation_order_begin/end - These methods define a range of registers
  /// which specify the registers in this class that are valid to register
  /// allocate, and the preferred order to allocate them in.  For example,
  /// callee saved registers should be at the end of the list, because it is
  /// cheaper to allocate caller saved registers.
  ///
  /// These methods take a MachineFunction argument, which can be used to tune
  /// the allocatable registers based on the characteristics of the function,
  /// subtarget, or other criteria.
  ///
  /// Register allocators should account for the fact that an allocation
  /// order iterator may return a reserved register and always check
  /// if the register is allocatable (getAllocatableSet()) before using it.
  ///
  /// By default, these methods return all registers in the class.
  ///
  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
    return begin();
  }
  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
    return end();
  }

  /// getSize - Return the size of the register in bytes, which is also the size
  /// of a stack slot allocated to hold a spilled copy of this register.
  unsigned getSize() const { return RegSize; }

  /// getAlignment - Return the minimum required alignment for a register of
  /// this class.
  unsigned getAlignment() const { return Alignment; }

  /// getCopyCost - Return the cost of copying a value between two registers in
  /// this class. A negative number means the register class is very expensive
  /// to copy e.g. status flag register classes.
  int getCopyCost() const { return CopyCost; }
};


/// TargetRegisterInfo base class - We assume that the target defines a static
/// array of TargetRegisterDesc objects that represent all of the machine
/// registers that the target has.  As such, we simply have to track a pointer
/// to this array so that we can turn register number into a register
/// descriptor.
///
class TargetRegisterInfo {
protected:
  const unsigned* SubregHash;
  const unsigned SubregHashSize;
  const unsigned* AliasesHash;
  const unsigned AliasesHashSize;
public:
  typedef const TargetRegisterClass * const * regclass_iterator;
private:
  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
  const char *const *SubRegIndexNames;        // Names of subreg indexes.
  unsigned NumRegs;                           // Number of entries in the array

  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses

  int CallFrameSetupOpcode, CallFrameDestroyOpcode;

protected:
  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
                     regclass_iterator RegClassBegin,
                     regclass_iterator RegClassEnd,
                     const char *const *subregindexnames,
                     int CallFrameSetupOpcode = -1,
                     int CallFrameDestroyOpcode = -1,
                     const unsigned* subregs = 0,
                     const unsigned subregsize = 0,
                     const unsigned* aliases = 0,
                     const unsigned aliasessize = 0);
  virtual ~TargetRegisterInfo();
public:

  // Register numbers can represent physical registers, virtual registers, and
  // sometimes stack slots. The unsigned values are divided into these ranges:
  //
  //   0           Not a register, can be used as a sentinel.
  //   [1;2^30)    Physical registers assigned by TableGen.
  //   [2^30;2^31) Stack slots. (Rarely used.)
  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
  //
  // Further sentinels can be allocated from the small negative integers.
  // DenseMapInfo<unsigned> uses -1u and -2u.

  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
  /// frame index in a variable that normally holds a register. isStackSlot()
  /// returns true if Reg is in the range used for stack slots.
  ///
  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
  /// slots, so if a variable may contains a stack slot, always check
  /// isStackSlot() first.
  ///
  static bool isStackSlot(unsigned Reg) {
    return int(Reg) >= (1 << 30);
  }

  /// stackSlot2Index - Compute the frame index from a register value
  /// representing a stack slot.
  static int stackSlot2Index(unsigned Reg) {
    assert(isStackSlot(Reg) && "Not a stack slot");
    return int(Reg - (1u << 30));
  }

  /// index2StackSlot - Convert a non-negative frame index to a stack slot
  /// register value.
  static unsigned index2StackSlot(int FI) {
    assert(FI >= 0 && "Cannot hold a negative frame index.");
    return FI + (1u << 30);
  }

  /// isPhysicalRegister - Return true if the specified register number is in
  /// the physical register namespace.
  static bool isPhysicalRegister(unsigned Reg) {
    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    return int(Reg) > 0;
  }

  /// isVirtualRegister - Return true if the specified register number is in
  /// the virtual register namespace.
  static bool isVirtualRegister(unsigned Reg) {
    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    return int(Reg) < 0;
  }

  /// virtReg2Index - Convert a virtual register number to a 0-based index.
  /// The first virtual register in a function will get the index 0.
  static unsigned virtReg2Index(unsigned Reg) {
    assert(isVirtualRegister(Reg) && "Not a virtual register");
    return Reg - (1u << 31);
  }

  /// index2VirtReg - Convert a 0-based index to a virtual register number.
  /// This is the inverse operation of VirtReg2IndexFunctor below.
  static unsigned index2VirtReg(unsigned Index) {
    return Index + (1u << 31);
  }

  /// getMinimalPhysRegClass - Returns the Register Class of a physical
  /// register of the given type, picking the most sub register class of
  /// the right type that contains this physreg.
  const TargetRegisterClass *
    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;

  /// getAllocatableSet - Returns a bitset indexed by register number
  /// indicating if a register is allocatable or not. If a register class is
  /// specified, returns the subset for the class.
  BitVector getAllocatableSet(const MachineFunction &MF,
                              const TargetRegisterClass *RC = NULL) const;

  const TargetRegisterDesc &operator[](unsigned RegNo) const {
    assert(RegNo < NumRegs &&
           "Attempting to access record for invalid register number!");
    return Desc[RegNo];
  }

  /// Provide a get method, equivalent to [], but more useful if we have a
  /// pointer to this object.
  ///
  const TargetRegisterDesc &get(unsigned RegNo) const {
    return operator[](RegNo);
  }

  /// getAliasSet - Return the set of registers aliased by the specified
  /// register, or a null list of there are none.  The list returned is zero
  /// terminated.
  ///
  const unsigned *getAliasSet(unsigned RegNo) const {
    // The Overlaps set always begins with Reg itself.
    return get(RegNo).Overlaps + 1;
  }

  /// getOverlaps - Return a list of registers that overlap Reg, including
  /// itself. This is the same as the alias set except Reg is included in the
  /// list.
  /// These are exactly the registers in { x | regsOverlap(x, Reg) }.
  ///
  const unsigned *getOverlaps(unsigned RegNo) const {
    return get(RegNo).Overlaps;
  }

  /// getSubRegisters - Return the list of registers that are sub-registers of
  /// the specified register, or a null list of there are none. The list
  /// returned is zero terminated and sorted according to super-sub register
  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
  ///
  const unsigned *getSubRegisters(unsigned RegNo) const {
    return get(RegNo).SubRegs;
  }

  /// getSuperRegisters - Return the list of registers that are super-registers
  /// of the specified register, or a null list of there are none. The list
  /// returned is zero terminated and sorted according to super-sub register
  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
  ///
  const unsigned *getSuperRegisters(unsigned RegNo) const {
    return get(RegNo).SuperRegs;
  }

  /// getName - Return the human-readable symbolic target-specific name for the
  /// specified physical register.
  const char *getName(unsigned RegNo) const {
    return get(RegNo).Name;
  }

  /// getNumRegs - Return the number of registers this target has (useful for
  /// sizing arrays holding per register information)
  unsigned getNumRegs() const {
    return NumRegs;
  }

  /// getSubRegIndexName - Return the human-readable symbolic target-specific
  /// name for the specified SubRegIndex.
  const char *getSubRegIndexName(unsigned SubIdx) const {
    assert(SubIdx && "This is not a subregister index");
    return SubRegIndexNames[SubIdx-1];
  }

  /// regsOverlap - Returns true if the two registers are equal or alias each
  /// other. The registers may be virtual register.
  bool regsOverlap(unsigned regA, unsigned regB) const {
    if (regA == regB)
      return true;

    if (isVirtualRegister(regA) || isVirtualRegister(regB))
      return false;

    // regA and regB are distinct physical registers. Do they alias?
    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
    unsigned ProbeAmt = 0;
    while (AliasesHash[index*2] != 0 &&
           AliasesHash[index*2+1] != 0) {
      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
        return true;

      index = (index + ProbeAmt) & (AliasesHashSize-1);
      ProbeAmt += 2;
    }

    return false;
  }

  /// isSubRegister - Returns true if regB is a sub-register of regA.
  ///
  bool isSubRegister(unsigned regA, unsigned regB) const {
    // SubregHash is a simple quadratically probed hash table.
    size_t index = (regA + regB * 37) & (SubregHashSize-1);
    unsigned ProbeAmt = 2;
    while (SubregHash[index*2] != 0 &&
           SubregHash[index*2+1] != 0) {
      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
        return true;

      index = (index + ProbeAmt) & (SubregHashSize-1);
      ProbeAmt += 2;
    }

    return false;
  }

  /// isSuperRegister - Returns true if regB is a super-register of regA.
  ///
  bool isSuperRegister(unsigned regA, unsigned regB) const {
    return isSubRegister(regB, regA);
  }

  /// getCalleeSavedRegs - Return a null-terminated list of all of the
  /// callee saved registers on this target. The register should be in the
  /// order of desired callee-save stack frame offset. The first register is
  /// closed to the incoming stack pointer if stack grows down, and vice versa.
  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
                                                                      const = 0;


  /// getReservedRegs - Returns a bitset indexed by physical register number
  /// indicating if a register is a special register that has particular uses
  /// and should be considered unavailable at all times, e.g. SP, RA. This is
  /// used by register scavenger to determine what registers are free.
  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;

  /// getSubReg - Returns the physical register number of sub-register "Index"
  /// for physical register RegNo. Return zero if the sub-register does not
  /// exist.
  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;

  /// getSubRegIndex - For a given register pair, return the sub-register index
  /// if the second register is a sub-register of the first. Return zero
  /// otherwise.
  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;

  /// getMatchingSuperReg - Return a super-register of the specified register
  /// Reg so its sub-register of index SubIdx is Reg.
  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
                               const TargetRegisterClass *RC) const {
    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
        return SR;
    return 0;
  }

  /// canCombineSubRegIndices - Given a register class and a list of
  /// subregister indices, return true if it's possible to combine the
  /// subregister indices into one that corresponds to a larger
  /// subregister. Return the new subregister index by reference. Note the
  /// new index may be zero if the given subregisters can be combined to
  /// form the whole register.
  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
                                       SmallVectorImpl<unsigned> &SubIndices,
                                       unsigned &NewSubIdx) const {
    return 0;
  }

  /// getMatchingSuperRegClass - Return a subclass of the specified register
  /// class A so that each register in it has a sub-register of the
  /// specified sub-register index which is in the specified register class B.
  virtual const TargetRegisterClass *
  getMatchingSuperRegClass(const TargetRegisterClass *A,
                           const TargetRegisterClass *B, unsigned Idx) const {
    return 0;
  }

  /// composeSubRegIndices - Return the subregister index you get from composing
  /// two subregister indices.
  ///
  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
  /// returns c. Note that composeSubRegIndices does not tell you about illegal
  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
  /// b, composeSubRegIndices doesn't tell you.
  ///
  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
  /// ssub_0:S0 - ssub_3:S3 subregs.
  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
  ///
  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    // This default implementation is correct for most targets.
    return b;
  }

  //===--------------------------------------------------------------------===//
  // Register Class Information
  //

  /// Register class iterators
  ///
  regclass_iterator regclass_begin() const { return RegClassBegin; }
  regclass_iterator regclass_end() const { return RegClassEnd; }

  unsigned getNumRegClasses() const {
    return (unsigned)(regclass_end()-regclass_begin());
  }

  /// getRegClass - Returns the register class associated with the enumeration
  /// value.  See class TargetOperandInfo.
  const TargetRegisterClass *getRegClass(unsigned i) const {
    assert(i < getNumRegClasses() && "Register Class ID out of range");
    return RegClassBegin[i];
  }

  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
  /// values.  If a target supports multiple different pointer register classes,
  /// kind specifies which one is indicated.
  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
    assert(0 && "Target didn't implement getPointerRegClass!");
    return 0; // Must return a value in order to compile with VS 2005
  }

  /// getCrossCopyRegClass - Returns a legal register class to copy a register
  /// in the specified class to or from. If it is possible to copy the register
  /// directly without using a cross register class copy, return the specified
  /// RC. Returns NULL if it is not possible to copy between a two registers of
  /// the specified class.
  virtual const TargetRegisterClass *
  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    return RC;
  }

  /// getRegPressureLimit - Return the register pressure "high water mark" for
  /// the specific register class. The scheduler is in high register pressure
  /// mode (for the specific register class) if it goes over the limit.
  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
                                       MachineFunction &MF) const {
    return 0;
  }

  /// getAllocationOrder - Returns the register allocation order for a specified
  /// register class in the form of a pair of TargetRegisterClass iterators.
  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
  getAllocationOrder(const TargetRegisterClass *RC,
                     unsigned HintType, unsigned HintReg,
                     const MachineFunction &MF) const {
    return std::make_pair(RC->allocation_order_begin(MF),
                          RC->allocation_order_end(MF));
  }

  /// ResolveRegAllocHint - Resolves the specified register allocation hint
  /// to a physical register. Returns the physical register if it is successful.
  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
                                       const MachineFunction &MF) const {
    if (Type == 0 && Reg && isPhysicalRegister(Reg))
      return Reg;
    return 0;
  }

  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
  /// writing a register from RC in two consecutive instructions.
  /// This can avoid pipeline stalls on certain architectures.
  /// It does cause increased register pressure, though.
  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
    return false;
  }

  /// UpdateRegAllocHint - A callback to allow target a chance to update
  /// register allocation hints when a register is "changed" (e.g. coalesced)
  /// to another register. e.g. On ARM, some virtual registers should target
  /// register pairs, if one of pair is coalesced to another register, the
  /// allocation hint of the other half of the pair should be changed to point
  /// to the new register.
  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
                                  MachineFunction &MF) const {
    // Do nothing.
  }

  /// requiresRegisterScavenging - returns true if the target requires (and can
  /// make use of) the register scavenger.
  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    return false;
  }

  /// useFPForScavengingIndex - returns true if the target wants to use
  /// frame pointer based accesses to spill to the scavenger emergency spill
  /// slot.
  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    return true;
  }

  /// requiresFrameIndexScavenging - returns true if the target requires post
  /// PEI scavenging of registers for materializing frame index constants.
  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    return false;
  }

  /// requiresVirtualBaseRegisters - Returns true if the target wants the
  /// LocalStackAllocation pass to be run and virtual base registers
  /// used for more efficient stack access.
  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    return false;
  }

  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
  /// the stack frame of the given function for the specified register. e.g. On
  /// x86, if the frame register is required, the first fixed stack object is
  /// reserved as its spill slot. This tells PEI not to create a new stack frame
  /// object for the given register. It should be called only after
  /// processFunctionBeforeCalleeSavedScan().
  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
                                    int &FrameIdx) const {
    return false;
  }

  /// needsStackRealignment - true if storage within the function requires the
  /// stack pointer to be aligned more than the normal calling convention calls
  /// for.
  virtual bool needsStackRealignment(const MachineFunction &MF) const {
    return false;
  }

  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
  /// index in the instruction, if there is one.
  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
                                           int Idx) const {
    return 0;
  }

  /// needsFrameBaseReg - Returns true if the instruction's frame index
  /// reference would be better served by a base register other than FP
  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
  /// references it should create new base registers for.
  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    return false;
  }

  /// materializeFrameBaseRegister - Insert defining instruction(s) for
  /// BaseReg to be a pointer to FrameIdx before insertion point I.
  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
                                            unsigned BaseReg, int FrameIdx,
                                            int64_t Offset) const {
    assert(0 && "materializeFrameBaseRegister does not exist on this target");
  }

  /// resolveFrameIndex - Resolve a frame index operand of an instruction
  /// to reference the indicated base register plus offset instead.
  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
                                 unsigned BaseReg, int64_t Offset) const {
    assert(0 && "resolveFrameIndex does not exist on this target");
  }

  /// isFrameOffsetLegal - Determine whether a given offset immediate is
  /// encodable to resolve a frame index.
  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
                                  int64_t Offset) const {
    assert(0 && "isFrameOffsetLegal does not exist on this target");
    return false; // Must return a value in order to compile with VS 2005
  }

  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
  /// targets use pseudo instructions in order to abstract away the difference
  /// between operating with a frame pointer and operating without, through the
  /// use of these two instructions.
  ///
  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }

  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
  /// code insertion to eliminate call frame setup and destroy pseudo
  /// instructions (but only if the Target is using them).  It is responsible
  /// for eliminating these instructions, replacing them with concrete
  /// instructions.  This method need only be implemented if using call frame
  /// setup/destroy pseudo instructions.
  ///
  virtual void
  eliminateCallFramePseudoInstr(MachineFunction &MF,
                                MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MI) const {
    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
           "eliminateCallFramePseudoInstr must be implemented if using"
           " call frame setup/destroy pseudo instructions!");
    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
  }


  /// saveScavengerRegister - Spill the register so it can be used by the
  /// register scavenger. Return true if the register was spilled, false
  /// otherwise. If this function does not spill the register, the scavenger
  /// will instead spill it to the emergency spill slot.
  ///
  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator I,
                                     MachineBasicBlock::iterator &UseMI,
                                     const TargetRegisterClass *RC,
                                     unsigned Reg) const {
    return false;
  }

  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
  /// frame indices from instructions which may use them.  The instruction
  /// referenced by the iterator contains an MO_FrameIndex operand which must be
  /// eliminated by this method.  This method may modify or replace the
  /// specified instruction, as long as it keeps the iterator pointing at the
  /// finished product. SPAdj is the SP adjustment due to call frame setup
  /// instruction.
  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
                                   int SPAdj, RegScavenger *RS=NULL) const = 0;

  //===--------------------------------------------------------------------===//
  /// Debug information queries.

  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
  /// number.  Returns -1 if there is no equivalent value.  The second
  /// parameter allows targets to use different numberings for EH info and
  /// debugging info.
  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;

  /// getFrameRegister - This method should return the register used as a base
  /// for values allocated in the current stack frame.
  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;

  /// getRARegister - This method should return the register where the return
  /// address can be found.
  virtual unsigned getRARegister() const = 0;
};


// This is useful when building IndexedMaps keyed on virtual registers
struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
  unsigned operator()(unsigned Reg) const {
    return TargetRegisterInfo::virtReg2Index(Reg);
  }
};

/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
/// if there is no common subclass.
const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
                                             const TargetRegisterClass *B);

/// PrintReg - Helper class for printing registers on a raw_ostream.
/// Prints virtual and physical registers with or without a TRI instance.
///
/// The format is:
///   %noreg          - NoRegister
///   %vreg5          - a virtual register.
///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
///   %EAX            - a physical register
///   %physreg17      - a physical register when no TRI instance given.
///
/// Usage: OS << PrintReg(Reg, TRI) << '\n';
///
class PrintReg {
  const TargetRegisterInfo *TRI;
  unsigned Reg;
  unsigned SubIdx;
public:
  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
    : TRI(tri), Reg(reg), SubIdx(subidx) {}
  void print(raw_ostream&) const;
};

static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
  PR.print(OS);
  return OS;
}

} // End llvm namespace

#endif