llvm.org GIT mirror llvm / f5f73cd lib / Analysis / LazyCallGraph.cpp
f5f73cd

Tree @f5f73cd (Download .tar.gz)

LazyCallGraph.cpp @f5f73cdraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "lcg"

static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
                    DenseMap<Function *, int> &EdgeIndexMap, Function &F,
                    LazyCallGraph::Edge::Kind EK) {
  // Note that we consider *any* function with a definition to be a viable
  // edge. Even if the function's definition is subject to replacement by
  // some other module (say, a weak definition) there may still be
  // optimizations which essentially speculate based on the definition and
  // a way to check that the specific definition is in fact the one being
  // used. For example, this could be done by moving the weak definition to
  // a strong (internal) definition and making the weak definition be an
  // alias. Then a test of the address of the weak function against the new
  // strong definition's address would be an effective way to determine the
  // safety of optimizing a direct call edge.
  if (!F.isDeclaration() &&
      EdgeIndexMap.insert({&F, Edges.size()}).second) {
    DEBUG(dbgs() << "    Added callable function: " << F.getName() << "\n");
    Edges.emplace_back(LazyCallGraph::Edge(F, EK));
  }
}

static void findReferences(SmallVectorImpl<Constant *> &Worklist,
                           SmallPtrSetImpl<Constant *> &Visited,
                           SmallVectorImpl<LazyCallGraph::Edge> &Edges,
                           DenseMap<Function *, int> &EdgeIndexMap) {
  while (!Worklist.empty()) {
    Constant *C = Worklist.pop_back_val();

    if (Function *F = dyn_cast<Function>(C)) {
      addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref);
      continue;
    }

    for (Value *Op : C->operand_values())
      if (Visited.insert(cast<Constant>(Op)).second)
        Worklist.push_back(cast<Constant>(Op));
  }
}

LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
    : G(&G), F(F), DFSNumber(0), LowLink(0) {
  DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
               << "' to the graph.\n");

  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Function *, 4> Callees;
  SmallPtrSet<Constant *, 16> Visited;

  // Find all the potential call graph edges in this function. We track both
  // actual call edges and indirect references to functions. The direct calls
  // are trivially added, but to accumulate the latter we walk the instructions
  // and add every operand which is a constant to the worklist to process
  // afterward.
  for (BasicBlock &BB : F)
    for (Instruction &I : BB) {
      if (auto CS = CallSite(&I))
        if (Function *Callee = CS.getCalledFunction())
          if (Callees.insert(Callee).second) {
            Visited.insert(Callee);
            addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
          }

      for (Value *Op : I.operand_values())
        if (Constant *C = dyn_cast<Constant>(Op))
          if (Visited.insert(C).second)
            Worklist.push_back(C);
    }

  // We've collected all the constant (and thus potentially function or
  // function containing) operands to all of the instructions in the function.
  // Process them (recursively) collecting every function found.
  findReferences(Worklist, Visited, Edges, EdgeIndexMap);
}

void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
  if (Node *N = G->lookup(Target))
    return insertEdgeInternal(*N, EK);

  EdgeIndexMap.insert({&Target, Edges.size()});
  Edges.emplace_back(Target, EK);
}

void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
  EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
  Edges.emplace_back(TargetN, EK);
}

void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
  Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
}

void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
  auto IndexMapI = EdgeIndexMap.find(&Target);
  assert(IndexMapI != EdgeIndexMap.end() &&
         "Target not in the edge set for this caller?");

  Edges[IndexMapI->second] = Edge();
  EdgeIndexMap.erase(IndexMapI);
}

LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
  DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
               << "\n");
  for (Function &F : M)
    if (!F.isDeclaration() && !F.hasLocalLinkage())
      if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
        DEBUG(dbgs() << "  Adding '" << F.getName()
                     << "' to entry set of the graph.\n");
        EntryEdges.emplace_back(F, Edge::Ref);
      }

  // Now add entry nodes for functions reachable via initializers to globals.
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  for (GlobalVariable &GV : M.globals())
    if (GV.hasInitializer())
      if (Visited.insert(GV.getInitializer()).second)
        Worklist.push_back(GV.getInitializer());

  DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
                  "entry set.\n");
  findReferences(Worklist, Visited, EntryEdges, EntryIndexMap);

  for (const Edge &E : EntryEdges)
    RefSCCEntryNodes.push_back(&E.getFunction());
}

LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
    : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
      EntryEdges(std::move(G.EntryEdges)),
      EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
      SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
      DFSStack(std::move(G.DFSStack)),
      RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
      NextDFSNumber(G.NextDFSNumber) {
  updateGraphPtrs();
}

LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
  BPA = std::move(G.BPA);
  NodeMap = std::move(G.NodeMap);
  EntryEdges = std::move(G.EntryEdges);
  EntryIndexMap = std::move(G.EntryIndexMap);
  SCCBPA = std::move(G.SCCBPA);
  SCCMap = std::move(G.SCCMap);
  LeafRefSCCs = std::move(G.LeafRefSCCs);
  DFSStack = std::move(G.DFSStack);
  RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
  NextDFSNumber = G.NextDFSNumber;
  updateGraphPtrs();
  return *this;
}

#ifndef NDEBUG
void LazyCallGraph::SCC::verify() {
  assert(OuterRefSCC && "Can't have a null RefSCC!");
  assert(!Nodes.empty() && "Can't have an empty SCC!");

  for (Node *N : Nodes) {
    assert(N && "Can't have a null node!");
    assert(OuterRefSCC->G->lookupSCC(*N) == this &&
           "Node does not map to this SCC!");
    assert(N->DFSNumber == -1 &&
           "Must set DFS numbers to -1 when adding a node to an SCC!");
    assert(N->LowLink == -1 &&
           "Must set low link to -1 when adding a node to an SCC!");
    for (Edge &E : *N)
      assert(E.getNode() && "Can't have an edge to a raw function!");
  }
}
#endif

LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}

#ifndef NDEBUG
void LazyCallGraph::RefSCC::verify() {
  assert(G && "Can't have a null graph!");
  assert(!SCCs.empty() && "Can't have an empty SCC!");

  // Verify basic properties of the SCCs.
  for (SCC *C : SCCs) {
    assert(C && "Can't have a null SCC!");
    C->verify();
    assert(&C->getOuterRefSCC() == this &&
           "SCC doesn't think it is inside this RefSCC!");
  }

  // Check that our indices map correctly.
  for (auto &SCCIndexPair : SCCIndices) {
    SCC *C = SCCIndexPair.first;
    int i = SCCIndexPair.second;
    assert(C && "Can't have a null SCC in the indices!");
    assert(SCCs[i] == C && "Index doesn't point to SCC!");
  }

  // Check that the SCCs are in fact in post-order.
  for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
    SCC &SourceSCC = *SCCs[i];
    for (Node &N : SourceSCC)
      for (Edge &E : N) {
        if (!E.isCall())
          continue;
        SCC &TargetSCC = *G->lookupSCC(*E.getNode());
        if (&TargetSCC.getOuterRefSCC() == this) {
          assert(SCCIndices.find(&TargetSCC)->second <= i &&
                 "Edge between SCCs violates post-order relationship.");
          continue;
        }
        assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
               "Edge to a RefSCC missing us in its parent set.");
      }
  }
}
#endif

bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
  // Walk up the parents of this SCC and verify that we eventually find C.
  SmallVector<const RefSCC *, 4> AncestorWorklist;
  AncestorWorklist.push_back(this);
  do {
    const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
    if (AncestorC->isChildOf(C))
      return true;
    for (const RefSCC *ParentC : AncestorC->Parents)
      AncestorWorklist.push_back(ParentC);
  } while (!AncestorWorklist.empty());

  return false;
}

SmallVector<LazyCallGraph::SCC *, 1>
LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
  assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");

  SmallVector<SCC *, 1> DeletedSCCs;

  SCC &SourceSCC = *G->lookupSCC(SourceN);
  SCC &TargetSCC = *G->lookupSCC(TargetN);

  // If the two nodes are already part of the same SCC, we're also done as
  // we've just added more connectivity.
  if (&SourceSCC == &TargetSCC) {
    SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
    return DeletedSCCs;
  }

  // At this point we leverage the postorder list of SCCs to detect when the
  // insertion of an edge changes the SCC structure in any way.
  //
  // First and foremost, we can eliminate the need for any changes when the
  // edge is toward the beginning of the postorder sequence because all edges
  // flow in that direction already. Thus adding a new one cannot form a cycle.
  int SourceIdx = SCCIndices[&SourceSCC];
  int TargetIdx = SCCIndices[&TargetSCC];
  if (TargetIdx < SourceIdx) {
    SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
    return DeletedSCCs;
  }

  // When we do have an edge from an earlier SCC to a later SCC in the
  // postorder sequence, all of the SCCs which may be impacted are in the
  // closed range of those two within the postorder sequence. The algorithm to
  // restore the state is as follows:
  //
  // 1) Starting from the source SCC, construct a set of SCCs which reach the
  //    source SCC consisting of just the source SCC. Then scan toward the
  //    target SCC in postorder and for each SCC, if it has an edge to an SCC
  //    in the set, add it to the set. Otherwise, the source SCC is not
  //    a successor, move it in the postorder sequence to immediately before
  //    the source SCC, shifting the source SCC and all SCCs in the set one
  //    position toward the target SCC. Stop scanning after processing the
  //    target SCC.
  // 2) If the source SCC is now past the target SCC in the postorder sequence,
  //    and thus the new edge will flow toward the start, we are done.
  // 3) Otherwise, starting from the target SCC, walk all edges which reach an
  //    SCC between the source and the target, and add them to the set of
  //    connected SCCs, then recurse through them. Once a complete set of the
  //    SCCs the target connects to is known, hoist the remaining SCCs between
  //    the source and the target to be above the target. Note that there is no
  //    need to process the source SCC, it is already known to connect.
  // 4) At this point, all of the SCCs in the closed range between the source
  //    SCC and the target SCC in the postorder sequence are connected,
  //    including the target SCC and the source SCC. Inserting the edge from
  //    the source SCC to the target SCC will form a cycle out of precisely
  //    these SCCs. Thus we can merge all of the SCCs in this closed range into
  //    a single SCC.
  //
  // This process has various important properties:
  // - Only mutates the SCCs when adding the edge actually changes the SCC
  //   structure.
  // - Never mutates SCCs which are unaffected by the change.
  // - Updates the postorder sequence to correctly satisfy the postorder
  //   constraint after the edge is inserted.
  // - Only reorders SCCs in the closed postorder sequence from the source to
  //   the target, so easy to bound how much has changed even in the ordering.
  // - Big-O is the number of edges in the closed postorder range of SCCs from
  //   source to target.

  assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
  SmallPtrSet<SCC *, 4> ConnectedSet;

  // Compute the SCCs which (transitively) reach the source.
  ConnectedSet.insert(&SourceSCC);
  auto IsConnected = [&](SCC &C) {
    for (Node &N : C)
      for (Edge &E : N.calls()) {
        assert(E.getNode() && "Must have formed a node within an SCC!");
        if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
          return true;
      }

    return false;
  };

  for (SCC *C :
       make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
    if (IsConnected(*C))
      ConnectedSet.insert(C);

  // Partition the SCCs in this part of the port-order sequence so only SCCs
  // connecting to the source remain between it and the target. This is
  // a benign partition as it preserves postorder.
  auto SourceI = std::stable_partition(
      SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
      [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); });
  for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
    SCCIndices.find(SCCs[i])->second = i;

  // If the target doesn't connect to the source, then we've corrected the
  // post-order and there are no cycles formed.
  if (!ConnectedSet.count(&TargetSCC)) {
    assert(SourceI > (SCCs.begin() + SourceIdx) &&
           "Must have moved the source to fix the post-order.");
    assert(*std::prev(SourceI) == &TargetSCC &&
           "Last SCC to move should have bene the target.");
    SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
#ifndef NDEBUG
    verify();
#endif
    return DeletedSCCs;
  }

  assert(SCCs[TargetIdx] == &TargetSCC &&
         "Should not have moved target if connected!");
  SourceIdx = SourceI - SCCs.begin();

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif

  // See whether there are any remaining intervening SCCs between the source
  // and target. If so we need to make sure they all are reachable form the
  // target.
  if (SourceIdx + 1 < TargetIdx) {
    // Use a normal worklist to find which SCCs the target connects to. We still
    // bound the search based on the range in the postorder list we care about,
    // but because this is forward connectivity we just "recurse" through the
    // edges.
    ConnectedSet.clear();
    ConnectedSet.insert(&TargetSCC);
    SmallVector<SCC *, 4> Worklist;
    Worklist.push_back(&TargetSCC);
    do {
      SCC &C = *Worklist.pop_back_val();
      for (Node &N : C)
        for (Edge &E : N) {
          assert(E.getNode() && "Must have formed a node within an SCC!");
          if (!E.isCall())
            continue;
          SCC &EdgeC = *G->lookupSCC(*E.getNode());
          if (&EdgeC.getOuterRefSCC() != this)
            // Not in this RefSCC...
            continue;
          if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
            // Not in the postorder sequence between source and target.
            continue;

          if (ConnectedSet.insert(&EdgeC).second)
            Worklist.push_back(&EdgeC);
        }
    } while (!Worklist.empty());

    // Partition SCCs so that only SCCs reached from the target remain between
    // the source and the target. This preserves postorder.
    auto TargetI = std::stable_partition(
        SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
        [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); });
    for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
      SCCIndices.find(SCCs[i])->second = i;
    TargetIdx = std::prev(TargetI) - SCCs.begin();
    assert(SCCs[TargetIdx] == &TargetSCC &&
           "Should always end with the target!");

#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
  }

  // At this point, we know that connecting source to target forms a cycle
  // because target connects back to source, and we know that all of the SCCs
  // between the source and target in the postorder sequence participate in that
  // cycle. This means that we need to merge all of these SCCs into a single
  // result SCC.
  //
  // NB: We merge into the target because all of these functions were already
  // reachable from the target, meaning any SCC-wide properties deduced about it
  // other than the set of functions within it will not have changed.
  auto MergeRange =
      make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
  for (SCC *C : MergeRange) {
    assert(C != &TargetSCC &&
           "We merge *into* the target and shouldn't process it here!");
    SCCIndices.erase(C);
    TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
    for (Node *N : C->Nodes)
      G->SCCMap[N] = &TargetSCC;
    C->clear();
    DeletedSCCs.push_back(C);
  }

  // Erase the merged SCCs from the list and update the indices of the
  // remaining SCCs.
  int IndexOffset = MergeRange.end() - MergeRange.begin();
  auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
  for (SCC *C : make_range(EraseEnd, SCCs.end()))
    SCCIndices[C] -= IndexOffset;

  // Now that the SCC structure is finalized, flip the kind to call.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);

#ifndef NDEBUG
  // And we're done! Verify in debug builds that the RefSCC is coherent.
  verify();
#endif
  return DeletedSCCs;
}

void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN,
                                                    Node &TargetN) {
  assert(SourceN[TargetN].isCall() && "Must start with a call edge!");

  SCC &SourceSCC = *G->lookupSCC(SourceN);
  SCC &TargetSCC = *G->lookupSCC(TargetN);

  assert(&SourceSCC.getOuterRefSCC() == this &&
         "Source must be in this RefSCC.");
  assert(&TargetSCC.getOuterRefSCC() == this &&
         "Target must be in this RefSCC.");

  // Set the edge kind.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);

  // If this call edge is just connecting two separate SCCs within this RefSCC,
  // there is nothing to do.
  if (&SourceSCC != &TargetSCC) {
#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
    return;
  }

  // Otherwise we are removing a call edge from a single SCC. This may break
  // the cycle. In order to compute the new set of SCCs, we need to do a small
  // DFS over the nodes within the SCC to form any sub-cycles that remain as
  // distinct SCCs and compute a postorder over the resulting SCCs.
  //
  // However, we specially handle the target node. The target node is known to
  // reach all other nodes in the original SCC by definition. This means that
  // we want the old SCC to be replaced with an SCC contaning that node as it
  // will be the root of whatever SCC DAG results from the DFS. Assumptions
  // about an SCC such as the set of functions called will continue to hold,
  // etc.

  SCC &OldSCC = TargetSCC;
  SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;
  SmallVector<SCC *, 4> NewSCCs;

  // Prepare the nodes for a fresh DFS.
  SmallVector<Node *, 16> Worklist;
  Worklist.swap(OldSCC.Nodes);
  for (Node *N : Worklist) {
    N->DFSNumber = N->LowLink = 0;
    G->SCCMap.erase(N);
  }

  // Force the target node to be in the old SCC. This also enables us to take
  // a very significant short-cut in the standard Tarjan walk to re-form SCCs
  // below: whenever we build an edge that reaches the target node, we know
  // that the target node eventually connects back to all other nodes in our
  // walk. As a consequence, we can detect and handle participants in that
  // cycle without walking all the edges that form this connection, and instead
  // by relying on the fundamental guarantee coming into this operation (all
  // nodes are reachable from the target due to previously forming an SCC).
  TargetN.DFSNumber = TargetN.LowLink = -1;
  OldSCC.Nodes.push_back(&TargetN);
  G->SCCMap[&TargetN] = &OldSCC;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Worklist) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, RootN->call_begin()});
    do {
      Node *N;
      call_edge_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = N->call_end();
      while (I != E) {
        Node &ChildN = *I->getNode();
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          assert(!G->SCCMap.count(&ChildN) &&
                 "Found a node with 0 DFS number but already in an SCC!");
          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = N->call_begin();
          E = N->call_end();
          continue;
        }

        // Check for the child already being part of some component.
        if (ChildN.DFSNumber == -1) {
          if (G->lookupSCC(ChildN) == &OldSCC) {
            // If the child is part of the old SCC, we know that it can reach
            // every other node, so we have formed a cycle. Pull the entire DFS
            // and pending stacks into it. See the comment above about setting
            // up the old SCC for why we do this.
            int OldSize = OldSCC.size();
            OldSCC.Nodes.push_back(N);
            OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
            PendingSCCStack.clear();
            while (!DFSStack.empty())
              OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
            for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
              N.DFSNumber = N.LowLink = -1;
              G->SCCMap[&N] = &OldSCC;
            }
            N = nullptr;
            break;
          }

          // If the child has already been added to some child component, it
          // couldn't impact the low-link of this parent because it isn't
          // connected, and thus its low-link isn't relevant so skip it.
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }
      if (!N)
        // Cleared the DFS early, start another round.
        break;

      // We've finished processing N and its descendents, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
                       [RootDFSNumber](Node *N) {
                         return N->DFSNumber < RootDFSNumber;
                       }));

      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      NewSCCs.push_back(G->createSCC(*this, SCCNodes));
      for (Node &N : *NewSCCs.back()) {
        N.DFSNumber = N.LowLink = -1;
        G->SCCMap[&N] = NewSCCs.back();
      }
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }

  // Insert the remaining SCCs before the old one. The old SCC can reach all
  // other SCCs we form because it contains the target node of the removed edge
  // of the old SCC. This means that we will have edges into all of the new
  // SCCs, which means the old one must come last for postorder.
  int OldIdx = SCCIndices[&OldSCC];
  SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());

  // Update the mapping from SCC* to index to use the new SCC*s, and remove the
  // old SCC from the mapping.
  for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
    SCCIndices[SCCs[Idx]] = Idx;

#ifndef NDEBUG
  // We're done. Check the validity on our way out.
  verify();
#endif
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
                                                     Node &TargetN) {
  assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
                                                    Node &TargetN) {
  assert(SourceN[TargetN].isCall() && "Must start with a call edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
                                                  Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");

  SourceN.insertEdgeInternal(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
                                               Edge::Kind EK) {
  // First insert it into the caller.
  SourceN.insertEdgeInternal(TargetN, EK);

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");

  RefSCC &TargetC = *G->lookupRefSCC(TargetN);
  assert(&TargetC != this && "Target must not be in this RefSCC.");
  assert(TargetC.isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");

  // The only change required is to add this SCC to the parent set of the
  // callee.
  TargetC.Parents.insert(this);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");

  // We store the RefSCCs found to be connected in postorder so that we can use
  // that when merging. We also return this to the caller to allow them to
  // invalidate information pertaining to these RefSCCs.
  SmallVector<RefSCC *, 1> Connected;

  RefSCC &SourceC = *G->lookupRefSCC(SourceN);
  assert(&SourceC != this && "Source must not be in this SCC.");
  assert(SourceC.isDescendantOf(*this) &&
         "Source must be a descendant of the Target.");

  // The algorithm we use for merging SCCs based on the cycle introduced here
  // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
  // graph has the same cycle properties as the actual DAG of the RefSCCs, and
  // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
  // in many cases which should prune the search space.
  //
  // FIXME: We can get this pruning behavior even after the incremental RefSCC
  // formation by leaving behind (conservative) DFS numberings in the nodes,
  // and pruning the search with them. These would need to be cleverly updated
  // during the removal of intra-SCC edges, but could be preserved
  // conservatively.
  //
  // FIXME: This operation currently creates ordering stability problems
  // because we don't use stably ordered containers for the parent SCCs.

  // The set of RefSCCs that are connected to the parent, and thus will
  // participate in the merged connected component.
  SmallPtrSet<RefSCC *, 8> ConnectedSet;
  ConnectedSet.insert(this);

  // We build up a DFS stack of the parents chains.
  SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
  SmallPtrSet<RefSCC *, 8> Visited;
  int ConnectedDepth = -1;
  DFSStack.push_back({&SourceC, SourceC.parent_begin()});
  do {
    auto DFSPair = DFSStack.pop_back_val();
    RefSCC *C = DFSPair.first;
    parent_iterator I = DFSPair.second;
    auto E = C->parent_end();

    while (I != E) {
      RefSCC &Parent = *I++;

      // If we have already processed this parent SCC, skip it, and remember
      // whether it was connected so we don't have to check the rest of the
      // stack. This also handles when we reach a child of the 'this' SCC (the
      // callee) which terminates the search.
      if (ConnectedSet.count(&Parent)) {
        assert(ConnectedDepth < (int)DFSStack.size() &&
               "Cannot have a connected depth greater than the DFS depth!");
        ConnectedDepth = DFSStack.size();
        continue;
      }
      if (Visited.count(&Parent))
        continue;

      // We fully explore the depth-first space, adding nodes to the connected
      // set only as we pop them off, so "recurse" by rotating to the parent.
      DFSStack.push_back({C, I});
      C = &Parent;
      I = C->parent_begin();
      E = C->parent_end();
    }

    // If we've found a connection anywhere below this point on the stack (and
    // thus up the parent graph from the caller), the current node needs to be
    // added to the connected set now that we've processed all of its parents.
    if ((int)DFSStack.size() == ConnectedDepth) {
      --ConnectedDepth; // We're finished with this connection.
      bool Inserted = ConnectedSet.insert(C).second;
      (void)Inserted;
      assert(Inserted && "Cannot insert a refSCC multiple times!");
      Connected.push_back(C);
    } else {
      // Otherwise remember that its parents don't ever connect.
      assert(ConnectedDepth < (int)DFSStack.size() &&
             "Cannot have a connected depth greater than the DFS depth!");
      Visited.insert(C);
    }
  } while (!DFSStack.empty());

  // Now that we have identified all of the SCCs which need to be merged into
  // a connected set with the inserted edge, merge all of them into this SCC.
  // We walk the newly connected RefSCCs in the reverse postorder of the parent
  // DAG walk above and merge in each of their SCC postorder lists. This
  // ensures a merged postorder SCC list.
  SmallVector<SCC *, 16> MergedSCCs;
  int SCCIndex = 0;
  for (RefSCC *C : reverse(Connected)) {
    assert(C != this &&
           "This RefSCC should terminate the DFS without being reached.");

    // Merge the parents which aren't part of the merge into the our parents.
    for (RefSCC *ParentC : C->Parents)
      if (!ConnectedSet.count(ParentC))
        Parents.insert(ParentC);
    C->Parents.clear();

    // Walk the inner SCCs to update their up-pointer and walk all the edges to
    // update any parent sets.
    // FIXME: We should try to find a way to avoid this (rather expensive) edge
    // walk by updating the parent sets in some other manner.
    for (SCC &InnerC : *C) {
      InnerC.OuterRefSCC = this;
      SCCIndices[&InnerC] = SCCIndex++;
      for (Node &N : InnerC) {
        G->SCCMap[&N] = &InnerC;
        for (Edge &E : N) {
          assert(E.getNode() &&
                 "Cannot have a null node within a visited SCC!");
          RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
          if (ConnectedSet.count(&ChildRC))
            continue;
          ChildRC.Parents.erase(C);
          ChildRC.Parents.insert(this);
        }
      }
    }

    // Now merge in the SCCs. We can actually move here so try to reuse storage
    // the first time through.
    if (MergedSCCs.empty())
      MergedSCCs = std::move(C->SCCs);
    else
      MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
    C->SCCs.clear();
  }

  // Finally append our original SCCs to the merged list and move it into
  // place.
  for (SCC &InnerC : *this)
    SCCIndices[&InnerC] = SCCIndex++;
  MergedSCCs.append(SCCs.begin(), SCCs.end());
  SCCs = std::move(MergedSCCs);

  // At this point we have a merged RefSCC with a post-order SCCs list, just
  // connect the nodes to form the new edge.
  SourceN.insertEdgeInternal(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif

  // We return the list of SCCs which were merged so that callers can
  // invalidate any data they have associated with those SCCs. Note that these
  // SCCs are no longer in an interesting state (they are totally empty) but
  // the pointers will remain stable for the life of the graph itself.
  return Connected;
}

void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this &&
         "The source must be a member of this RefSCC.");

  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
  assert(&TargetRC != this && "The target must not be a member of this RefSCC");

  assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) ==
             G->LeafRefSCCs.end() &&
         "Cannot have a leaf RefSCC source.");

  // First remove it from the node.
  SourceN.removeEdgeInternal(TargetN.getFunction());

  bool HasOtherEdgeToChildRC = false;
  bool HasOtherChildRC = false;
  for (SCC *InnerC : SCCs) {
    for (Node &N : *InnerC) {
      for (Edge &E : N) {
        assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
        RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
        if (&OtherChildRC == &TargetRC) {
          HasOtherEdgeToChildRC = true;
          break;
        }
        if (&OtherChildRC != this)
          HasOtherChildRC = true;
      }
      if (HasOtherEdgeToChildRC)
        break;
    }
    if (HasOtherEdgeToChildRC)
      break;
  }
  // Because the SCCs form a DAG, deleting such an edge cannot change the set
  // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
  // the source SCC no longer connected to the target SCC. If so, we need to
  // update the target SCC's map of its parents.
  if (!HasOtherEdgeToChildRC) {
    bool Removed = TargetRC.Parents.erase(this);
    (void)Removed;
    assert(Removed &&
           "Did not find the source SCC in the target SCC's parent list!");

    // It may orphan an SCC if it is the last edge reaching it, but that does
    // not violate any invariants of the graph.
    if (TargetRC.Parents.empty())
      DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
                   << " -> " << TargetN.getFunction().getName()
                   << " edge orphaned the callee's SCC!\n");

    // It may make the Source SCC a leaf SCC.
    if (!HasOtherChildRC)
      G->LeafRefSCCs.push_back(this);
  }
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
  assert(!SourceN[TargetN].isCall() &&
         "Cannot remove a call edge, it must first be made a ref edge");

  // First remove the actual edge.
  SourceN.removeEdgeInternal(TargetN.getFunction());

  // We return a list of the resulting *new* RefSCCs in post-order.
  SmallVector<RefSCC *, 1> Result;

  // Direct recursion doesn't impact the SCC graph at all.
  if (&SourceN == &TargetN)
    return Result;

  // We build somewhat synthetic new RefSCCs by providing a postorder mapping
  // for each inner SCC. We also store these associated with *nodes* rather
  // than SCCs because this saves a round-trip through the node->SCC map and in
  // the common case, SCCs are small. We will verify that we always give the
  // same number to every node in the SCC such that these are equivalent.
  const int RootPostOrderNumber = 0;
  int PostOrderNumber = RootPostOrderNumber + 1;
  SmallDenseMap<Node *, int> PostOrderMapping;

  // Every node in the target SCC can already reach every node in this RefSCC
  // (by definition). It is the only node we know will stay inside this RefSCC.
  // Everything which transitively reaches Target will also remain in the
  // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
  // back to the root post order number.
  //
  // This also enables us to take a very significant short-cut in the standard
  // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
  // references the target node, we know that the target node eventually
  // references all other nodes in our walk. As a consequence, we can detect
  // and handle participants in that cycle without walking all the edges that
  // form the connections, and instead by relying on the fundamental guarantee
  // coming into this operation.
  SCC &TargetC = *G->lookupSCC(TargetN);
  for (Node &N : TargetC)
    PostOrderMapping[&N] = RootPostOrderNumber;

  // Reset all the other nodes to prepare for a DFS over them, and add them to
  // our worklist.
  SmallVector<Node *, 8> Worklist;
  for (SCC *C : SCCs) {
    if (C == &TargetC)
      continue;

    for (Node &N : *C)
      N.DFSNumber = N.LowLink = 0;

    Worklist.append(C->Nodes.begin(), C->Nodes.end());
  }

  auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
    N.DFSNumber = N.LowLink = -1;
    PostOrderMapping[&N] = Number;
  };

  SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
  SmallVector<Node *, 4> PendingRefSCCStack;
  do {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingRefSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    Node *RootN = Worklist.pop_back_val();
    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, RootN->begin()});
    do {
      Node *N;
      edge_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = N->end();

      assert(N->DFSNumber != 0 && "We should always assign a DFS number "
                                  "before processing a node.");

      while (I != E) {
        Node &ChildN = I->getNode(*G);
        if (ChildN.DFSNumber == 0) {
          // Mark that we should start at this child when next this node is the
          // top of the stack. We don't start at the next child to ensure this
          // child's lowlink is reflected.
          DFSStack.push_back({N, I});

          // Continue, resetting to the child node.
          ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
          N = &ChildN;
          I = ChildN.begin();
          E = ChildN.end();
          continue;
        }
        if (ChildN.DFSNumber == -1) {
          // Check if this edge's target node connects to the deleted edge's
          // target node. If so, we know that every node connected will end up
          // in this RefSCC, so collapse the entire current stack into the root
          // slot in our SCC numbering. See above for the motivation of
          // optimizing the target connected nodes in this way.
          auto PostOrderI = PostOrderMapping.find(&ChildN);
          if (PostOrderI != PostOrderMapping.end() &&
              PostOrderI->second == RootPostOrderNumber) {
            MarkNodeForSCCNumber(*N, RootPostOrderNumber);
            while (!PendingRefSCCStack.empty())
              MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
                                   RootPostOrderNumber);
            while (!DFSStack.empty())
              MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
                                   RootPostOrderNumber);
            // Ensure we break all the way out of the enclosing loop.
            N = nullptr;
            break;
          }

          // If this child isn't currently in this RefSCC, no need to process
          // it.
          // However, we do need to remove this RefSCC from its RefSCC's parent
          // set.
          RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
          ChildRC.Parents.erase(this);
          ++I;
          continue;
        }

        // Track the lowest link of the children, if any are still in the stack.
        // Any child not on the stack will have a LowLink of -1.
        assert(ChildN.LowLink != 0 &&
               "Low-link must not be zero with a non-zero DFS number.");
        if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;
        ++I;
      }
      if (!N)
        // We short-circuited this node.
        break;

      // We've finished processing N and its descendents, put it on our pending
      // stack to eventually get merged into a RefSCC.
      PendingRefSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber) {
        assert(!DFSStack.empty() &&
               "We never found a viable root for a RefSCC to pop off!");
        continue;
      }

      // Otherwise, form a new RefSCC from the top of the pending node stack.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto RefSCCNodes = make_range(
          PendingRefSCCStack.rbegin(),
          std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
                       [RootDFSNumber](Node *N) {
                         return N->DFSNumber < RootDFSNumber;
                       }));

      // Mark the postorder number for these nodes and clear them off the
      // stack. We'll use the postorder number to pull them into RefSCCs at the
      // end. FIXME: Fuse with the loop above.
      int RefSCCNumber = PostOrderNumber++;
      for (Node *N : RefSCCNodes)
        MarkNodeForSCCNumber(*N, RefSCCNumber);

      PendingRefSCCStack.erase(RefSCCNodes.end().base(),
                               PendingRefSCCStack.end());
    } while (!DFSStack.empty());

    assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
    assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
  } while (!Worklist.empty());

  // We now have a post-order numbering for RefSCCs and a mapping from each
  // node in this RefSCC to its final RefSCC. We create each new RefSCC node
  // (re-using this RefSCC node for the root) and build a radix-sort style map
  // from postorder number to the RefSCC. We then append SCCs to each of these
  // RefSCCs in the order they occured in the original SCCs container.
  for (int i = 1; i < PostOrderNumber; ++i)
    Result.push_back(G->createRefSCC(*G));

  for (SCC *C : SCCs) {
    auto PostOrderI = PostOrderMapping.find(&*C->begin());
    assert(PostOrderI != PostOrderMapping.end() &&
           "Cannot have missing mappings for nodes!");
    int SCCNumber = PostOrderI->second;
#ifndef NDEBUG
    for (Node &N : *C)
      assert(PostOrderMapping.find(&N)->second == SCCNumber &&
             "Cannot have different numbers for nodes in the same SCC!");
#endif
    if (SCCNumber == 0)
      // The root node is handled separately by removing the SCCs.
      continue;

    RefSCC &RC = *Result[SCCNumber - 1];
    int SCCIndex = RC.SCCs.size();
    RC.SCCs.push_back(C);
    SCCIndices[C] = SCCIndex;
    C->OuterRefSCC = &RC;
  }

  // FIXME: We re-walk the edges in each RefSCC to establish whether it is
  // a leaf and connect it to the rest of the graph's parents lists. This is
  // really wasteful. We should instead do this during the DFS to avoid yet
  // another edge walk.
  for (RefSCC *RC : Result)
    G->connectRefSCC(*RC);

  // Now erase all but the root's SCCs.
  SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(),
                            [&](SCC *C) {
                              return PostOrderMapping.lookup(&*C->begin()) !=
                                     RootPostOrderNumber;
                            }),
             SCCs.end());

#ifndef NDEBUG
  // Now we need to reconnect the current (root) SCC to the graph. We do this
  // manually because we can special case our leaf handling and detect errors.
  bool IsLeaf = true;
#endif
  for (SCC *C : SCCs)
    for (Node &N : *C) {
      for (Edge &E : N) {
        assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
        RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
        if (&ChildRC == this)
          continue;
        ChildRC.Parents.insert(this);
#ifndef NDEBUG
        IsLeaf = false;
#endif
      }
    }
#ifndef NDEBUG
  if (!Result.empty())
    assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
                      "SCCs by removing this edge.");
  if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(),
                   [&](RefSCC *C) { return C == this; }))
    assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
                      "SCCs before we removed this edge.");
#endif
  // If this SCC stopped being a leaf through this edge removal, remove it from
  // the leaf SCC list. Note that this DTRT in the case where this was never
  // a leaf.
  // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
  // entire list if this RefSCC wasn't a leaf before the edge removal.
  if (!Result.empty())
    G->LeafRefSCCs.erase(
        std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
        G->LeafRefSCCs.end());

  // Return the new list of SCCs.
  return Result;
}

void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
  assert(SCCMap.empty() && DFSStack.empty() &&
         "This method cannot be called after SCCs have been formed!");

  return SourceN.insertEdgeInternal(Target, EK);
}

void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
  assert(SCCMap.empty() && DFSStack.empty() &&
         "This method cannot be called after SCCs have been formed!");

  return SourceN.removeEdgeInternal(Target);
}

LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
  return *new (MappedN = BPA.Allocate()) Node(*this, F);
}

void LazyCallGraph::updateGraphPtrs() {
  // Process all nodes updating the graph pointers.
  {
    SmallVector<Node *, 16> Worklist;
    for (Edge &E : EntryEdges)
      if (Node *EntryN = E.getNode())
        Worklist.push_back(EntryN);

    while (!Worklist.empty()) {
      Node *N = Worklist.pop_back_val();
      N->G = this;
      for (Edge &E : N->Edges)
        if (Node *TargetN = E.getNode())
          Worklist.push_back(TargetN);
    }
  }

  // Process all SCCs updating the graph pointers.
  {
    SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());

    while (!Worklist.empty()) {
      RefSCC &C = *Worklist.pop_back_val();
      C.G = this;
      for (RefSCC &ParentC : C.parents())
        Worklist.push_back(&ParentC);
    }
  }
}

/// Build the internal SCCs for a RefSCC from a sequence of nodes.
///
/// Appends the SCCs to the provided vector and updates the map with their
/// indices. Both the vector and map must be empty when passed into this
/// routine.
void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
  assert(RC.SCCs.empty() && "Already built SCCs!");
  assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");

  for (Node *N : Nodes) {
    assert(N->LowLink >= (*Nodes.begin())->LowLink &&
           "We cannot have a low link in an SCC lower than its root on the "
           "stack!");

    // This node will go into the next RefSCC, clear out its DFS and low link
    // as we scan.
    N->DFSNumber = N->LowLink = 0;
  }

  // Each RefSCC contains a DAG of the call SCCs. To build these, we do
  // a direct walk of the call edges using Tarjan's algorithm. We reuse the
  // internal storage as we won't need it for the outer graph's DFS any longer.

  SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Nodes) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, RootN->call_begin()});
    do {
      Node *N;
      call_edge_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = N->call_end();
      while (I != E) {
        Node &ChildN = *I->getNode();
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          assert(!lookupSCC(ChildN) &&
                 "Found a node with 0 DFS number but already in an SCC!");
          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = N->call_begin();
          E = N->call_end();
          continue;
        }

        // If the child has already been added to some child component, it
        // couldn't impact the low-link of this parent because it isn't
        // connected, and thus its low-link isn't relevant so skip it.
        if (ChildN.DFSNumber == -1) {
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }

      // We've finished processing N and its descendents, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
                       [RootDFSNumber](Node *N) {
                         return N->DFSNumber < RootDFSNumber;
                       }));
      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      RC.SCCs.push_back(createSCC(RC, SCCNodes));
      for (Node &N : *RC.SCCs.back()) {
        N.DFSNumber = N.LowLink = -1;
        SCCMap[&N] = RC.SCCs.back();
      }
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }

  // Wire up the SCC indices.
  for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
    RC.SCCIndices[RC.SCCs[i]] = i;
}

// FIXME: We should move callers of this to embed the parent linking and leaf
// tracking into their DFS in order to remove a full walk of all edges.
void LazyCallGraph::connectRefSCC(RefSCC &RC) {
  // Walk all edges in the RefSCC (this remains linear as we only do this once
  // when we build the RefSCC) to connect it to the parent sets of its
  // children.
  bool IsLeaf = true;
  for (SCC &C : RC)
    for (Node &N : C)
      for (Edge &E : N) {
        assert(E.getNode() &&
               "Cannot have a missing node in a visited part of the graph!");
        RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
        if (&ChildRC == &RC)
          continue;
        ChildRC.Parents.insert(&RC);
        IsLeaf = false;
      }

  // For the SCCs where we fine no child SCCs, add them to the leaf list.
  if (IsLeaf)
    LeafRefSCCs.push_back(&RC);
}

LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
  if (DFSStack.empty()) {
    Node *N;
    do {
      // If we've handled all candidate entry nodes to the SCC forest, we're
      // done.
      if (RefSCCEntryNodes.empty())
        return nullptr;

      N = &get(*RefSCCEntryNodes.pop_back_val());
    } while (N->DFSNumber != 0);

    // Found a new root, begin the DFS here.
    N->LowLink = N->DFSNumber = 1;
    NextDFSNumber = 2;
    DFSStack.push_back({N, N->begin()});
  }

  for (;;) {
    Node *N;
    edge_iterator I;
    std::tie(N, I) = DFSStack.pop_back_val();

    assert(N->DFSNumber > 0 && "We should always assign a DFS number "
                               "before placing a node onto the stack.");

    auto E = N->end();
    while (I != E) {
      Node &ChildN = I->getNode(*this);
      if (ChildN.DFSNumber == 0) {
        // We haven't yet visited this child, so descend, pushing the current
        // node onto the stack.
        DFSStack.push_back({N, N->begin()});

        assert(!SCCMap.count(&ChildN) &&
               "Found a node with 0 DFS number but already in an SCC!");
        ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
        N = &ChildN;
        I = N->begin();
        E = N->end();
        continue;
      }

      // If the child has already been added to some child component, it
      // couldn't impact the low-link of this parent because it isn't
      // connected, and thus its low-link isn't relevant so skip it.
      if (ChildN.DFSNumber == -1) {
        ++I;
        continue;
      }

      // Track the lowest linked child as the lowest link for this node.
      assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
      if (ChildN.LowLink < N->LowLink)
        N->LowLink = ChildN.LowLink;

      // Move to the next edge.
      ++I;
    }

    // We've finished processing N and its descendents, put it on our pending
    // SCC stack to eventually get merged into an SCC of nodes.
    PendingRefSCCStack.push_back(N);

    // If this node is linked to some lower entry, continue walking up the
    // stack.
    if (N->LowLink != N->DFSNumber) {
      assert(!DFSStack.empty() &&
             "We never found a viable root for an SCC to pop off!");
      continue;
    }

    // Otherwise, form a new RefSCC from the top of the pending node stack.
    int RootDFSNumber = N->DFSNumber;
    // Find the range of the node stack by walking down until we pass the
    // root DFS number.
    auto RefSCCNodes = node_stack_range(
        PendingRefSCCStack.rbegin(),
        std::find_if(
            PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
            [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; }));
    // Form a new RefSCC out of these nodes and then clear them off our pending
    // stack.
    RefSCC *NewRC = createRefSCC(*this);
    buildSCCs(*NewRC, RefSCCNodes);
    connectRefSCC(*NewRC);
    PendingRefSCCStack.erase(RefSCCNodes.end().base(),
                             PendingRefSCCStack.end());

    // We return the new node here. This essentially suspends the DFS walk
    // until another RefSCC is requested.
    return NewRC;
  }
}

char LazyCallGraphAnalysis::PassID;

LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}

static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
  OS << "  Edges in function: " << N.getFunction().getName() << "\n";
  for (const LazyCallGraph::Edge &E : N)
    OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
       << E.getFunction().getName() << "\n";

  OS << "\n";
}

static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
  ptrdiff_t Size = std::distance(C.begin(), C.end());
  OS << "    SCC with " << Size << " functions:\n";

  for (LazyCallGraph::Node &N : C)
    OS << "      " << N.getFunction().getName() << "\n";
}

static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
  ptrdiff_t Size = std::distance(C.begin(), C.end());
  OS << "  RefSCC with " << Size << " call SCCs:\n";

  for (LazyCallGraph::SCC &InnerC : C)
    printSCC(OS, InnerC);

  OS << "\n";
}

PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
                                                ModuleAnalysisManager *AM) {
  LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);

  OS << "Printing the call graph for module: " << M.getModuleIdentifier()
     << "\n\n";

  for (Function &F : M)
    printNode(OS, G.get(F));

  for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
    printRefSCC(OS, C);

  return PreservedAnalyses::all();
}